Loop quantum gravity and twisted geometries

Simone Speziale

Centre de Physique Theorique de Luminy, Marseille, France
Zakopane 7-03-2011

Outline

1. Motivations and overview

Why do we need discrete geometries?
2. Twisted geometries

Definition and relation to holonomy and fluxes
3. From spinors to twisted geometries

Spinorial tools and derivation of the holonomy-flux algebra from harmonic oscillators
4. Applications
polyhedra, new volume operators, cosmology, simplicity constraints, etc
5. Comments on the simplicity constraints The risks of relaxing them too much: bi-metric theories of gravity

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Motivations: a paradigm shift

kinematics

QFT:

$$
\left|n, p_{i}, h_{i}\right\rangle
$$

Feynman diagrams
perturbative expansion degree of the graph \Downarrow
order of approximation desired

Motivations: a paradigm shift

kinematics

$$
\text { QFT: } \quad\left|n, p_{i}, h_{i}\right\rangle
$$

Feynman diagrams
perturbative expansion degree of the graph \Downarrow
order of approximation desired

spin foams

Motivations: a paradigm shift

kinematics
QFT:
quanta: momenta, helicities, etc.
observables
n : \# of quantum particles

LQG:

$$
\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

quanta: areas and volumes
link to classical geometries? meaning of Γ ?

Feynman diagrams
perturbative expansion degree of the graph \Downarrow
order of approximation desired

spin foams
what approximation?

Loop gravity and discrete geometries

LQG:

$\left|\Gamma, j_{e}, i_{v}\right\rangle$
quanta: areas and volumes

spin foams
spin foams suggest
link with Regge geometries

Loop gravity and discrete geometries

LQG:
$\left|\Gamma, j_{e}, i_{v}\right\rangle$
quanta: areas and volumes
can we associate
discrete geometries to Γ ?

spin foams
spin foams suggest
link with Regge geometries

Loop gravity and discrete geometries
LQG:
$\left|\Gamma, j_{e}, i_{v}\right\rangle$
quanta: areas and volumes
can we associate
discrete geometries to Γ ?

$$
\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\} \quad \longrightarrow \quad \mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}, \quad\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

Loop gravity and discrete geometries

LQG:

$$
\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

quanta: areas and volumes
can we associate discrete geometries to Γ ?

spin foams spin foams suggest
link with Regge geometries

$$
\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\} \quad \longrightarrow \quad \mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}, \quad\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

- Consider a single graph Γ, and the associated Hilbert space \mathcal{H}_{Γ}.
- This truncation captures only a finite number of degrees of freedom of the theory, thus states in \mathcal{H}_{Γ} do not represent smooth geometries.
- Standard intepretation: A and E distributional along the graph

Loop gravity and discrete geometries

$$
\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

quanta: areas and volumes
can we associate
discrete geometries to Γ ?

> spin foams spin foams suggest link with Regge geometries

$$
\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\} \quad \longrightarrow \quad \mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}, \quad\left|\Gamma, j_{e}, i_{v}\right\rangle
$$

- Consider a single graph Γ, and the associated Hilbert space \mathcal{H}_{Γ}.
- This truncation captures only a finite number of degrees of freedom of the theory, thus states in \mathcal{H}_{Γ} do not represent smooth geometries.
- Standard intepretation: A and E distributional along the graph
- Can they represent a discrete geometry, approximation of a smooth one?

A convenient choice: twisted geometries

L. Freidel and SS, 1001.2748 and 1006.0199, C. Rovelli and SS, 1005.2927

For each point on the phase space at fixed graph, there are infinite continuous metrics that can correspond to it

Twisted geometries are a particular choice of interpolating geometry associated with a cellular decomposition of the manifold dual to Γ :
each classical holonomy-flux configuration on a fixed graph can be visualized as a collection of adjacent polyhedra with extrinsic curvature between them

A convenient choice: twisted geometries

L. Freidel and SS, 1001.2748 and 1006.0199 , C. Rovelli and SS, 1005.2927

For each point on the phase space at fixed graph, there are infinite continuous metrics that can correspond to it

Twisted geometries are a particular choice of interpolating geometry associated with a cellular decomposition of the manifold dual to Γ :
each classical holonomy-flux configuration on a fixed graph can be visualized as a collection of adjacent polyhedra with extrinsic curvature between them

BUT: If we look at two neighbouring polyhedra, they induce two different geometries on the shared face: By construction, the area is the same, but the shape will differ in general.

A convenient choice: twisted geometries

L. Freidel and SS, 1001.2748 and 1006.0199 , C. Rovelli and SS, 1005.2927

For each point on the phase space at fixed graph, there are infinite continuous metrics that can correspond to it

Twisted geometries are a particular choice of interpolating geometry associated with a cellular decomposition of the manifold dual to Γ :
each classical holonomy-flux configuration on a fixed graph can be visualized as a collection of adjacent polyhedra with extrinsic curvature between them

BUT: If we look at two neighbouring polyhedra, they induce two different geometries on the shared face: By construction, the area is the same, but the shape will differ in general.

> The geometries are twisted in the sense that they are well-defined locally (on each polyhedron), but are discontinuous at the intersections (the faces)

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Phase spaces of LQG

Hilbert space: $\mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}$

- kinematical loop gravity $\quad \Longrightarrow \quad \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E}\right)$
\downarrow Gauss law
- gauge-inv. loop gravity $\quad \Longrightarrow \quad \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E} / S U(2)^{V}\right)$

Phase spaces of LQG

Hilbert space: $\mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}$

- kinematical loop gravity $\quad \Longrightarrow \quad \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E}\right)$
$\longrightarrow P_{\Gamma}$
twisted geometries
\downarrow Gauss law
- gauge-inv. loop gravity $\quad \Longrightarrow \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E} / S U(2)^{V}\right) \quad \longrightarrow S_{\Gamma}$
closed twisted geos

Closed twisted geometries: a collection of polyhedra associated to the dual of the graph, describing discrete, possibly discontinuous geometries

Phase spaces of LQG

Hilbert space: $\mathcal{H}=\underset{\Gamma}{\oplus} \mathcal{H}_{\Gamma}$

- kinematical loop gravity $\quad \Longrightarrow \quad \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E}\right)$
$\longrightarrow P_{\Gamma}$
twisted geometries
\downarrow Gauss law
- gauge-inv. loop gravity $\quad \Longrightarrow \quad \mathcal{H}_{\Gamma}=L_{2}\left(S U(2)^{E} / S U(2)^{V}\right) \quad \longrightarrow S_{\Gamma}$
closed twisted geos

Closed twisted geometries: a collection of polyhedra associated to the dual of the graph, describing discrete, possibly discontinuous geometries

Focus first at the non gauge-inv. level:

- $L_{2}(S U(2))$ is the quantization of the classical phase space $T^{*} S U(2)$
- \mathcal{H}_{Γ} is the quantization of the classical phase space $\underset{e}{\times} T^{*} S U(2)_{e}$

Phase space of loop gravity on a fixed graph

$$
\times_{e} T^{*} S U(2)_{e}
$$

A spinning top for each link of the graph

$$
\begin{aligned}
& T^{*} S U(2)=R^{3} \times S^{3} \quad \longrightarrow \quad \text { Flux: } \quad X_{e}=\int_{e^{*}}\left(g E^{a}\right) \hat{u}_{a} d^{2} S \\
& \left(X_{e}, g_{e}\right) \\
& \text { Holonomy: } \quad g_{e}=\mathcal{P} e^{\int_{e} A}
\end{aligned}
$$

Change of parametrization: $(X, g) \leftrightarrow(j, N, \tilde{N}, \xi)$

Twisted geometries: definition

On each edge:

$$
\begin{aligned}
X, g & \Longrightarrow \quad N, j, \xi, \tilde{N} \\
T^{*} S U(2)=R^{3} \times S^{3} & \simeq R \times S^{2} \times S^{2} \times S^{1} \\
(X, g) & \leftrightarrow(j, N, \tilde{N}, \xi)
\end{aligned}
$$

Twisted geometries: definition

On each edge:

$$
\begin{aligned}
X, g & \longrightarrow \quad N, j, \xi, \tilde{N} \\
T^{*} S U(2)=R^{3} \times S^{3} & \simeq R \times S^{2} \times S^{2} \times S^{1} \\
(X, g) & \leftrightarrow(j, N, \tilde{N}, \xi)
\end{aligned}
$$

Isomorphism

$$
(N, \tilde{N}, j, \xi) \Longrightarrow(X, g): \quad X=j N
$$

Twisted geometries: definition

On each edge:

$$
\begin{aligned}
X, g & \longrightarrow \quad N, j, \xi, \tilde{N} \\
T^{*} S U(2)=R^{3} \times S^{3} & \simeq R \times S^{2} \times S^{2} \times S^{1} \\
(X, g) & \leftrightarrow(j, N, \tilde{N}, \xi)
\end{aligned}
$$

Isomorphism

$$
\begin{aligned}
(N, \tilde{N}, j, \xi) \Longrightarrow(X, g): \quad X & =j N \\
g & =n e^{\xi \tau_{3}} \tilde{n}^{-1}
\end{aligned}
$$

$$
\begin{array}{rll}
\text { Hopf map } \quad \pi: S U(2) & \mapsto \quad S^{2} \\
n & \mapsto \quad N=n \tau_{3} n^{-1}
\end{array}
$$

Twisted geometries: definition

On each edge:

$$
\begin{aligned}
X, g & \longrightarrow \quad N, j, \xi, \tilde{N} \\
T^{*} S U(2)=R^{3} \times S^{3} & \simeq R \times S^{2} \times S^{2} \times S^{1} \\
(X, g) & \leftrightarrow(j, N, \tilde{N}, \xi)
\end{aligned}
$$

Isomorphism

$$
\begin{aligned}
(N, \tilde{N}, j, \xi) \Longrightarrow(X, g): \quad X & =j N \\
g & =n e^{\xi \tau_{3}} \tilde{n}^{-1}
\end{aligned}
$$

$$
\begin{array}{rll}
\text { Hopf map } \quad \pi: S U(2) & \mapsto \quad S^{2} \\
n & \mapsto \quad N=n \tau_{3} n^{-1}
\end{array}
$$

Notice also that $\tilde{X}=j \tilde{N}=-g^{-1} X g$

Poisson brackets on the twisted geometries

- Poisson algebra of $T^{*} \mathrm{SU}(2)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j}{ }_{k} X^{k}, \quad\left\{X^{i}, \tilde{X}^{j}\right\}=0 \quad\left\{X^{i}, g\right\}=-\tau^{i} g, \quad\left\{\tilde{X}^{i}, g\right\}=g \tau^{i}
$$

- Symplectic potential

$$
\Theta_{T^{*} S U(2)}=\operatorname{Tr}\left[X \mathrm{~d} g g^{-1}\right]
$$

Poisson brackets on the twisted geometries

- Poisson algebra of $T^{*} \mathrm{SU}(2)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j}{ }_{k} X^{k}, \quad\left\{X^{i}, \tilde{X}^{j}\right\}=0 \quad\left\{X^{i}, g\right\}=-\tau^{i} g, \quad\left\{\tilde{X}^{i}, g\right\}=g \tau^{i}
$$

- Symplectic potential

$$
\begin{aligned}
\Theta_{T^{*} S U(2)}=\operatorname{Tr}\left[X \mathrm{~d} g g^{-1}\right] & =\Theta_{\mathcal{S}_{j}^{2}}(N)+\Theta_{\mathcal{S}_{j}^{2}}(\tilde{N})+j \mathrm{~d} \xi \\
& \Uparrow
\end{aligned}
$$

Twisted geometries parametrization (see also G.Immirzi '95)

Poisson brackets on the twisted geometries

- Poisson algebra of $T^{*} \mathrm{SU}(2)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j}{ }_{k} X^{k}, \quad\left\{X^{i}, \tilde{X}^{j}\right\}=0 \quad\left\{X^{i}, g\right\}=-\tau^{i} g, \quad\left\{\tilde{X}^{i}, g\right\}=g \tau^{i}
$$

- Symplectic potential

$$
\begin{aligned}
\Theta_{T^{*} S U(2)}=\operatorname{Tr}\left[X \mathrm{~d} g g^{-1}\right] & =\Theta_{\mathcal{S}_{j}^{2}}(N)+\Theta_{\mathcal{S}_{j}^{2}}(\tilde{N})+j \mathrm{~d} \xi \\
& \Uparrow
\end{aligned}
$$

Twisted geometries parametrization (see also G.Immirzi '95)

- Induced Poisson brackets

$$
\begin{array}{llr}
\left\{N^{i}, N^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} N^{k}, & \left\{\tilde{N}^{i}, \tilde{N}^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} \tilde{N}^{k}, & \left\{N^{i}, \tilde{N}^{j}\right\}=0, \\
\{\xi, j\}=1, & \left\{N^{i}, j\right\}=0, & \left\{\tilde{N}^{i}, j\right\}=0, \\
\left\{\xi, j N^{i}\right\} \equiv L^{i}(N), & \left\{\xi, j \tilde{N}^{i}\right\} \equiv L^{i}(\tilde{N}) &
\end{array}
$$

- $L: \mathcal{S}^{2} \mapsto \mathbb{R}^{3}$ unique up to change of section. For the Hopf section, $L^{i}=(-\bar{z}, z, 1)$

Poisson brackets on the twisted geometries

- Poisson algebra of $T^{*} \mathrm{SU}(2)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j}{ }_{k} X^{k}, \quad\left\{X^{i}, \tilde{X}^{j}\right\}=0 \quad\left\{X^{i}, g\right\}=-\tau^{i} g, \quad\left\{\tilde{X}^{i}, g\right\}=g \tau^{i}
$$

- Symplectic potential

$$
\begin{aligned}
\Theta_{T^{*} S U(2)}=\operatorname{Tr}\left[X \mathrm{~d} g g^{-1}\right] & =\Theta_{\mathcal{S}_{j}^{2}}(N)+\Theta_{\mathcal{S}_{j}^{2}}(\tilde{N})+j \mathrm{~d} \xi \\
& \Uparrow
\end{aligned}
$$

Twisted geometries parametrization (see also G.Immirzi '95)

- Induced Poisson brackets

$$
\begin{array}{llr}
\left\{N^{i}, N^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} N^{k}, & \left\{\tilde{N}^{i}, \tilde{N}^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} \tilde{N}^{k}, & \left\{N^{i}, \tilde{N}^{j}\right\}=0, \\
\{\xi, j\}=1, & \left\{N^{i}, j\right\}=0, & \left\{\tilde{N}^{i}, j\right\}=0, \\
\left\{\xi, j N^{i}\right\} \equiv L^{i}(N), & \left\{\xi, j \tilde{N}^{i}\right\} \equiv L^{i}(\tilde{N}) &
\end{array}
$$

- $L: \mathcal{S}^{2} \mapsto \mathbb{R}^{3}$ unique up to change of section. For the Hopf section, $L^{i}=(-\bar{z}, z, 1)$

Poisson brackets on the twisted geometries

- Poisson algebra of $T^{*} \mathrm{SU}(2)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j}{ }_{k} X^{k}, \quad\left\{X^{i}, \tilde{X}^{j}\right\}=0 \quad\left\{X^{i}, g\right\}=-\tau^{i} g, \quad\left\{\tilde{X}^{i}, g\right\}=g \tau^{i}
$$

- Symplectic potential

$$
\begin{aligned}
\Theta_{T^{*} S U(2)}=\operatorname{Tr}\left[X \mathrm{~d} g g^{-1}\right] & =\Theta_{\mathcal{S}_{j}^{2}}(N)+\Theta_{\mathcal{S}_{j}^{2}}(\tilde{N})+j \mathrm{~d} \xi \\
& \Uparrow
\end{aligned}
$$

Twisted geometries parametrization (see also G.Immirzi '95)

- Induced Poisson brackets

$$
\begin{array}{llr}
\left\{N^{i}, N^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} N^{k}, & \left\{\tilde{N}^{i}, \tilde{N}^{j}\right\}=\frac{1}{j} \epsilon^{i j}{ }_{k} \tilde{N}^{k}, & \left\{N^{i}, \tilde{N}^{j}\right\}=0, \\
\{\xi, j\}=1, & \left\{N^{i}, j\right\}=0, & \left\{\tilde{N}^{i}, j\right\}=0, \\
\left\{\xi, j N^{i}\right\} \equiv L^{i}(N), & \left\{\xi, j \tilde{N}^{i}\right\} \equiv L^{i}(\tilde{N}) &
\end{array}
$$

- $L: \mathcal{S}^{2} \mapsto \mathbb{R}^{3}$ unique up to change of section. For the Hopf section, $L^{i}=(-\bar{z}, z, 1)$

Gauge-invariance and polyhedra

$$
\begin{aligned}
& \text { Twisted geometries } \\
& \begin{array}{c}
\times \\
\times \\
\times
\end{array}\left(T^{*} S^{1} \times S^{2} \times S^{2}\right)
\end{aligned} \quad \Longleftrightarrow \quad \begin{gathered}
\text { Loop gravity } \\
\times T_{e} T^{*} S U(2)
\end{gathered}
$$

Gauge-invariance and polyhedra

Twisted geometries
 $\underset{e}{\times}\left(T^{*} S^{1} \times S^{2} \times S^{2}\right)$
 $\Longleftrightarrow \quad$ Loop gravity
 $\times_{e} T^{*} S U(2)$

\downarrow Gauss law reduction

Gauge-inv. loop gravity $\underset{e}{\times} T^{*} S U(2) / / \underset{v}{\times} S U(2)$

Gauge-invariance and polyhedra

$$
\begin{array}{lll}
\begin{array}{l}
\text { Twisted geometries } \\
\times\left(T^{*} S^{1} \times S^{2} \times S^{2}\right)
\end{array} & \Longleftrightarrow & \text { Loop gravity } \\
& & \times_{e} T^{*} S U(2) \\
\downarrow \text { closure reduction } & & \downarrow \text { Gauss law reduction } \\
\text { Closed twisted geometries } & \Longleftrightarrow & \begin{array}{l}
\text { Gauge-inv. loop gravity } \\
S_{\Gamma}
\end{array} \\
S_{\Gamma} S U(2) / / \underset{v}{\times} S U(2)
\end{array}
$$

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$
- Points in this phase space represent bounded convex flat polyhedra in \mathbb{R}^{3}
[E.Bianchi,P.Doná,SS 1009.3402]

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$
- Points in this phase space represent bounded convex flat polyhedra in \mathbb{R}^{3}
[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space, polyhedra are the building blocks of the classical phase space

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$
- Points in this phase space represent bounded convex flat polyhedra in \mathbb{R}^{3}
[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space, polyhedra are the building blocks of the classical phase space

On the full graph:

$$
S_{\Gamma}=\times_{e} T^{*} S^{1} \times_{v} S_{F}
$$

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$
- Points in this phase space represent bounded convex flat polyhedra in \mathbb{R}^{3}
[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space, polyhedra are the building blocks of the classical phase space

On the full graph:

$$
S_{\Gamma}=\times_{e} T^{*} S^{1} \times_{v} S_{F}
$$

Caveat: the j_{e} are gauge-invariant, but $\left\{C_{v}, \xi_{e}\right\} \neq 0$! \Rightarrow need to gauge-fix, $\xi_{e} \rightarrow \xi_{e}^{0}$

Gauge-invariance and polyhedra

- on a vertex: $N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2}$
- gauge-invariance condition: $C=\sum_{e \in v} j_{e} N_{e}=0$
- Kapovich and Millson phase space: $\mathcal{S}_{F}=\left\{N_{e} \in \underset{e \in v}{\times} S_{j_{e}}^{2} \mid C=0\right\} / \mathrm{SO}(3)$
- Points in this phase space represent bounded convex flat polyhedra in \mathbb{R}^{3}
[E.Bianchi,P.Doná,SS 1009.3402]

Just as the intertwiners are the building block of the Hilbert space, polyhedra are the building blocks of the classical phase space

On the full graph:

$$
S_{\Gamma}=\times_{e} T^{*} S^{1} \times_{v} S_{F}
$$

Caveat: the j_{e} are gauge-invariant, but $\left\{C_{v}, \xi_{e}\right\} \neq 0$! \Rightarrow need to gauge-fix, $\xi_{e} \rightarrow \xi_{e}^{0}$
Reduced parametrization?
Compare Dittrich and Ryan:
for triangulations, $\xi^{\text {gauge-inv. }}=$ " pre"-dihedral angle
 (It can not be just the dihedral angle because of the discontinuity!)

Gauge-invariance and polyhedra

$$
\begin{array}{lll}
\begin{array}{l}
\text { Twisted geometries } \\
\times\left(T^{*} S^{1} \times S^{2} \times S^{2}\right)
\end{array} & \Longleftrightarrow & \text { Loop gravity } \\
& & \times_{e} T^{*} S U(2) \\
\downarrow \text { closure reduction } & & \downarrow \text { Gauss law reduction } \\
\text { Closed twisted geometries } & \Longleftrightarrow & \begin{array}{l}
\text { Gauge-inv. loop gravity } \\
S_{\Gamma}
\end{array} \\
S_{\Gamma} S U(2) / / \underset{v}{\times} S U(2)
\end{array}
$$

Gauge-invariance and polyhedra

$$
\begin{array}{lll}
\begin{array}{l}
\text { Twisted geometries } \\
{ }_{e}^{\times}\left(T^{*} S^{1} \times S^{2} \times S^{2}\right)
\end{array} & \Longleftrightarrow & \begin{array}{l}
\text { Loop gravity } \\
\\
\times_{e} T^{*} S U(2)
\end{array} \\
\downarrow \text { closure reduction }
\end{array} ~\left(\begin{array}{l}
\downarrow \text { Gauss law reduction }
\end{array}\right.
$$

Gluing constraints

And the connection to Regge calculus?
Consider only 4-valent graphs, dual to triangulations
When closure conditions hold, a triangle acquires two geometries, one from each of the tetrahedra sharing it

Gluing constraints

And the connection to Regge calculus?
Consider only 4-valent graphs, dual to triangulations
When closure conditions hold, a triangle acquires two geometries, one from each of the tetrahedra sharing it

To match the shapes one needs additional gluing constraints:
B.Dittrich and SS 0802.0864

$$
F\left(\phi_{e e^{\prime}}^{v}\right)=0
$$

among the scalar products

$N_{e}(v) \cdot N_{e^{\prime}}(v) \equiv \cos \phi_{e e^{\prime}}^{v}$
of the normals belonging to the two tetrahedra

Gluing constraints

And the connection to Regge calculus?
Consider only 4-valent graphs, dual to triangulations
When closure conditions hold, a triangle acquires two geometries, one from each of the tetrahedra sharing it

To match the shapes one needs additional gluing constraints:
B.Dittrich and SS 0802.0864

$$
F\left(\phi_{e e^{\prime}}^{v}\right)=0
$$

among the scalar products

$N_{e}(v) \cdot N_{e^{\prime}}(v) \equiv \cos \phi_{e e^{\prime}}^{v}$
of the normals belonging to the two tetrahedra
When the gluing conditions hold, we recover Regge calculus

Overview

Twisted geometries
closure reduction

Closed twisted geometries
$\Longleftrightarrow \quad$ Loop gravity
\downarrow Gauss law reduction

Gauge-inv. loop gravity

Overview

Twisted geometries
\downarrow closure reduction

Closed twisted geometries
\downarrow matching shapes reduction

Regge calculus
$\Longleftrightarrow \quad$ Loop gravity
\downarrow Gauss law reduction
$\Longleftrightarrow \quad$ Gauge-inv. loop gravity

Overview

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Spinors

- $|\mathbf{z}\rangle=\binom{z_{0}}{z_{1}} \in \mathbb{C}^{2}, \quad$ complex structure $\left.J|z\rangle=\binom{-\bar{z}_{1}}{\bar{z}_{0}}=\mid z\right]$
- Hermitian inner product

$$
\langle w \mid z\rangle=\bar{w}_{0} z_{0}+\bar{w}_{1} z_{1}
$$

- Antisymmetric bilinear form

$$
\left[w|z\rangle=w_{0} z_{1}-w_{1} z_{0}=\epsilon^{a b} w_{a} z_{b}\right.
$$

- Geometrical meaning: null pole plus null flag: $\quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\begin{aligned}
& |\mathbf{z}\rangle\langle\mathbf{z}|=X^{0} \mathbb{1}+X^{i} \sigma_{i}, \quad \phi=\arg z_{0}+\arg z_{1} \\
& X^{0}=\frac{1}{2}\langle\mathbf{z} \mid \mathbf{z}\rangle, \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle
\end{aligned}
$$

Spinors

- $|\mathbf{z}\rangle=\binom{z_{0}}{z_{1}} \in \mathbb{C}^{2}, \quad$ complex structure $\left.J|z\rangle=\binom{-\bar{z}_{1}}{\bar{z}_{0}}=\mid z\right]$
- Hermitian inner product

$$
\langle w \mid z\rangle=\bar{w}_{0} z_{0}+\bar{w}_{1} z_{1}
$$

- Antisymmetric bilinear form

$$
\left[w|z\rangle=w_{0} z_{1}-w_{1} z_{0}=\epsilon^{a b} w_{a} z_{b}\right.
$$

- Geometrical meaning: null pole plus null flag: $\quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\begin{aligned}
& |\mathbf{z}\rangle\langle\mathbf{z}|=X^{0} \mathbb{1}+X^{i} \sigma_{i}, \quad \phi=\arg z_{0}+\arg z_{1} \\
& X^{0}=\frac{1}{2}\langle\mathbf{z} \mid \mathbf{z}\rangle, \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle
\end{aligned}
$$

- Poisson brackets

$$
\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}
$$

Spinors

$$
\text { Poisson brackets } \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}
$$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$ $\left\{X^{i}, X^{j}\right\}$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$

$$
\left\{X^{i}, X^{j}\right\}=\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left\{\bar{z}_{a} z_{b}, \bar{z}_{c} z_{d}\right\}
$$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$

$$
\begin{aligned}
\left\{X^{i}, X^{j}\right\} & =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left\{\bar{z}_{a} z_{b}, \bar{z}_{c} z_{d}\right\} \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(\bar{z}_{a} z_{d}\left\{z_{b}, \bar{z}_{c}\right\}+z_{b} \bar{z}_{c}\left\{\bar{z}_{a}, z_{d}\right\}\right)
\end{aligned}
$$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$

$$
\begin{aligned}
\left\{X^{i}, X^{j}\right\} & =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left\{\bar{z}_{a} z_{b}, \bar{z}_{c} z_{d}\right\} \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(\bar{z}_{a} z_{d}\left\{z_{b}, \bar{z}_{c}\right\}+z_{b} \bar{z}_{c}\left\{\bar{z}_{a}, z_{d}\right\}\right) \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(-i \delta_{b c} \bar{z}_{a} z_{d}+i \delta_{a d} z_{b} \bar{z}_{c}\right)
\end{aligned}
$$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$

$$
\begin{aligned}
\left\{X^{i}, X^{j}\right\} & =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left\{\bar{z}_{a} z_{b}, \bar{z}_{c} z_{d}\right\} \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(\bar{z}_{a} z_{d}\left\{z_{b}, \bar{z}_{c}\right\}+z_{b} \bar{z}_{c}\left\{\bar{z}_{a}, z_{d}\right\}\right) \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(-i \delta_{b c} \bar{z}_{a} z_{d}+i \delta_{a d} z_{b} \bar{z}_{c}\right) \\
& =-i \frac{1}{4}\langle\mathbf{z}|\left[\sigma^{i}, \sigma^{j}\right]|\mathbf{z}\rangle=-i \frac{1}{4} 2 i \epsilon^{i j k}\langle\mathbf{z}| \sigma^{k}|\mathbf{z}\rangle \\
& =\epsilon^{i j k} X^{k}
\end{aligned}
$$

Spinors

Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right), \quad X^{i}=\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle=\frac{1}{2} \sigma_{a b}^{i} \bar{z}_{a} z_{b}$

$$
\begin{aligned}
\left\{X^{i}, X^{j}\right\} & =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left\{\bar{z}_{a} z_{b}, \bar{z}_{c} z_{d}\right\} \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(\bar{z}_{a} z_{d}\left\{z_{b}, \bar{z}_{c}\right\}+z_{b} \bar{z}_{c}\left\{\bar{z}_{a}, z_{d}\right\}\right) \\
& =\frac{1}{4} \sigma_{a b}^{i} \sigma_{c d}^{j}\left(-i \delta_{b c} \bar{z}_{a} z_{d}+i \delta_{a d} z_{b} \bar{z}_{c}\right) \\
& =-i \frac{1}{4}\langle\mathbf{z}|\left[\sigma^{i}, \sigma^{j}\right]|\mathbf{z}\rangle=-i \frac{1}{4} 2 i \epsilon^{i j k}\langle\mathbf{z}| \sigma^{k}|\mathbf{z}\rangle \\
& =\epsilon^{i j k} X^{k}
\end{aligned}
$$

$$
\left\{X^{0}, \varphi\right\}=1, \quad\left\{X^{3}, \varphi\right\}=0, \quad\left\{X^{ \pm}, \varphi\right\}=\frac{X^{0}}{X^{\mp}}
$$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

- Vector-phase parametrization:

$$
\left(z_{A}, \tilde{z}_{A}\right) \mapsto\left(X_{i}, \phi, \tilde{X}_{i}, \tilde{\phi}\right)
$$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

- Vector-phase parametrization:

$$
\left(z_{A}, \tilde{z}_{A}\right) \mapsto\left(X_{i}, \phi, \tilde{X}_{i}, \tilde{\phi}\right)
$$

- Norm-matching constraint:

$$
H=\left|X_{i}\right|-\left|\tilde{X}_{i}\right|=0
$$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

- Vector-phase parametrization:

$$
\left(z_{A}, \tilde{z}_{A}\right) \mapsto\left(X_{i}, \phi, \tilde{X}_{i}, \tilde{\phi}\right)
$$

- Norm-matching constraint:

$$
H=\left|X_{i}\right|-\left|\tilde{X}_{i}\right|=0
$$

- The constraint generates a $\mathrm{U}(1)$ action:

$$
\left\{H, z_{A}\right\}=\frac{i}{2} z_{A}, \quad\left\{H, \tilde{z}_{A}\right\}=-\frac{i}{2} \tilde{z}_{A}, \quad(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \mapsto\left(e^{i \frac{\theta}{2}}|\mathbf{z}\rangle, e^{-i \frac{\theta}{2}}|\tilde{\mathbf{z}}\rangle\right)
$$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

- Vector-phase parametrization:

$$
\left(z_{A}, \tilde{z}_{A}\right) \mapsto\left(X_{i}, \phi, \tilde{X}_{i}, \tilde{\phi}\right)
$$

- Norm-matching constraint:

$$
H=\left|X_{i}\right|-\left|\tilde{X}_{i}\right|=0
$$

- The constraint generates a $\mathrm{U}(1)$ action:

$$
\left\{H, z_{A}\right\}=\frac{i}{2} z_{A}, \quad\left\{H, \tilde{z}_{A}\right\}=-\frac{i}{2} \tilde{z}_{A}, \quad(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \mapsto\left(e^{i \frac{\theta}{2}}|\mathbf{z}\rangle, e^{-i \frac{\theta}{2}}|\tilde{\mathbf{z}}\rangle\right)
$$

- Phase space reduction: $\mathbb{C}^{4}: 8 d \xrightarrow{H=0} 7 d \xrightarrow{/ U(1)} 6 d: T^{*} S U(2)$

Edge phase space

Consider two spinors, $|\mathbf{z}\rangle$ and $|\tilde{\mathbf{z}}\rangle$, with canonical Poisson brackets:

$$
\left(z_{0}, z_{1}, \tilde{z}_{0}, \tilde{z}_{1}\right) \in \mathbb{C}^{4}, \quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b}, \quad\left\{\tilde{z}_{a}, \overline{\tilde{z}}_{b}\right\}=-i \delta_{a b}
$$

Claim: there is a phase space reduction s.t. $\mathbb{C}^{4}: 8 d \longrightarrow 6 d: T^{*} S U(2)$

- Vector-phase parametrization:

$$
\left(z_{A}, \tilde{z}_{A}\right) \mapsto\left(X_{i}, \phi, \tilde{X}_{i}, \tilde{\phi}\right)
$$

- Norm-matching constraint:

$$
H=\left|X_{i}\right|-\left|\tilde{X}_{i}\right|=0
$$

- The constraint generates a $\mathrm{U}(1)$ action:

$$
\left\{H, z_{A}\right\}=\frac{i}{2} z_{A}, \quad\left\{H, \tilde{z}_{A}\right\}=-\frac{i}{2} \tilde{z}_{A}, \quad(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \mapsto\left(e^{i \frac{\theta}{2}}|\mathbf{z}\rangle, e^{-i \frac{\theta}{2}}|\tilde{\mathbf{z}}\rangle\right)
$$

- Phase space reduction: $\mathbb{C}^{4}: 8 d \xrightarrow{H=0} 7 d \xrightarrow{/ U(1)} 6 d: T^{*} S U(2)$

$$
\text { Symplectic reduction by } H=0 \text { gives } T^{*} S U(2)
$$

H reduction

- initial Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b} \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j k} X^{k}, \quad\left\{X^{0}, \varphi\right\}=1, \quad\left\{X^{3}, \varphi\right\}=0, \quad\left\{X^{ \pm}, \varphi\right\}=\frac{X^{0}}{X^{\mp}}
$$

- constraint $H=X^{0}-\tilde{X}^{0}=0$

H reduction

- initial Poisson brackets $\quad\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b} \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j k} X^{k}, \quad\left\{X^{0}, \varphi\right\}=1, \quad\left\{X^{3}, \varphi\right\}=0, \quad\left\{X^{ \pm}, \varphi\right\}=\frac{X^{0}}{X^{\mp}}
$$

- constraint $H=X^{0}-\tilde{X}^{0}=0$
- reduced variables: Define

$$
j \equiv \frac{1}{2}\left(X^{0}+\tilde{X}^{0}\right), \quad \xi_{A} \equiv i\left(\ln \frac{z_{A}}{\bar{z}_{A}}+\ln \frac{\tilde{z}_{A}}{\overline{\tilde{z}}_{A}}\right)
$$

and evaluate

$$
\{j, H\}=0, \quad\left\{\xi_{A}, H\right\}=0, \quad\left\{\xi_{A}, j\right\}=1 .
$$

H reduction

- initial Poisson brackets $\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b} \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j k} X^{k}, \quad\left\{X^{0}, \varphi\right\}=1, \quad\left\{X^{3}, \varphi\right\}=0, \quad\left\{X^{ \pm}, \varphi\right\}=\frac{X^{0}}{X^{\mp}}
$$

- constraint $H=X^{0}-\tilde{X}^{0}=0$
- reduced variables: Define

$$
j \equiv \frac{1}{2}\left(X^{0}+\tilde{X}^{0}\right), \quad \xi_{A} \equiv i\left(\ln \frac{z_{A}}{\bar{z}_{A}}+\ln \frac{\tilde{z}_{A}}{\bar{z}_{A}}\right)
$$

and evaluate

$$
\{j, H\}=0, \quad\left\{\xi_{A}, H\right\}=0, \quad\left\{\xi_{A}, j\right\}=1 .
$$

- in terms of the standard holonomy-flux parametrization:

$$
X^{i}\left(z_{A}\right) \equiv\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle, \quad g\left(z_{A}, \tilde{z}_{A}\right) \equiv \frac{|\mathbf{z}\rangle\langle\tilde{\mathbf{z}}|-|\mathbf{z}\rangle\langle\tilde{\mathbf{z}}|}{\sqrt{\langle\mathbf{z} \mid \mathbf{z}\rangle\langle\tilde{\mathbf{z}} \mid \tilde{\mathbf{z}}\rangle}}
$$

H reduction

- initial Poisson brackets $\left\{z_{a}, \bar{z}_{b}\right\}=-i \delta_{a b} \quad|\mathbf{z}\rangle \mapsto\left(X^{i}, \phi\right)$

$$
\left\{X^{i}, X^{j}\right\}=\epsilon^{i j k} X^{k}, \quad\left\{X^{0}, \varphi\right\}=1, \quad\left\{X^{3}, \varphi\right\}=0, \quad\left\{X^{ \pm}, \varphi\right\}=\frac{X^{0}}{X^{\mp}}
$$

- constraint $H=X^{0}-\tilde{X}^{0}=0$
- reduced variables: Define

$$
j \equiv \frac{1}{2}\left(X^{0}+\tilde{X}^{0}\right), \quad \xi_{A} \equiv i\left(\ln \frac{z_{A}}{\bar{z}_{A}}+\ln \frac{\tilde{z}_{A}}{\bar{z}_{A}}\right)
$$

and evaluate

$$
\{j, H\}=0, \quad\left\{\xi_{A}, H\right\}=0, \quad\left\{\xi_{A}, j\right\}=1 .
$$

- in terms of the standard holonomy-flux parametrization:

$$
X^{i}\left(z_{A}\right) \equiv\langle\mathbf{z}| \frac{\sigma^{i}}{2}|\mathbf{z}\rangle, \quad g\left(z_{A}, \tilde{z}_{A}\right) \equiv \frac{|\mathbf{z}\rangle\langle\tilde{\mathbf{z}}|-\mid \mathbf{z}]\langle\tilde{\mathbf{z}}|}{\sqrt{\langle\mathbf{z} \mid \mathbf{z}\rangle\langle\tilde{\mathbf{z}} \mid \tilde{\mathbf{z}}\rangle}}
$$

We obtain a spinorial parametrization of holonomies and fluxes:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(\mathbf{z}), g(\mathbf{z})) \in T^{*} S U(2)
$$

H interpretation

Interpretation of \mathbb{C}_{e}^{4} : twisted geometries with areas non matching:

Remark: from the two spinors I can define a twistor $\Rightarrow H=0$ is a condition that the twistor is null

Overview

Twistor space
$\quad \downarrow$ matching area reduction
Twisted geometries
\downarrow closure reduction
Closed twisted geometries
$\Longleftrightarrow \quad$ Loop gravity
\downarrow Gauss law reduction
$\Longleftrightarrow \quad$ Gauge-inv. loop gravity
\downarrow matching shapes reduction
Regge calculus

Overview

Twistor space

\downarrow matching area reduction

Twisted geometries
\downarrow closure reduction

Closed twisted geometries
$\Longrightarrow \quad \underset{v}{\times}\left(\mathbb{C}^{2}\right)^{E(v)}$
$\Longleftrightarrow \quad$ Loop gravity
\downarrow Gauss law reduction

Gauge-inv. loop gravity
\downarrow matching shapes reduction

Regge calculus

Overview

Spin networks Twistors

Overview

Spin networks Twistors

Twisted geometries

Overview

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Applications

1. Geometry of polyhedra and volume operator
2. New coherent states and representation of the algebra
3. Parametrization of the gauge-invariant phase space
4. $\mathrm{U}(\mathrm{N})$ coherent states
5. Cosmological models
6. Simplicity constraints

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes

Codimension 1:

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes
$F=6$

Codimension 2:

Codimension 1:

Codimension 3

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes
$F=6$

Codimension 2:

Codimension 1:

Codimension 3

- The classes are all connected by 2-2 Pachner moves (they are all tessellations of the 2-sphere)

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes
$F=6$

Codimension 2:

Codimension 3:

It is the configuration of normals to determine the class

- The phase space \mathcal{S}_{F} can be mapped in regions corresponding to different classes.
- Dominant classes have all 3-valent vertices.
[maximal n. of vertices, $V=3(F-2)$, and edges, $E=2(F-2)$]
- Subdominant classes are special configurations with lesser edges and vertices, and span measure zero subspaces.

[lowest-dimensional class for maximal number of triangular faces]

Geometry of polyhedra

E. Bianchi, P. Doná and SS, 1009.3402

Explicit reconstruction procedure: $\left(j_{e}, N_{e}\right) \mapsto$ edge lengths, volume, adjacency matrix For $F>4$ there are many different combinatorial structures, or classes
$F=6$

Codimension 2:

Codimension 1:

Codimension 3:

It is the configuration of normals to determine the class

- The phase space \mathcal{S}_{F} can be mapped in regions corresponding to different classes.
- Dominant classes have all 3-valent vertices.
[maximal n. of vertices, $V=3(F-2)$, and edges, $E=2(F-2)$]
- Subdominant classes are special configurations with lesser edges and vertices, and span measure zero subspaces.
[lowest-dimensional class for maximal number of triangular faces]

3d slice of \mathcal{S}_{6}, cuboids blue

A new volume operator

E. Bianchi, P. Doná and SS, 1009.3402

Use:

1. classical expression known from reconstruction algorithm $V\left(j_{e}, N_{e}\right)$ (for the moment only numerical for $F>4$ - work in progress Hal Haggard)
2. coherent intertwiners labelled by N_{e} form an (over)-complete basis
\Rightarrow define the operator on \mathcal{H}_{v}

$$
\left.\hat{V}=\int d \mu\left(N_{e}\right) V\left(j_{e}, N_{e}\right) \| j_{e}, N_{e}\right\rangle\left\langle j_{e}, N_{e} \| .\right.
$$

A new volume operator

E. Bianchi, P. Doná and SS, 1009.3402

Use:

1. classical expression known from reconstruction algorithm $V\left(j_{e}, N_{e}\right)$ (for the moment only numerical for $F>4$ - work in progress Hal Haggard)
2. coherent intertwiners labelled by N_{e} form an (over)-complete basis
\Rightarrow define the operator on \mathcal{H}_{v}

$$
\left.\hat{V}=\int d \mu\left(N_{e}\right) V\left(j_{e}, N_{e}\right) \| j_{e}, N_{e}\right\rangle\left\langle j_{e}, N_{e} \| .\right.
$$

- Correct semiclassical limit by construction on vertices of any valency
- But not simply related to fundamental holonomy-flux operators

4-valent spectrum

Figure: Some eigenvalues of \hat{V}. For comparison, the curve is the classical volume of an equilateral tetrahedron as a function of the area j (units $8 \pi \gamma L_{P}^{2}=1$). The empty circles are single eigenvalues, the full circles have double degeneracy. The spectrum is gapped and bounded from the above by the classical maximal volume, which provides a large spin asymptote.

New coherent states

L. Freidel and SS, in (relaxed...) progress

- Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)
- Edge factor: parametrize phase space via $S L(2, \mathbb{C}) \ni H=e^{i X} g$

$$
\psi_{H}(g)=\sum_{j} d_{j} e^{-\frac{t}{2} j(j+1)} \chi_{j}\left(H g^{-1}\right), \quad \chi_{j}\left(H g^{-1}\right)=\sum_{a b} D_{a b}^{(j)}(H) D_{b a}^{(j)}\left(g^{-1}\right)
$$

New coherent states

L. Freidel and SS, in (relaxed...) progress

- Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)
- Edge factor: parametrize phase space via $S L(2, \mathbb{C}) \ni H=e^{i X} g=n e^{(\xi+i j) \tau_{3}} \tilde{n}^{-1}$

$$
\psi_{H}(g)=\sum_{j} d_{j} e^{-\frac{t}{2} j(j+1)} \chi_{j}\left(H g^{-1}\right), \quad \chi_{j}\left(H g^{-1}\right)=\sum_{a b} D_{a b}^{(j)}(H) D_{b a}^{(j)}\left(g^{-1}\right)
$$

- Twisted geometries parametrization $X=j n \tau_{3} n^{-1}, g=n e^{\xi \tau_{3}} \tilde{n}^{-1}$

$$
D_{a b}^{(j)}(H)=\sum_{c} D_{a, c}^{(j)}(n) D_{c, c}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{c, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

New coherent states

L. Freidel and SS, in (relaxed...) progress

- Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)
- Edge factor: parametrize phase space via $S L(2, \mathbb{C}) \ni H=e^{i X} g=n e^{(\xi+i j) \tau_{3}} \tilde{n}^{-1}$

$$
\psi_{H}(g)=\sum_{j} d_{j} e^{-\frac{t}{2} j(j+1)} \chi_{j}\left(H g^{-1}\right), \quad \chi_{j}\left(H g^{-1}\right)=\sum_{a b} D_{a b}^{(j)}(H) D_{b a}^{(j)}\left(g^{-1}\right)
$$

- Twisted geometries parametrization $X=j n \tau_{3} n^{-1}, g=n e^{\xi \tau_{3}} \tilde{n}^{-1}$

$$
D_{a b}^{(j)}(H)=\sum_{c} D_{a, c}^{(j)}(n) D_{c, c}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{c, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

- $n|j, c\rangle$ vector "pointing" in the N direction with bad uncertainty Perelomov: take maximal weight $n|j, \pm j\rangle$ to minimize uncertainty

New coherent states

L. Freidel and SS, in (relaxed...) progress

- Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)
- Edge factor: parametrize phase space via $S L(2, \mathbb{C}) \ni H=e^{i X} g=n e^{(\xi+i j) \tau_{3}} \tilde{n}^{-1}$

$$
\psi_{H}(g)=\sum_{j} d_{j} e^{-\frac{t}{2} j(j+1)} \chi_{j}\left(H g^{-1}\right), \quad \chi_{j}\left(H g^{-1}\right)=\sum_{a b} D_{a b}^{(j)}(H) D_{b a}^{(j)}\left(g^{-1}\right)
$$

- Twisted geometries parametrization $X=j n \tau_{3} n^{-1}, g=n e^{\xi \tau_{3}} \tilde{n}^{-1}$

$$
D_{a b}^{(j)}(H)=\sum_{c} D_{a, c}^{(j)}(n) D_{c, c}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{c, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

- $n|j, c\rangle$ vector "pointing" in the N direction with bad uncertainty Perelomov: take maximal weight $n|j, \pm j\rangle$ to minimize uncertainty
- Proposal: (motivated by the $T^{*} S^{1} \times S^{2} \times S^{2}$ structure)

$$
D_{a b}^{(j)}(H) \rightarrow D_{a, j}^{(j)}(n) D_{j, j}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{j, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

New coherent states

L. Freidel and SS, in (relaxed...) progress

- Heat-Kernel coherent states (Thiemann, Hall, Winkler, Sahlmann, Bahr)
- Edge factor: parametrize phase space via $S L(2, \mathbb{C}) \ni H=e^{i X} g=n e^{(\xi+i j) \tau_{3}} \tilde{n}^{-1}$

$$
\psi_{H}(g)=\sum_{j} d_{j} e^{-\frac{t}{2} j(j+1)} \chi_{j}\left(H g^{-1}\right), \quad \chi_{j}\left(H g^{-1}\right)=\sum_{a b} D_{a b}^{(j)}(H) D_{b a}^{(j)}\left(g^{-1}\right)
$$

- Twisted geometries parametrization $X=j n \tau_{3} n^{-1}, g=n e^{\xi \tau_{3}} \tilde{n}^{-1}$

$$
D_{a b}^{(j)}(H)=\sum_{c} D_{a, c}^{(j)}(n) D_{c, c}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{c, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

- $n|j, c\rangle$ vector "pointing" in the N direction with bad uncertainty Perelomov: take maximal weight $n|j, \pm j\rangle$ to minimize uncertainty
- Proposal: (motivated by the $T^{*} S^{1} \times S^{2} \times S^{2}$ structure)

$$
D_{a b}^{(j)}(H) \rightarrow D_{a, j}^{(j)}(n) D_{j, j}^{(j)}\left(e^{\omega \tau_{3}}\right) D_{j, b}^{(j)}\left(\tilde{n}^{-1}\right), \quad \omega=\xi+i j
$$

- The resulting states provide an overcomplete basis with interesting minimization properties

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

- Vertex closure:

$$
\begin{aligned}
\times\left(\mathbb{C}^{2}\right)^{E(v)} \xrightarrow{/ C=0} & (X, g)_{g . i .} \text { in terms of spinors } \\
& \left\langle z_{e} \mid z_{e^{\prime}}\right\rangle,\left[z_{e}\left|z_{e^{\prime}}\right\rangle\right. \text { natural g.i. quantities } \\
& \text { Borja-Freidel-Garay-Livine 1010.5451 }
\end{aligned}
$$

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

- Vertex closure:

$$
\begin{aligned}
\underset{e}{\times}\left(\mathbb{C}^{2}\right)^{E(v)} \stackrel{/ C=0}{\longrightarrow} & (X, g)_{\text {g.i. }} \text { in terms of spinors } \\
& \left\langle z_{e} \mid z_{e^{\prime}}\right\rangle,\left[z_{e}\left|z_{e^{\prime}}\right\rangle\right. \text { natural g.i. quantities } \\
& \text { Borja-Freidel-Garay-Livine 1010.5451 }
\end{aligned}
$$

On the full graph: Draw picture...

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

- Vertex closure:

$$
\begin{aligned}
\times\left(\mathbb{C}^{2}\right)^{E(v)} \xrightarrow{/ C=0} & (X, g)_{g . i .} \text { in terms of spinors } \\
& \left\langle z_{e} \mid z_{e^{\prime}}\right\rangle,\left[z_{e}\left|z_{e^{\prime}}\right\rangle\right. \text { natural g.i. quantities } \\
& \text { Borja-Freidel-Garay-Livine 1010.5451 }
\end{aligned}
$$

On the full graph: Draw picture...

1. spinor description in terms of reduced variables??

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

- Vertex closure:

$$
\begin{aligned}
\underset{e}{\times}\left(\mathbb{C}^{2}\right)^{E(v)} \xrightarrow{/ C=0} & (X, g)_{g . i .} \text { in terms of spinors } \\
& \left\langle z_{e} \mid z_{e^{\prime}}\right\rangle,\left[z_{e}\left|z_{e^{\prime}}\right\rangle\right. \text { natural g.i. quantities } \\
& \text { Borja-Freidel-Garay-Livine 1010.5451 }
\end{aligned}
$$

On the full graph: Draw picture...

1. spinor description in terms of reduced variables??
2. As pointed out in Borja-Freidel-Garay-Livine 1010.5451, the total Poisson structure comes from the action principle

$$
S=\int d t \sum_{v} \sum_{e \in v} i\left\langle\mathbf{z}_{v, e} \mid \partial_{t} \mathbf{z}_{v, e}\right\rangle+\sum_{e} \lambda_{e} H_{e}+\sum_{v} \mu_{v} C_{v}
$$

Parametrization of the gauge-invariant phase space

- Edge area-matching:

$$
\mathbb{C}^{4} \ni(|\mathbf{z}\rangle,|\tilde{\mathbf{z}}\rangle) \xrightarrow{/ H=0}(X(z), g(z))
$$

- Vertex closure:

$$
\begin{aligned}
\underset{e}{\times}\left(\mathbb{C}^{2}\right)^{E(v)} \xrightarrow{/ C=0} & (X, g)_{g . i .} \text { in terms of spinors } \\
& \left\langle z_{e} \mid z_{e^{\prime}}\right\rangle,\left[z_{e}\left|z_{e^{\prime}}\right\rangle\right. \text { natural g.i. quantities } \\
& \text { Borja-Freidel-Garay-Livine 1010.5451 }
\end{aligned}
$$

On the full graph: Draw picture...

1. spinor description in terms of reduced variables??
2. As pointed out in Borja-Freidel-Garay-Livine 1010.5451, the total Poisson structure comes from the action principle

$$
\begin{array}{rlr}
S=\int d t \sum_{v} \sum_{e \in v} i\left\langle\mathbf{z}_{v, e} \mid \partial_{t} \mathbf{z}_{v, e}\right\rangle+\sum_{e} \lambda_{e} H_{e}+\sum_{v} \mu_{v} C_{v} \\
S= & \sum_{t} A_{t} \epsilon_{t}(\phi) & +\sum_{v} \mu_{v} C_{v}+\sum_{e} \mu_{e e^{\prime}} C_{e e^{\prime}}
\end{array}
$$

Compare with area-angle Regge calculus (Dittrich-SS 0802.0864) and its canonical description (Dittrich-Ryan 1006.4295)

$\mathrm{U}(\mathrm{N})$ framework

E. Livine, F. Girelli, M. Dupuis, L. Freidel

Enrique Borja, Jacobo Diaz-Polo, Inaki Garay
N-valent vertex: $\mathcal{H}_{\left\{j_{e}\right\}} \equiv \operatorname{Inv}\left[\underset{e \in v}{\otimes} V^{\left(j_{e}\right)}\right] \quad \longrightarrow \quad \mathcal{H}_{J}=\underset{\sum_{e}{ }_{j} \underset{j_{e}=J}{\oplus} \mathcal{H}_{\left\{j_{e}\right\}},}{ }$
Each \mathcal{H}_{J} carries an irrep of $\mathrm{U}(\mathrm{N})$

- $\mathrm{U}(\mathrm{N})$ algebra (related to standard algebra) applications in cosmology: new characterization of isotropy and homogeneity E. Borja, J. Diaz-Polo, I. Garay, E. Livine, 1006. 2451
- $\mathrm{U}(\mathrm{N})$ coherent states (related to coherent intertwiners) simpler formulas, more control on the properties of the states

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong
- On the other hand, relaxing them too much might also lead to problems! \Longrightarrow extra degrees of freedom, possible instabilities

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong
- On the other hand, relaxing them too much might also lead to problems! \Longrightarrow extra degrees of freedom, possible instabilities

Consider replacing

$$
\delta(C) \mapsto \exp \left\{-\alpha C^{2}\right\}
$$

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong
- On the other hand, relaxing them too much might also lead to problems! \Longrightarrow extra degrees of freedom, possible instabilities

Consider replacing

$$
\delta(C) \mapsto \exp \left\{-\alpha C^{2}\right\}
$$

Botanics: | value of $\alpha:$ | $\alpha=0$ |
| :---: | :---: |
| type of theory: | BF theory |

$$
\begin{gathered}
\alpha=\infty \\
\text { Plebanski's GR }
\end{gathered}
$$

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong
- On the other hand, relaxing them too much might also lead to problems! \Longrightarrow extra degrees of freedom, possible instabilities

Consider replacing

$$
\delta(C) \mapsto \exp \left\{-\alpha C^{2}\right\}
$$

Botanics:	value of $\alpha:$	$\alpha=0$	α finite	$\alpha=\infty$
type of theory:	BF theory	8 degrees of freedom	Plebanski's GR	

On the simplicity constraints

Plebanski action: $\quad S(B, \omega, \Phi)=\int B_{I J} \wedge F^{I J}(\omega)+\Phi_{I J K L} B^{I J} \wedge B^{K L}$

$$
\delta_{\Phi} S=0 \mapsto C=B^{I J} \wedge B^{K L}-\frac{1}{12} \epsilon^{I J K L}<B, \star B>=0 \mapsto B=e \wedge e
$$

- The problem with Barrett-Crane: simplicity constraints $C=0$ imposed too strong
- On the other hand, relaxing them too much might also lead to problems! \Longrightarrow extra degrees of freedom, possible instabilities

Consider replacing

$$
\delta(C) \mapsto \exp \left\{-\alpha C^{2}\right\}
$$

Botanics:	value of $\alpha:$	$\alpha=0$	α finite	$\alpha=\infty$
type of theory:	BF theory	8 degrees of freedom	Plebanski's GR	

Remark: same modification in the self-dual theory
\Rightarrow NO extra degrees of freedom! Krasnov '07

- Why extra degrees of freedom in the non-chiral action?
- What is their physical interpretation?

Revisiting the simplicity constraints 1

- The role of the constraint is not to introduce a metric:
a metric is already present in the formalism, through Urbantke's formula $g \sim B B B$
- The role of the constraints is to single out these (10) metric degrees of freedom out of the initial components of the \bar{B} field

Revisiting the simplicity constraints 1

- The role of the constraint is not to introduce a metric:
a metric is already present in the formalism, through Urbantke's formula $g \sim B B B$
- The role of the constraints is to single out these (10) metric degrees of freedom out of the initial components of the \bar{B} field
- When looking at the details, the choice of gauge group matters a lot!

SU(2): Urbantke metric

$$
\begin{aligned}
\sqrt{g^{\mathrm{U}}} g_{\mu \nu}^{\mathrm{U}} & =\frac{1}{12} \epsilon_{i j k} \epsilon^{\alpha \beta \gamma \delta} B_{\mu \alpha}^{i} B_{\beta \gamma}^{j} B_{\delta \nu}^{k} \\
\Longrightarrow B_{\mu \nu}^{i} & =B\left(g^{U}, b\right)
\end{aligned}
$$

Revisiting the simplicity constraints 1

- The role of the constraint is not to introduce a metric:
a metric is already present in the formalism, through Urbantke's formula $g \sim B B B$
- The role of the constraints is to single out these (10) metric degrees of freedom out of the initial components of the \bar{B} field
- When looking at the details, the choice of gauge group matters a lot!

SU(2): Urbantke metric

$$
\begin{aligned}
\sqrt{g^{\mathrm{U}}} g_{\mu \nu}^{\mathrm{U}} & =\frac{1}{12} \epsilon_{i j k} \epsilon^{\alpha \beta \gamma \delta} B_{\mu \alpha}^{i} B_{\beta \gamma}^{j} B_{\delta \nu}^{k} \\
\Longrightarrow B_{\mu \nu}^{i} & =B\left(g^{U}, b\right)
\end{aligned}
$$

SO(4): Two Urbantke metrics

$$
\begin{aligned}
& \sqrt{g^{\mathrm{U}(\pm)}} g_{\mu \nu}^{\mathrm{U}(\pm)}=\frac{1}{12} \delta_{I N}\left(\delta_{J M K L} \pm \frac{1}{2} \epsilon_{J M K L}\right) \epsilon^{\alpha \beta \gamma \delta} B_{\mu \alpha}^{I J} B_{\beta \gamma}^{K L} B_{\delta \nu}^{M N} \\
& \Longrightarrow B_{\mu \nu}^{I J}=B\left(g^{\mathrm{U}+}, g^{\mathrm{U}-}, b^{+}, b^{-}\right)
\end{aligned}
$$

corresponding to the decomposition into self-dual and antiself-dual parts of $\mathrm{SO}(4)$

Self-duality and metricity

SU(2): Urbantke metric

$$
\begin{aligned}
\sqrt{g^{\mathrm{U}}} g_{\mu \nu}^{\mathrm{U}} & =\frac{1}{12} \epsilon_{i j k} \epsilon^{\alpha \beta \gamma \delta} B_{\mu \alpha}^{i} B_{\beta \gamma}^{j} B_{\delta \nu}^{k} \\
\Longrightarrow B_{\mu \nu}^{i} & =B\left(g^{U}, b\right)
\end{aligned}
$$

Urbantke's theorem: $B_{\mu \nu}^{i}$ is self-dual wrt the metric defined by itself

Self-duality and metricity

SU(2): Urbantke metric

$$
\begin{aligned}
\sqrt{g^{U}} g_{\mu \nu}^{\mathrm{U}} & =\frac{1}{12} \epsilon_{i j k} \epsilon^{\alpha \beta \gamma \delta} B_{\mu \alpha}^{i} B_{\beta \gamma}^{j} B_{\delta \nu}^{k} \\
\Longrightarrow B_{\mu \nu}^{i} & =B\left(g^{U}, b\right)
\end{aligned}
$$

Urbantke's theorem: $B_{\mu \nu}^{i}$ is self-dual wrt the metric defined by itself

Plebanski's basis of self-dual 2-forms:

$$
\begin{aligned}
& \Sigma^{i}(e)=e^{0} \wedge e^{i}+\frac{1}{2} \epsilon^{i}{ }_{j k} e^{j} \wedge e^{k} \\
& \Longrightarrow B_{\mu \nu}^{i}=\sum_{a} b_{a}^{i} \Sigma_{\mu \nu}^{a}(e), \quad \sqrt{g^{\mathrm{U}}} g_{\mu \nu}^{\mathrm{U}}=\left(\operatorname{det} b_{a}^{i}\right) e e_{\mu}^{I} e_{\nu}^{J} \delta_{I J}
\end{aligned}
$$

Take det $b_{a}^{i}=1, \Rightarrow g_{\mu \nu}^{\mathrm{U}}=e_{\mu}^{I} e_{\nu}^{J} \delta_{I J}$

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:
$(2,0)$
$(\mathbf{0}, \mathbf{2})$
$(1,1)$
$(0,0)$

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:
$(2,0)$
$\oplus \quad(\mathbf{0}, \mathbf{2})$
\oplus
$(1,1)$
$(0,0)$

Use the parametrization:

$$
B^{I J}=P_{(+) i}^{I J} b^{i}{ }_{a} \Sigma^{a}(e)+\eta P_{(-) i}^{I J} \bar{b}^{i}{ }_{a} \bar{\Sigma}^{a}(\bar{e})
$$

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:

$$
\begin{array}{ccccc}
(\mathbf{2}, \mathbf{0}) & \oplus & (\mathbf{0}, \mathbf{2}) & \oplus & (\mathbf{1}, \mathbf{1}) \\
b_{a}^{i}=\delta_{a}^{i} & & \bar{b}_{a}^{i}=\delta_{a}^{i} & & \Sigma_{+}^{i}(e) \wedge \Sigma_{-}^{j}(\bar{e})=0 \\
& & (\mathbf{0}, \mathbf{0}) \\
e=\bar{e}
\end{array}
$$

Use the parametrization:

$$
B^{I J}=P_{(+) i}^{I J} b^{i}{ }_{a} \Sigma^{a}(e)+\eta P_{(-) i}^{I J} \bar{b}^{i}{ }_{a} \bar{\Sigma}^{a}(\bar{e})
$$

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:
$(2,0)$

$$
b_{a}^{i}=\delta_{a}^{i}
$$

Use the parametrization:

$$
B^{I J}=P_{(+) i}^{I J} b^{i}{ }_{a} \Sigma^{a}(e)
$$

- $\operatorname{SU}(2)$ case: constraints freeze the b fields

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:

$(\mathbf{2}, \mathbf{0})$	\oplus	$(\mathbf{0}, \mathbf{2})$	\oplus	$(\mathbf{1}, \mathbf{1})$	\oplus
$b_{a}^{i}=\delta_{a}^{i}$		$\bar{b}_{a}^{i}=\delta_{a}^{i}$		$\Sigma_{+}^{i}(e) \wedge \Sigma_{-}^{j}(\bar{e})=0$	

Use the parametrization:

$$
B^{I J}=P_{(+) i}^{I J} b^{i}{ }_{a} \Sigma^{a}(e)+\eta P_{(-) i}^{I J} \bar{b}^{i}{ }_{a} \bar{\Sigma}^{a}(\bar{e})
$$

- $\operatorname{SU}(2)$ case: constraints freeze the b fields
- SO(4) case: constraints freeze the b fields and equate the two metrics

Revisiting the simplicity constraints 2

The constraints

$$
B^{I J} \wedge B^{K L}=\frac{1}{12} \epsilon^{I J K L}<B, \star B>
$$

can be decomposed into irreps:

$(\mathbf{2}, \mathbf{0})$	\oplus	$(\mathbf{0}, \mathbf{2})$	\oplus	$(\mathbf{1}, \mathbf{1})$	\oplus
$b_{a}^{i}=\delta_{a}^{i}$		$\bar{b}_{a}^{i}=\delta_{a}^{i}$		$\Sigma_{+}^{i}(e) \wedge \Sigma_{-}^{j}(\bar{e})=0$	

Use the parametrization:

$$
B^{I J}=P_{(+) i}^{I J} b^{i}{ }_{a} \Sigma^{a}(e)+\eta P_{(-) i}^{I J} \bar{b}^{i}{ }_{a} \bar{\Sigma}^{a}(\bar{e})
$$

- $\operatorname{SU}(2)$ case: constraints freeze the b fields
- SO(4) case: constraints freeze the b fields and equate the two metrics

> relaxing the constraints in the two formulations leads to very different theories

The 6 extra degrees of freedom

- $\operatorname{SU}(2)$ case: the lagrangian is degenerate: the b fields do not propagate $\Rightarrow 2$ degrees of freedom [Krasnov '07]

The 6 extra degrees of freedom

- $\operatorname{SU}(2)$ case: the lagrangian is degenerate: the b fields do not propagate $\Rightarrow 2$ degrees of freedom [Krasnov '07]
- SO(4) case: the lagrangian is degenerate: the b and \bar{b} fields do not propagate, but the two metrics have an independent dynamics: bi-metric theory of gravity $\Rightarrow 8$ degrees of freedom

The 6 extra degrees of freedom

- $\operatorname{SU}(2)$ case: the lagrangian is degenerate: the b fields do not propagate $\Rightarrow 2$ degrees of freedom [Krasnov '07]
- SO(4) case: the lagrangian is degenerate: the b and \bar{b} fields do not propagate, but the two metrics have an independent dynamics: bi-metric theory of gravity $\Rightarrow 8$ degrees of freedom
[SS '10]

Why 6 extra dofs in bi-metric theories?

Simplest counting: expand around "doubly flat" spacetime

$$
g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}, \quad \bar{g}_{\mu \nu}=\delta_{\mu \nu}+\bar{h}_{\mu \nu}
$$

and define

$$
h_{\mu \nu}^{(\pm)}=\frac{1}{\sqrt{2}}\left(h_{\mu \nu} \pm \bar{h}_{\mu \nu}\right)
$$

$h_{\mu \nu}^{(-)}$is diffeo-invariant \Rightarrow masslessness no more protected by symmetry
It will generically acquire a mass term,

$$
a h_{\mu \nu}^{(-) 2}+b h^{(-) 2}
$$

the explicit form depending on the specific deformation of the constraints done

The 6 extra degrees of freedom

- $\operatorname{SU}(2)$ case: the lagrangian is degenerate: the b fields do not propagate $\Rightarrow 2$ degrees of freedom [Krasnov '07]
- SO(4) case: the lagrangian is degenerate: the b and \bar{b} fields do not propagate, but the two metrics have an independent dynamics: bi-metric theory of gravity $\Rightarrow 8$ degrees of freedom
[SS '10]

Why 6 extra dofs in bi-metric theories?

Simplest counting: expand around "doubly flat" spacetime

$$
g_{\mu \nu}=\delta_{\mu \nu}+h_{\mu \nu}, \quad \bar{g}_{\mu \nu}=\delta_{\mu \nu}+\bar{h}_{\mu \nu}
$$

and define

$$
h_{\mu \nu}^{(\pm)}=\frac{1}{\sqrt{2}}\left(h_{\mu \nu} \pm \bar{h}_{\mu \nu}\right)
$$

$h_{\mu \nu}^{(-)}$is diffeo-invariant \Rightarrow masslessness no more protected by symmetry
It will generically acquire a mass term,

$$
a h_{\mu \nu}^{(-) 2}+b h^{(-) 2}
$$

the explicit form depending on the specific deformation of the constraints done \Longrightarrow One massive spin-2 particle (5 dofs) and one massive scalar (1dof)

Caveat! The scalar is a ghost
[Fierz-Pauli '39, Boulware-Deser '72]

Unification playground

These type of generalized Plebanski theories are interesting for a number of reasons One idea is to use them for grand unification schemes [Smolin '08, Lisi, Smolin and SS '10]

- Enlarge the local gauge group, e.g so $(3,1) \mapsto s o(N+3,1)$
- Spontaneously break the symmetry, e.g. so $(N) \mapsto\left(\begin{array}{cc}s o(3,1) & 4 N \\ 4 N & s o(N)\end{array}\right)$
- Perturbations around the symmetry-breaking vacuum give (modified) dynamics for
- gravity
- gauge fields
- Higgs scalars from the off-diagonal sector

Moral...

All these is fun to play with... but the moral is: do not mess with your constraints, unless you know what you are doing!

Outline

Motivations

Twisted geometries

From spinors to twisted geometries

Applications

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues
- non-commutativity
- graph structure

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues \longrightarrow large spin asymptotics
- non-commutativity
- graph structure

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues $\longrightarrow \quad$ large spin asymptotics
- non-commutativity \longrightarrow coherent states
- graph structure

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues \longrightarrow large spin asymptotics
- non-commutativity \longrightarrow coherent states
- graph structure \longrightarrow continuum limit

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues $\longrightarrow \quad$ large spin asymptotics
- non-commutativity \longrightarrow coherent states
- graph structure \longrightarrow continuum limit

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues $\longrightarrow \quad$ large spin asymptotics
- non-commutativity \longrightarrow coherent states
- graph structure \longrightarrow continuum limit

Conclusions

- It is possible to visualize the truncation \mathcal{H}_{Γ} as capturing a discretization of 3-geometries
- These are the assignment to each triangle of its oriented area, the two unit normals as seen from the two tetrahedra sharing it, and an additional angle related to the extrinsic curvature $\quad(N, \tilde{N}, A, \xi) \Longleftrightarrow(X, g)$
- The 3-geometries are piecewise-flat but in general discontinuous
- At the saddle point of the EPRL model the shape-matching conditions are satisfied \Rightarrow Regge action
- The twisted geometries can be easily derived from spinors associated to half-edges through the area-matching constraints \Rightarrow introduction of spinorial techniques with potentially many applications

About the semiclassical limit:

- discrete eigenvalues $\longrightarrow \quad$ large spin asymptotics
- non-commutativity \longrightarrow coherent states
- graph structure \longrightarrow continuum limit ??

