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Outline

1. Motivations and overview
Why do we need discrete geometries?

2. Twisted geometries
Definition and relation to holonomy and fluxes

3. From spinors to twisted geometries
Spinorial tools and derivation of the holonomy-flux algebra from harmonic oscillators

4. Applications
polyhedra, new volume operators, cosmology, simplicity constraints, etc

5. Comments on the simplicity constraints
The risks of relaxing them too much: bi-metric theories of gravity
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Motivations: a paradigm shift

kinematics dynamics

QFT: |n, pi, hi〉

quanta: momenta, helicities, etc. Feynman diagrams

observables perturbative expansion
n: # of quantum particles degree of the graph

⇓
order of approximation desired

LQG: |Γ, je, iv〉

quanta: areas and volumes spin foams

link to classical geometries? what approximation?
meaning of Γ?
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Loop gravity and discrete geometries

LQG: |Γ, je, iv〉

quanta: areas and volumes spin foams

can we associate

spin foams suggest

discrete geometries to Γ?

link with Regge geometries

{Aia(x), Ebj (y)} −→ H = ⊕
Γ
HΓ, |Γ, je, iv〉

• Consider a single graph Γ, and the associated Hilbert space HΓ.

• This truncation captures only a finite number of degrees of freedom of the theory,
thus states in HΓ do not represent smooth geometries.

• Standard intepretation: A and E distributional along the graph

• Can they represent a discrete geometry, approximation of a smooth one?
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A convenient choice: twisted geometries

L. Freidel and SS, 1001.2748 and 1006.0199, C. Rovelli and SS, 1005.2927

For each point on the phase space at fixed graph, there are infinite continuous metrics
that can correspond to it

Twisted geometries are a particular choice of interpolating geometry associated with a
cellular decomposition of the manifold dual to Γ:

each classical holonomy-flux configuration on a fixed graph
can be visualized as a collection of adjacent polyhedra
with extrinsic curvature between them

BUT: If we look at two neighbouring polyhedra, they induce two different geometries on
the shared face: By construction, the area is the same, but the shape will differ in general.

The geometries are twisted in the sense that
they are well-defined locally (on each polyhedron),
but are discontinuous at the intersections (the faces) æ
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Phase spaces of LQG

Hilbert space: H = ⊕
Γ
HΓ

• kinematical loop gravity =⇒ HΓ = L2(SU(2)E)

−→ PΓ

twisted geometries

↓ Gauss law

• gauge-inv. loop gravity =⇒ HΓ = L2(SU(2)E/SU(2)V )

−→ SΓ

closed twisted geos

Closed twisted geometries: a collection of polyhedra associated to the dual of the graph,
describing discrete, possibly discontinuous geometries

Focus first at the non gauge-inv. level:

• L2(SU(2)) is the quantization of the classical phase space T ∗SU(2)

• HΓ is the quantization of the classical phase space ×
e
T ∗SU(2)e
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Phase space of loop gravity on a fixed graph

×e T ∗SU(2)e

A spinning top for each link of the graph

T ∗SU(2) = R3 × S3 −→ Flux: Xe =
∫
e∗(gE

a)ûad
2S

(Xe, ge)

Holonomy: ge = Pe
∫
e A

Change of parametrization: (X, g)↔ (j,N, Ñ , ξ)

Speziale — Loop quantum gravity and twisted geometries Twisted geometries 9/32



Twisted geometries: definition

On each edge:
X, g

=⇒
N, j, ξ, Ñ

T ∗SU(2) = R3 × S3 ' R× S2 × S2 × S1

(X, g) ↔ (j,N, Ñ , ξ)

(N, Ñ, j, ξ) =⇒ (X, g) : X = jN

g = neξτ3 ñ−1

Isomorphism

Hopf map π : SU(2) 7→ S2

n 7→ N = nτ3n
−1

Notice also that X̃ = jÑ = −g−1Xg
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Poisson brackets on the twisted geometries

• Poisson algebra of T ∗SU(2)

{Xi, Xj} = ε
ij
kX

k
, {Xi, X̃j} = 0 {Xi, g} = −τ i g, {X̃i, g} = g τ

i

• Symplectic potential

ΘT∗SU(2) = Tr[Xdgg−1]

= ΘS2
j
(N) + ΘS2

j
(Ñ) + jdξ

⇑

Twisted geometries parametrization
(see also G.Immirzi ’95)

• Induced Poisson brackets

{Ni, Nj} =
1

j
ε
ij
kN

k
, {Ñi, Ñj} =

1

j
ε
ij
kÑ

k
, {Ni, Ñj} = 0,

{ξ, j} = 1, {Ni, j} = 0, {Ñi, j} = 0,

{ξ, jNi} ≡ Li(N), {ξ, jÑi} ≡ Li(Ñ)

• L : S2 7→ R
3 unique up to change of section. For the Hopf section, Li = (−z̄, z, 1)
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, {Ni, Ñj} = 0,

{ξ, j} = 1, {Ni, j} = 0, {Ñi, j} = 0,
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Gauge-invariance and polyhedra

Twisted geometries ⇐⇒ Loop gravity

×
e

(
T ∗S1 × S2 × S2

)
×e T ∗SU(2)

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity
SΓ ×

e
T ∗SU(2)//×

v
SU(2)
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Gauge-invariance and polyhedra

• on a vertex: Ne ∈ ×
e∈v

S2
je

• gauge-invariance condition: C =
∑
e∈v jeNe = 0

• Kapovich and Millson phase space: SF =
{
Ne ∈ ×

e∈v
S2
je |C = 0

}
/SO(3)

• Points in this phase space represent
bounded convex flat polyhedra in R3

[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

On the full graph:
SΓ = ×eT ∗S1 ×v SF

(je, ξ
0
e)

Caveat: the je are gauge-invariant, but {Cv, ξe} 6= 0 !
⇒ need to gauge-fix, ξe → ξ0

e

Reduced parametrization?
Compare Dittrich and Ryan:
for triangulations, ξgauge−inv. = ”pre”-dihedral angle
(It can not be just the dihedral angle because of the discontinuity!)
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bounded convex flat polyhedra in R3

[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space,
polyhedra are the building blocks of the classical phase space

On the full graph:
SΓ = ×eT ∗S1 ×v SF

(je, ξ
0
e)

Caveat: the je are gauge-invariant, but {Cv, ξe} 6= 0 !
⇒ need to gauge-fix, ξe → ξ0

e

Reduced parametrization?
Compare Dittrich and Ryan:
for triangulations, ξgauge−inv. = ”pre”-dihedral angle
(It can not be just the dihedral angle because of the discontinuity!)
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Gauge-invariance and polyhedra

Twisted geometries ⇐⇒ Loop gravity

×
e

(
T ∗S1 × S2 × S2

)
×e T ∗SU(2)

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity
SΓ

= ×
e
T ∗S1 ×

v
SF

×
e
T ∗SU(2)//×

v
SU(2)
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Gluing constraints

And the connection to Regge calculus?

Consider only 4-valent graphs, dual to triangulations

When closure conditions hold, a triangle acquires two geometries, one from each of the
tetrahedra sharing it

To match the shapes one needs additional gluing constraints:
B.Dittrich and SS 0802.0864

F (φvee′) = 0

among the scalar products
Ne(v) ·Ne′(v) ≡ cosφvee′
of the normals belonging to the two tetrahedra

j

k l

i

When the gluing conditions hold, we recover Regge calculus
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Overview

Spinors

↓ matching area reduction

Twisted geometries ⇐⇒ Loop gravity

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity

↓ matching shapes reduction

Regge calculus
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Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications
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Spinors

• |z〉 =

(
z0

z1

)
∈ C

2, complex structure J |z〉 =

(
−z̄1

z̄0

)
= |z]

• Hermitian inner product
〈w|z〉 = w̄0z0 + w̄1z1

• Antisymmetric bilinear form

[w|z〉 = w0z1 − w1z0 = εabwazb

• Geometrical meaning: null pole plus null flag: |z〉 7→ (Xi, φ)

|z〉〈z| = X0
1+Xiσi, φ = arg z0 + arg z1

X0 =
1

2
〈z|z〉, Xi = 〈z|σ

i

2
|z〉

• Poisson brackets

{za, z̄b} = −iδab

Speziale — Loop quantum gravity and twisted geometries From spinors to twisted geometries 18/32



Spinors

• |z〉 =

(
z0

z1

)
∈ C

2, complex structure J |z〉 =

(
−z̄1

z̄0

)
= |z]

• Hermitian inner product
〈w|z〉 = w̄0z0 + w̄1z1

• Antisymmetric bilinear form

[w|z〉 = w0z1 − w1z0 = εabwazb

• Geometrical meaning: null pole plus null flag: |z〉 7→ (Xi, φ)

|z〉〈z| = X0
1+Xiσi, φ = arg z0 + arg z1

X0 =
1

2
〈z|z〉, Xi = 〈z|σ

i

2
|z〉

• Poisson brackets

{za, z̄b} = −iδab

Speziale — Loop quantum gravity and twisted geometries From spinors to twisted geometries 18/32



Spinors

Poisson brackets {za, z̄b} = −iδab, |z〉 7→ (Xi, φ), Xi = 〈z|σ
i

2
|z〉 = 1

2
σiabz̄azb

{Xi, Xj}

=
1

4
σiabσ

j
cd{z̄azb, z̄czd}

=
1

4
σiabσ

j
cd

(
z̄azd{zb, z̄c}+ zbz̄c{z̄a, zd}

)
=

1

4
σiabσ

j
cd

(
− iδbcz̄azd + iδadzbz̄c

)
= −i1

4
〈z|[σi, σj ]|z〉 = −i1

4
2iεijk〈z|σk|z〉

= εijkXk

{X0, ϕ} = 1, {X3, ϕ} = 0, {X±, ϕ} =
X0

X∓
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Edge phase space

Consider two spinors, |z〉 and |z̃〉, with canonical Poisson brackets:

(z0, z1, z̃0, z̃1) ∈ C4, {za, z̄b} = −iδab, {z̃a, ¯̃zb} = −iδab

Claim: there is a phase space reduction s.t. C4 : 8d −→ 6d : T ∗SU(2)

• Vector-phase parametrization:

(zA, z̃A) 7→ (Xi, φ, X̃i, φ̃)

• Norm-matching constraint:

H = |Xi| − |X̃i| = 0

• The constraint generates a U(1) action:

{H, zA} =
i

2
zA, {H, z̃A} = − i

2
z̃A, (|z〉, |z̃〉) 7→ (ei

θ
2 |z〉, e−i

θ
2 |z̃〉),

• Phase space reduction: C4 : 8d
H=0−→ 7d

/U(1)−→ 6d : T ∗SU(2)

Symplectic reduction by H = 0 gives T ∗SU(2)
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H reduction

• initial Poisson brackets {za, z̄b} = −iδab |z〉 7→ (Xi, φ)

{Xi, Xj} = εijkXk, {X0, ϕ} = 1, {X3, ϕ} = 0, {X±, ϕ} =
X0

X∓

• constraint H = X0 − X̃0 = 0

• reduced variables: Define

j ≡ 1

2
(X0 + X̃0), ξA ≡ i

(
ln
zA
z̄A

+ ln
z̃A
¯̃zA

)
and evaluate

{j,H} = 0, {ξA, H} = 0, {ξA, j} = 1.

• in terms of the standard holonomy-flux parametrization:

Xi(zA) ≡ 〈z|σ
i

2
|z〉, g(zA, z̃A) ≡ |z〉[z̃| − |z]〈z̃|√

〈z|z〉〈z̃|z̃〉

We obtain a spinorial parametrization of holonomies and fluxes:

C
4 3 (|z〉, |z̃〉) /H=0−→

(
X(z), g(z)

)
∈ T ∗SU(2)
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• in terms of the standard holonomy-flux parametrization:

Xi(zA) ≡ 〈z|σ
i

2
|z〉, g(zA, z̃A) ≡ |z〉[z̃| − |z]〈z̃|√

〈z|z〉〈z̃|z̃〉

We obtain a spinorial parametrization of holonomies and fluxes:

C
4 3 (|z〉, |z̃〉) /H=0−→

(
X(z), g(z)

)
∈ T ∗SU(2)
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H interpretation

Interpretation of C4
e: twisted geometries with areas non matching:

X, g
=⇒

N, j, ξ, Ñ
=⇒

N, j, φ, φ̃, j̃, Ñ

Remark: from the two spinors I can define a twistor
⇒ H = 0 is a condition that the twistor is null
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Overview

Twistor space =⇒

×
v

(
C

2
)E(v)

↓ matching area reduction

Twisted geometries ⇐⇒ Loop gravity

↓ closure reduction ↓ Gauss law reduction

Closed twisted geometries ⇐⇒ Gauge-inv. loop gravity

↓ matching shapes reduction

Regge calculus
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Overview

↙ ↘
Spin networks Twistors

↘ ↙
Twisted geometries

↓
Regge geometries
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Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications
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Applications

1. Geometry of polyhedra and volume operator

2. New coherent states and representation of the algebra

3. Parametrization of the gauge-invariant phase space

4. U(N) coherent states

5. Cosmological models

6. Simplicity constraints
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Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: (je, Ne) 7→ edge lengths, volume, adjacency matrix

For F > 4 there are many different combinatorial structures, or classes

F = 5 Dominant: Codimension 1:F = 6 Dominant:

Codimension 1:

Codimension 2:

Codimension 3:

• The classes are all connected by 2-2 Pachner moves
�@

�@

↔ @
� @

�

(they are all tessellations of the 2-sphere)

It is the configuration of normals to determine the class

• The phase space SF can be mapped in regions corresponding to different classes.

− Dominant classes have all 3-valent vertices.
[maximal n. of vertices, V = 3(F − 2), and edges, E = 2(F − 2)]

− Subdominant classes are special configurations
with lesser edges and vertices, and span
measure zero subspaces.
[lowest-dimensional class for maximal number of triangular faces]

3d slice of S6, cuboids blue
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A new volume operator

E. Bianchi, P. Doná and SS, 1009.3402

Use:

1. classical expression known from reconstruction algorithm V (je, Ne)
(for the moment only numerical for F > 4 – work in progress Hal Haggard)

2. coherent intertwiners labelled by Ne form an (over)-complete basis

⇒ define the operator on Hv

V̂ =

∫
dµ(Ne) V (je, Ne) ||je, Ne〉〈je, Ne|| .

• Correct semiclassical limit by construction on vertices of any valency

• But not simply related to fundamental holonomy-flux operators
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4-valent spectrum

••
••oo

oo
••

••
••oo

••

••
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o

••

••

••oo

1

2
1

3

2
2
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2
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0.5

1.0

1.5

2.0

Figure: Some eigenvalues of V̂ . For comparison, the curve is the classical volume of an
equilateral tetrahedron as a function of the area j (units 8πγL2

P = 1). The empty circles are
single eigenvalues, the full circles have double degeneracy. The spectrum is gapped and bounded
from the above by the classical maximal volume, which provides a large spin asymptote.
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New coherent states

L. Freidel and SS, in (relaxed...) progress

• Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)

• Edge factor: parametrize phase space via SL(2,C) 3 H = eiXg

= ne(ξ+ij)τ3 ñ−1

ψH(g) =
∑
j

dj e
− t2 j(j+1) χj(Hg

−1), χj(Hg
−1) =

∑
ab

D
(j)
ab (H)D

(j)
ba (g−1)

• Twisted geometries parametrization X = jnτ3n
−1, g = neξτ3 ñ−1

D
(j)
ab (H) =

∑
c

D(j)
a,c(n)D(j)

c,c(e
ωτ3)D

(j)
c,b(ñ

−1), ω = ξ + ij

• n|j, c〉 vector “pointing” in the N direction with bad uncertainty
Perelomov: take maximal weight n|j,±j〉 to minimize uncertainty

• Proposal: (motivated by the T ∗S1 × S2 × S2 structure)

D
(j)
ab (H)→ D

(j)
a,j(n)D

(j)
j,j (eωτ3)D

(j)
j,b (ñ−1), ω = ξ + ij

• The resulting states provide an overcomplete basis with interesting minimization
properties
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Parametrization of the gauge-invariant phase space

• Edge area-matching:

C
4 3 (|z〉, |z̃〉) /H=0−→

(
X(z), g(z)

)

• Vertex closure:

×
e

(
C

2)E(v) /C=0−→ (X, g)g.i. in terms of spinors

〈ze|ze′〉, [ze|ze′〉 natural g.i. quantities
Borja-Freidel-Garay-Livine 1010.5451

On the full graph: Draw picture...

1. spinor description in terms of reduced variables??

2. As pointed out in Borja-Freidel-Garay-Livine 1010.5451, the total Poisson structure
comes from the action principle

S =

∫
dt
∑
v

∑
e∈v

i〈zv,e|∂tzv,e〉+
∑
e

λeHe +
∑
v

µvCv

S =
∑
t

Atεt(φ) +
∑
v

µvCv +
∑
e

µee′Cee′

Compare with area-angle Regge calculus (Dittrich-SS 0802.0864)

and its canonical description (Dittrich-Ryan 1006.4295)
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comes from the action principle

S =

∫
dt
∑
v

∑
e∈v

i〈zv,e|∂tzv,e〉+
∑
e

λeHe +
∑
v

µvCv

S =
∑
t

Atεt(φ) +
∑
v

µvCv +
∑
e

µee′Cee′

Compare with area-angle Regge calculus (Dittrich-SS 0802.0864)

and its canonical description (Dittrich-Ryan 1006.4295)
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U(N) framework

E. Livine, F. Girelli, M. Dupuis, L. Freidel

Enrique Borja, Jacobo Diaz-Polo, Inaki Garay

N-valent vertex: H{je} ≡ Inv

[
⊗
e∈v

V (je)

]
−→ HJ = ⊕∑

e je=J
H{je}

Each HJ carries an irrep of U(N)

• U(N) algebra (related to standard algebra)
applications in cosmology: new characterization of isotropy and homogeneity
E. Borja, J. Diaz-Polo, I. Garay, E. Livine, 1006.2451

• U(N) coherent states (related to coherent intertwiners)
simpler formulas, more control on the properties of the states
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On the simplicity constraints

Plebanski action: S(B,ω,Φ) =
∫
BIJ ∧ F IJ(ω) + ΦIJKLB

IJ ∧BKL

δΦS = 0 7→ C = BIJ ∧BKL − 1

12
εIJKL < B, ?B >= 0 7→ B = e ∧ e

• The problem with Barrett-Crane: simplicity constraints C = 0 imposed too strong

• On the other hand, relaxing them too much might also lead to problems!
=⇒ extra degrees of freedom, possible instabilities

Consider replacing

δ(C) 7→ exp{−αC2}

Botanics:
value of α : α = 0

α finite

α =∞
type of theory: BF theory

8 degrees of freedom

Plebanski’s GR

Remark: same modification in the self-dual theory
⇒ NO extra degrees of freedom! Krasnov ’07

• Why extra degrees of freedom in the non-chiral action?

• What is their physical interpretation?
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Revisiting the simplicity constraints 1

• The role of the constraint is not to introduce a metric:
a metric is already present in the formalism, through Urbantke’s formula g ∼ BBB

• The role of the constraints is to single out these (10) metric degrees of freedom out
of the initial components of the B field

• When looking at the details, the choice of gauge group matters a lot!

SU(2): Urbantke metric √
gU gU

µν =
1

12
εijk ε

αβγδBiµαB
j
βγB

k
δν

=⇒ Biµν = B(gU , b)

SO(4): Two Urbantke metrics√
gU(±) gU(±)

µν =
1

12
δIN

(
δJMKL ±

1

2
εJMKL

)
εαβγδBIJµαB

KL
βγ B

MN
δν

=⇒ BIJµν = B(gU+, gU−, b+, b−)

corresponding to the decomposition into self-dual and antiself-dual parts of SO(4)
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Self-duality and metricity

SU(2): Urbantke metric √
gU gU

µν =
1

12
εijk ε

αβγδBiµαB
j
βγB

k
δν

=⇒ Biµν = B(gU , b)

Urbantke’s theorem: Biµν is self-dual wrt the metric defined by itself

Plebanski’s basis of self-dual 2-forms:

Σi(e) = e0 ∧ ei +
1

2
εijke

j ∧ ek

=⇒ Biµν =
∑
a

biaΣaµν(e),
√
gU gU

µν = (det bia) e eIµe
J
ν δIJ

Take det bia = 1, ⇒ gU
µν = eIµe

J
ν δIJ
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Revisiting the simplicity constraints 2

The constraints

BIJ ∧BKL =
1

12
εIJKL < B, ?B >

can be decomposed into irreps:

(2,0) ⊕ (0,2) ⊕ (1,1) ⊕ (0,0)

bia = δia b̄ia = δia Σi+(e) ∧ Σj−(ē) = 0 e = ē

Use the parametrization:

BIJ = P IJ(+)i b
i
aΣa(e)

+ ηP IJ(−)i b̄
i
aΣ̄a(ē)

• SU(2) case: constraints freeze the b fields

• SO(4) case: constraints freeze the b fields and equate the two metrics

relaxing the constraints in the two formulations leads
to very different theories
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Use the parametrization:

BIJ = P IJ(+)i b
i
aΣa(e) + ηP IJ(−)i b̄

i
aΣ̄a(ē)
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The 6 extra degrees of freedom

• SU(2) case: the lagrangian is degenerate: the b fields do not propagate
⇒ 2 degrees of freedom [Krasnov ’07]

• SO(4) case: the lagrangian is degenerate: the b and b̄ fields do not propagate, but
the two metrics have an independent dynamics: bi-metric theory of gravity

⇒ 8 degrees of freedom [SS ’10]

Why 6 extra dofs in bi-metric theories?
Simplest counting: expand around “doubly flat” spacetime

gµν = δµν + hµν , ḡµν = δµν + h̄µν

and define

h(±)
µν =

1√
2

(hµν ± h̄µν)

h
(−)
µν is diffeo-invariant ⇒ masslessness no more protected by symmetry

It will generically acquire a mass term,

ah(−)
µν

2 + bh(−)2

the explicit form depending on the specific deformation of the constraints done
=⇒ One massive spin-2 particle (5 dofs) and one massive scalar (1dof)

Caveat! The scalar is a ghost
[Fierz-Pauli ’39, Boulware-Deser ’72]
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Unification playground

These type of generalized Plebanski theories are interesting for a number of reasons
One idea is to use them for grand unification schemes
[Smolin ’08, Lisi, Smolin and SS ’10]

• Enlarge the local gauge group, e.g so(3, 1) 7→ so(N + 3, 1)

• Spontaneously break the symmetry, e.g. so(N) 7→
(
so(3, 1) 4N

4N so(N)

)
• Perturbations around the symmetry-breaking vacuum give (modified) dynamics for

I gravity
I gauge fields
I Higgs scalars from the off-diagonal sector
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Moral...

All these is fun to play with... but the moral is:
do not mess with your constraints, unless you know what you are doing!

Speziale — Loop quantum gravity and twisted geometries On the simplicity constraints 40/32



Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Speziale — Loop quantum gravity and twisted geometries Conclusions 41/32



Conclusions

• It is possible to visualize the truncation HΓ as capturing a discretization of
3-geometries

• These are the assignment to each triangle of its oriented area, the two unit normals
as seen from the two tetrahedra sharing it, and an additional angle related to the
extrinsic curvature (N, Ñ,A, ξ) ⇐⇒ (X, g)

• The 3-geometries are piecewise-flat but in general discontinuous

• At the saddle point of the EPRL model the shape-matching conditions are satisfied
⇒ Regge action

• The twisted geometries can be easily derived from spinors associated to half-edges
through the area-matching constraints ⇒ introduction of spinorial techniques with
potentially many applications

About the semiclassical limit:

• discrete eigenvalues

−→ large spin asymptotics
√

• non-commutativity

−→ coherent states
√

• graph structure

−→ continuum limit ??
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