
Non-commutative geometry and matrix models
II

Harold Steinacker

Fakultät für Physik

Zakopane, march 2011

H. Steinacker Non-commutative geometry and matrix models II



NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

outline part II:

embedded NC spaces, matrix models, and emergent gravity

noncommutative gauge theory
Yang-Mills matrix models
general geometry in matrix models (embedded NC spaces,
curvature)
nonabelian gauge fields, fermions, SUSY
quantization of M.M: heat kernel expansion, UV/IR mixing
aspects of (emergent) gravity, outlook
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Yang-Mills matrix models

dynamical embedded NC spaces ↔ gravity
well suited for quantization

Z =
∫

dX ae−S[X ]

S[X ] = Tr[X a,X b][X a′ ,X b′ ]δaa′δbb′ + (matter)

note:

matrix configuration X a ... matrix geometry (“background”)

integration over space of geometries
→ “emergent” (dominant, effective) geometry

very closely related to NC gauge theory

D = 10, add Majorana-Weyl fermions → IKKT model
(=dim-red. of D = 10 SYM) “nonperturb. def. of IIB string theory”

Ishibashi, Kawai, Kitazawa and Tsuchiya hep-th/9612115

more generally: ∃ intersecting spaces, stacks, etc.
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Gauge theory on R4
θ

Let [X̄µ, X̄ ν ] = i θ̄µν , X̄µ ∈ L(H) (Moyal-Weyl) consider
fluctuations around R4

θ:

Xµ = X̄µ − θ̄µν Aν

recall [X̄µ, φ] = iθµν∂νφ →

[Xµ,X ν ] = i θ̄µν + i θ̄µµ
′
θ̄νν

′
(∂µ′Aν′ − ∂ν′Aµ′ + i[Aµ′ ,Aν′ ])

= i θ̄µν + i θ̄µµ
′
θ̄νν

′
Fµ′ν′

= i θ̄µµ
′
θ̄νν

′
(θ̄−1
µν + Fµ′ν′)

Fµν(x) ... u(1) field strength
gauge transformations:

Xµ → UXµU−1 = U(X̄µ − θ̄µν Aν)U−1 = X̄µ + U[X̄µ,U−1] + θ̄µνUAνU−1

= X̄µ + θ̄µν (U∂νU−1 + UAνU−1)

infinites: U = eiΛ(X), δAµ = i∂µΛ(X ) + i[Λ(X ),Aµ]
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Yang-Mills action:

SYM [X ] = Tr[Xµ,X ν ][Xµ′ ,X ν′ ]δµµ′δνν′

= ρ
∫

d4x(Fµν + i θ̄−1
µν )(Fµ′ν′ + i θ̄−1

µ′ν′)Ḡ
µµ′Ḡνν′

or

Tr([Xµ,X ν ]− i θ̄µν)([Xµ′ ,X ν′ ]− i θ̄µ
′ν′)δµµ′δνν′ = ρ

∫
d4xFµνFµ′ν′ Ḡµµ′Ḡνν′

(same up to surface term Tr[X ,X ] =
∫

F → 0 )
... NC U(1) gauge theory on R4

θ,
effective metric

Ḡµν = θ̄µµ
′
θ̄νν

′
δµ′ν′ , ρ = |θ̄−1

µν |1/2

reduces to usual U(1) gauge theory on R4 (as classical F.T.!!)
invariant under gauge trafo

Xµ → UXµU−1,

Fµν → UFµνU−1 ∼ symplectomorphism

no “local” observables ! (need trace)
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coupling to scalar fields:

consider

S[X , φi ] = Tr
(

[Xµ,X ν ][Xµ′ ,X ν′ ]δµµ′δνν′ + [Xµ, φi ][Xµ′ , φi ]δµµ′
)

= ρ
∫

d4x
(

FµνFµ′ν′ Ḡµµ′Ḡνν′ + DµφiDνφi Ḡµν
)

[Xµ, φ] = i θ̄µν(∂ν + i[Aµ, .])φ =: i θ̄µνDµφ

(dropping surface terms)
gauge transformation

φi → UφiU−1 (adjoint)

same form as

S[X ] = Tr[X a,X b][X a′ ,X b′ ]δaa′δbb′ , a = 1, ...,4+k
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note:
extremely simple origin of gauge fields:
arbitrary fluctuations Xµ → Xµ +Aµ (Aµ = −θµνAν)

configuration space = {4 hermitian matrices X a}

works only on NC spaces!
matrix models Tr[X ,X ][X ,X ] ∼ gauge-invariant YM action
generalized easily to U(n) theories but
U(1) sector does not decouple from SU(n) sector
one-loop: UV/IR mixing → not QED, problem
except in N = 4 SUSY case: finite (!?)

... nevertheless phys. wrong for U(1) sector:
proper interpretation in terms of (emergent) geometry, gravity.
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try something similar for fuzzy sphere:

S[X ] = 1
g2 Tr

(
[X a,X b][Xa,Xb]− 4iεabcX aX bX c − 2X aXa

)
= 1

g2 Tr ([X a,X b]− iεabcXc)([Xa,Xb]− iεabcX c)

= 1
g2 Tr F abFab ≥ 0

where X a ∈ Mat(N,C), a = 1, 2, 3 and

F ab := [X a,X b]− iεabcXc field strength

solutions (minima!):

F ab = 0 ⇔ [X a,X b] = iεabcXc

X a = λa, λa ... rep. of su(2)

any rep. of su(2) is a solution! X a =


λa

(M1)
0 . . . 0

0 λa
(M2)

. . . 0
...

...
. . .

...
0 0 . . . λa

(Mk )


concentric fuzzy spheres S2

Mi
!

geometry & topology dynamical !
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expand around solution:

X a = λa + Aa ∈ Mat(N,C)

F ab = [λa,Ab]− [λb,Aa]− iεabcAc + [Aa,Ab]

F = F abξaξb = dA + AA

can be interpreted in terms of{
U(1) gauge theory on S2

N (tang. fluct. if) λaAa = 0

coupled to scalar field DµφDµφ (radial fluctuations) X a = λa(1 + φ)

can fix geometry, suppress radial field by adding constraint

S̃[X ] = Tr
(

([X a,X b]− iεabcXc)([Xa,Xb]− iεabcX c) +(X aXa − CN)2
)

⇒ indeed deformed Maxwell theory on S2
N , as classical F.T.
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however:
recall fuzzy sphere: near north pole xa = (0,0,1)

X 3 =
√

1− (X 1)2 − (X 2)2

expect:

radial deformation X 3 = λ3 + A3 = φ(X 1,X 2) ...

deformation of embedding, geometry!

geometry ↔ NC gauge theory ???

⇒ consider deformed fuzzy spaces, effective geometry
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Yang-Mills Matrix Models, reconsidered
let gab = δab ... SO(D) (resp. gab = gab ... SO(n,m))

S = −Tr
(

[X a,X b][X a′ ,X b′ ]gaa′gbb′ + fermions
)

X a = X a† ∈ Mat(∞,C) , a = 1, ...,D

gauge symmetry X a → UX aU−1, or

S = −Tr
(

([X a,X b]−iθab1l)([X a′ ,X b′ ]−iθa′b′1l)gaa′gbb′ + ...
)

(up to boundary terms Tr [X ,X ])

pre-geometric;
{

NC space(-time)
metric (gravity)

}
solutions (emergent){

nonabelian gauge fields
“gravitons”

}
... fluctuations of NC space

D = 10 : quantization well-defined (?!)
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Space-time & geometry from matrix models:

e.o.m.: δS = 0 ⇒ [X a, [X a′ ,X b′ ]]gaa′ = 0

solutions: (→ NC spaces)
1) prototype (d=4):

[X a,X b] = iθab 1l, rank θab = 4

split X a = (X̄µ,Φi), µ = 1, ...,4[
X̄µ, X̄ ν

]
= i θ̄µν 1l

Φi = 0

}
... R4

θ

interpretation:

X a : R4
θ ↪→ R10 ...“embedded quantum plane”

fluctuations X a = X̄ a + δX a → propagating fields on R4
θ
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Noncommutative spaces and Poisson structure

(M, θµν(x)) ... 2n-dimensional manifold with Poisson structure

Its quantizationMθ is NC algebra such that

I : C(M) → A ∼= Mat(∞,C)

f (x) 7→ f̂ (X )

xa 7→ X a, eikx 7→ eikX

such that [f̂ (X ), ĝ(X )] = I(i{f (x),g(x)}) + O(θ2)

(“nice“) Φ ∈ Mat(∞,C) ↔ quantized function onM

furthermore:

(2π)2 Tr(φ(X )) ∼
∫

d4x ρ(x)φ(x)

ρ(x) = Pfaff (θ−1
µν ) ... symplectic volume

(cf. Bohr-Sommerfeld quantization)
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2) generic solutions (d=4): deformations of R4
θ ⊂ R10

X a = (Xµ,Φi (Xµ)), µ = 1, ...,4;

A ∼= Mat(∞,C) generated by Xµ

[Xµ,X ν ] ∼ i{xµ, xν} = iθµν(x), generic NC space ⊂ RD

interpretation:
X a ∼ xa : M4 ↪→ R10

... 4-dim (or 3+1-dim.) space(time), ”brane“

quantized Poisson-MF (M, θµν(x))
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Effective geometry of NC brane:
consider scalar field coupled to Matrix Model (“test particle”)
use [f , ϕ] ∼ iθµν(x)∂µf∂νϕ ⇒

S[ϕ] = −Tr [X a, ϕ][X b, ϕ] gab (U(H) gauge inv.!)

∼
∫

d4x
√
|θ−1
µν | θµ

′µ∂µ′xa∂µϕθ
ν′ν∂ν′xb∂νϕgab

=
∫

d4x
√
|Gµν |Gµν(x) ∂µϕ∂νϕ

Gµν(x) = e−σθµµ
′
(x)θνν

′
(x) gµ′ν′(x) effective metric

gµν(x) = ∂µxa∂νxbgab induced metric on M4
θ

e−2σ =
|θ−1
µν |
|gµν |

, |Gµν | = |gµν | for dim(M) = 4

ϕ couples to metric Gµν(x), determined by θµν(x) & embedding φi (x)

... quantized Poisson manifold with metric (M, θµν(x),Gµν(x))
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same metric Gµν for gauge fields, fermions

→ all matter couples to dynamical metric Gµν ⇒ effective gravity

however: metric is not fundamental d.o.f.
rather: matrices X a resp. (φi , θµν) resp. (φi ,Fµν)
⇒ dynamics of gravity NOT given by Einstein equations

not GR (long distances!),
may be close enough to observation (?)

note: D = 10 just enough to describe most general gµν(x) in d = 4
(locally)

A. Friedman (1961)
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class of embedded NC spaces

X a : M→ RD

is stable under small deformations

consider small deformation

X̃ a = X a + Aa

by assumption locally X a = (Xµ, φi (Xµ)) ∼ (xµ, φi (xµ))

Xµ generate A = Mat(N,C)

⇒ Aa = Aa(xµ), smooth

X̃ a = (Xµ + Aµ, φ+ Ai ) ∼ (x̃µ, φ̃i (x̃µ)) : M̃ → RD

[X̃µ, X̃ ν ] ∼ i{x̃µ, x̃ν} ...new Poisson bracket

... deformed embedded NC space M̃
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dynamics of geometry

def. � := [X a, [X b, .]]gab ... matrix Laplacian on A

result:
(M, ω) symplectic manifold, ω = 1

2θ
−1
µν dxµ ∧ dxν

xa :M ↪→ RD ... embedding in RD

induced metric gµν and Gµν as above. Then:

{xa, {xb, ϕ}}gab = eσ∆Gϕ
∇µG(eσθ−1

µν ) = Gνρ θ
ρµ
(
e−σ∂µη + ∂µxa ∆Gxbgab

)
for ϕ ∈ C∞(M), ∇G ... Levi-Civita, ∆G ... Laplace- Op. w.r.t. Gµν ,

and
η(x) :=

1
4

eσ Gµνgµν .

(H.S., 2008)cf. fuzzy sphere, torus etc!

Hence: �φ ∼ −eσ∆Gφ(x)
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proof: either

−Trϕ′[X a, [Xa, ϕ]] = Tr [X a, ϕ′][Xa, ϕ]∫
d4x

√
|θ−1
µν |ϕ′{X a, {Xa, ϕ}} = −

∫
d4x

√
|Gµν |Gµν(x) ∂µϕ

′∂νϕ∫
d4x

√
|Gµν |e−σ ϕ′{X a, {Xa, ϕ}} =

∫
d4x

√
|Gµν |ϕ′∆Gϕ

or

{X a, {X a, ϕ}} = θµρ∂µxa∂ρ(θνη∂νxa∂ηϕ)

= θµρ∂ρ(∂µxaθνη∂νxa∂ηϕ)

= θµρ∂ρ(θνηgµν∂ηϕ)

= θµρθνηgµν∂ρ∂ηϕ+ θµρ∂ρ(θνηgµν)∂ηϕ

= eσ(Gρη∂ρ∂ηϕ− Γη∂ηϕ) = eσ∆Gϕ,
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in particular:
matrix e.o.m: [X a, [X b,X a′ ]]gaa′ = 0 ⇐⇒

∆GΦi = 0, ∆Gxµ = 0

∇µ(eσθ−1
µν ) = e−σ Gρνθ

ρµ∂µη

η = 1
4 eσ Gµνgµν

... covariant formulation in semi-classical limit

in particular:

M4 ↪→ RD is harmonic embedding (w.r.t. Gµν)
minimal surface
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dynamics of NC structure θµν :

SYM = −Tr [X a,X b][Xa,Xb] ∼
∫

d4x
√

ge−ση

Euclidean case: at p ∈M, diagonalize gµν = diag(1,1,1,1)
using SO(4) → standard form

θµν = θ

 0 −α 0 0
α 0 0 0
0 0 ±α−1

0 0 ∓α−1 0

 .

effective metric Gµν = diag(α2, α2, α−2, α−2).
Note

1
4 Gµνgµν = e−ση = 1

2 (α2 + α−2) ≥ 1
?ω = ±ω ⇔ e−ση = 1 ⇔ Gµν = gµν ⇔ SYM minimal

minimum of SYM ⇔ θµν (A)SD ⇔ Gµν = gµν .
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more structure:

define
J ηγ = e−σ/2 θηγ

′
gγ′γ = −eσ/2 Gηγ′θ−1

γ′γ .

Then
Gµν = J µρ J νρ′ gρρ

′
= −(J 2)µρ gρν ,

hence
Gµνgνρ = −(J 2)µρ , J 2 = −δ ⇔ g = G

... “almost-complex” structure

→ (M,J ,e−σ/2gµν) “almost-Kähler” ⇔ g = G

note: g = G ⇒ e.o.m. for θµν reduces to

∇µθ−1
µν = 0

follows from ?ω = ±ω
H. Steinacker Non-commutative geometry and matrix models II
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special class of solutions:

gµν = Gµν ,
∆Gφ

i = 0
∇µθ−1

µν = 0

holds for (anti)self-dual symplectic structure θ−1
µν ,

?(θ−1) = ±θ−1 Euclidean
?(θ−1) = ±iθ−1 Minkowski (Wick rotation X 0 → it )

then
SMM ∼ Tr [X a,X b][Xa,Xb] =

∫
d4x

√
|gµν |

... same structure as vacuum energy / cosm. const.

H. Steinacker Non-commutative geometry and matrix models II



NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

semi-classical derivation of e.o.m.:

S = −Tr[X a,X b][Xa,Xb] ∼ 1
(2π)n

∫
d2nx

√
|G|e−ση.

geometrical d.o.f:

δθ−1
µν = ∇µδAν −∇νδAµ

δφi

δS = 1
2

∫
d2nx

√
|θ−1

µν |
(

gµνθµµ
′
δθνν

′
gµ′ν′ + gµνθµµ

′
θνν
′
δgµ′ν′ + η(x) θµνδθ−1

νµ

)
= 1

2

∫
d2nx

√
|θ−1

µν |
(

e2σGηµθ−1
µν Gνρδθ−1

ρη + eσGµνδgµν + η(x) θµνδθ−1
νµ

)
=

∫
d2nx

√
G
(

GηµGνρeσθ−1
µν∇ρδAη − e−ση θρη∇ρδAη + Gµν∂µφi∂νδφi

)
= −

∫
d2nx

√
GδAη

(
GηµGνρ∇ρ(eσθ−1

µν ) −∇ρ(e−ση θρη)
)

+ δφi∂ν
(√

G Gµν∂µφi

)
= −

∫
d2nx

√
G
(
δAη

(
GηµGνρ∇ρ(eσθ−1

µν ) − 1√
G
∂ρ(
√

Ge−σηθρη)
)

+ δφi ∆Gφi

)
= −

∫
d2nx

√
G
(
δAη

(
GηµGνρ∇ρ(eσθ−1

µν ) − e−σθρη ∂ρη
)

+ δφi ∆Gφi

)
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(sufficiently) generic 4D geometry in M.M.:

1 take some nice (M4,gµν) (e.g. asympt. flat, glob. hyperbolic, ...)

2 choose embedding xa :M ↪→ R10 (Friedman etal)

3 equipM with (anti)selfdual symplectic form ω = θ−1
µν dxµ ∧ dxν ,

?g(ω) = ±ω (almost-Kähler)
→ construct quantization of (M, ω):

I : C(M)→ A ∼= Mat(∞,C)

in particular: X a ∼ xa

4 → effective metric Gµν ∼ gµν , encoded in � in M.M.

(examples: fuzzy spaces = quantized coadjoint orbits, e.g. S2
N ⊂ R3)
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su(n) gauge fields: same model, new vacuum

Y a =

(
Yµ

Y i

)
=

(
Xµ⊗1ln
φi ⊗1ln

)
(n coinciding branes)

include fluctuations:

Y a = (1 +Aρ∂ρ)

(
Xµ ⊗ 1ln
φi ⊗ 1ln + Φi

)
where

Aµ = −θµνAν,α ⊗ λα, λα ∈ su(n)
Φi = Φi

α ⊗ λα

⇒ effective action:

SYM =
∫

d4x
√

G eσ Gµµ′Gνν′ tr Fµν Fµ′ν′ + 2
∫
η(x) tr F ∧ F

(H.S., JHEP 0712:049 (2007), JHEP 0902:044,(2009) )
... su(n) Yang-Mills coupled to metric Gµν(x)
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fermions

S[Ψ] = Tr Ψ /DΨ = Tr ΨΓa[X a,Ψ]

∼
∫

d4x ρ(x) Ψiγµ(x)∂µΨ,

γµ(x) = Γaθ
νµ∂νxa

note
{γµ, γν} = {Γa, Γb}θµ

′µ∂µ′xaθν
′ν∂ν′xb

= 2θµ
′µθν

′νgµ′ν′
= 2eσ Gµν(x)

naturally SUSY (IKKT model with D = 10)

couple to Gµν , but non-standard spin connection (submanifold!)
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global SO(9,1) symmetry:

can use to fix φi |p = 0 = ∂φi |p
... analogous to Riemannian normal coordinates

bottom line: U(1) sector is geometry

scalar fields describe embeddingM4 ⊂ R10,

θµν & φi completely absorbed in gµν ,Gµν (semi-classically)

dynamics, propagators due to [X a, .][Xa, .]

fluctuations of branes→ dyn. geometry, nonabelian gauge fields

couples naturally to matter

expect good quantum theory (including gravity):
action ≡ NC N = 4 U(1) SYM
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U(1) gauge fields as gravitons δθ−1
µν = Fµν on R4

θ

Gµν(x) = ηµν − hµν (+O(F 2))

Fµν(x) ... u(1) field strength
therefore

hµν = η̄νν′ θ̄
ν′ρ Fρµ + η̄µµ′ θ̄

µ′η Fην − 1
2 η̄µν (θ̄ρηFρη)

... linearized metric fluctuation
e.o.m:

[Xµ, [X ν ,Xµ′ ]]ηµµ′ = 0
⇒ ∂µFµν = 0
⇒ Rµν [G] = 0 (∂µhµν = 0...harm. gauge)

cf. Rivelles [hep-th/0212262]
while Rµνρη 6= 0

⇒ on-shell d.o.f. of gravitons on Minkowski space

i.e.: NC U(1) on R4
θ as gravitons cf. Kitazawa [hep-th/0512204]
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higher-order terms, curvature

Hab := 1
2 [[X a,X c ], [X b,Xc ]]+

T ab := Hab − 1
4 gabH, H := Habgab = [X c ,X d ][Xc ,Xd ] ,

�X := [X b, [Xb,X ]]

result:

for 4-dim. M⊂ RD with gµν = Gµν :

Tr
(
2T ab�Xa�Xb − T ab�Hab

)
∼ 2

(2π)2

∫
d4x
√

g e2σR

Tr([[X a,X c ], [Xc ,X b]][Xa,Xb]− 2�X a�X a)

∼ 1
(2π)2

∫
d4x
√

g eσ
( 1

2 e−σθµηθραRµηρα − 2R + ∂µσ∂µσ
)

(Blaschke, H.S. arXiv:1003.4132 )

(cf. Arnlind, Hoppe, Huisken arXiv:1001.2223)
⇒ Einstein-Hilbert- type action for gravity as matrix model
pre-geometric version of (quantum?) gravity, background indep.!
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derivation: (assume g = G)

Hab = 1
2 [[X a,X c ], [X b,Xc ]]+ ∼ −eσGµν∂µxa∂νxb g=G

= eσ Pab
T ,

T ab = Hab − 1
4η

abH ∼ eσ Pab
N

PN ,PT ... projector on normal / tangential bundle ofM⊂ RD. note

Rνµλκ = Pab
N (−∂κ∂νxa∂λ∂µxb + ∂κ∂µxa∂ν∂λxb)

= −∇κ∇νxa∇λ∇µxa +∇κ∇µxa∇ν∇λxa

(i.e. Gauss-Codazzi theorem) and

T bc [X a, [Xa,Tbc ]] ∼ e2σPbc
N ∇µ∇µ(eσgbc − eσ∂νxb∂νxc))

= e2σ
(

(D − 4)�eσ − 2Pbc
N (eσ∇µ∂νxb∇µ∂νxc)

)
= e2σ

(
(D − 4)�eσ − 2eσ∇µ∂νxa∇µ∂νxa

)
hence

2T ab�X a�X b − T bc�Tbc ∼ e2σ
(

(D − 4)�eσ − 2eσR
)

noting that H ∼ −eσ = η, result follows.
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vacuum energy / cosm.const in matrix model:

recall |g| = |G| for general G 6= g

can show

Tr
L4√

1
2 H2 − HabHab

∼ 1
2

1
(2π)2

∫
d4x Λ4(x)

√
g .

where
Λ(x) = LΛ2

NC = Le−σ/2

L ... cutoff “length” in matrix model

(recall Λ−4
NC =

|gµν |
|θ−1

µν |
= eσ)

note: is different from action

−Tr[X a,X b][Xa,Xb] ∼ 1
(2π)2

∫
d4x

√
|g| e−ση

g=G
=

1
(2π)n

∫
d2nx

√
|g|.
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proof:

Hab =
1
2

[[X a,X c ], [X b,Xc ]]+ ∼ −eσGµν∂µxa∂νxb = −eσ (J 2 ◦ PT )ab,

in normal coords, J 2 = −diag(α2, α2, α−2, α−2)
2 EV → char. equation

J 4 =
1
2

(trJ 2)J 2 − δ

implies (note H = −eσ trJ 2)

HabHab −
1
2

H2 ∼ −e2σ Pab
T (PT )ab = −4Λ−8

NC

hence

Tr
L4√

1
2 H2 − HabHab

∼ L4

2
1

(2π)2

∫
d4x
√

ge−σe−σ =
1

2(2π)2

∫
d4x Λ4(x)

√
g .
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Quantization of M.M.

Z =

∫
dX adΨ e−S[X ]−S[Ψ]

...non-perturbative!

includes integration over geometries !!

probably ill-defined in general (UV/IR mixing =∞ ind. gravity)

∃ ONE model with well-defined (finite !?) quantization:
N = 4 NC SYM on R4

θ ⇔ (IKKT) model, D = 10
Ishibashi, Kawai, Kitazawa and Tsuchiya 1996, ff

fully SO(9,1) and U(H) invariant
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Z =

∫
dX adΨ e−S[X ]−S[Ψ] = e−Seff

2 interpretations:

1 on R4
θ: Xµ = X̄µ + θ̄µν Aν , X̄µ...Moyal-Weyl

→ NC SYM on R4
θ, UV/IR mixing in U(1) sector

IKKT model, D = 10: N = 4 SYM, perturb. finite !(?)
2 onM4 ⊂ R10: U(1) absorbed in θµν(x), gµν
→ gravity, induced E-H. action

Seff ∼
∫

d4x
√
|G|

(
Λ4 + cΛ2

4 R[G] + ...
)

(R[G] due to UV/IR mixing in NC gauge theory)

explanation for UV/IR mixing & U(1) entanglement

D = 10 ⇒ good quantization !! (maximal SUSY)
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induced action: fermionic loop

S[Ψ] = Tr Ψγa[X a,Ψ]

induced effective action:

Γeff :=
1
2

Tr
(

log /D2
)
→ −1

2
Tr

∞∫
0

dα
α

e−α/D
2
e−

1
αL2 =: ΓL[X ] .

L ... cutoff length
heat kernel expansion:

Tre−α/D
2

=
∑

n

α
n−4

2 Γ(n)

commutative case: Γ(n) ... Seeley-de Witt coeff.,

Γeff =

∫
d4x (Λ4

√
G + Λ2R[G] + ...)

... induced gravity (Sakharov 1967)

NC case: coupling to gravity ⇒ compute induced gravity
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NC heat kernel expansion

perturbation of flat background /D2
= /D2

0 + V

− 1
2 Tr

∞∫
0

dα
α

(
e−α/D

2
− e−α/D

2
0

)
e−

1
αL2 =

∑
k>0 O(V k )

=: TrL(X )

(cf. Grosse Wohlgenannt 2008)

expect: effective M.M.

Γeff = TrL(X ), invar. under SO(D) and U(∞)

complication: UV/IR mixing, additional divergences ∼ Λn, n ∈ Z,

Λ = L Λ2
NC, ΛNC = |θ−1

µν |1/8 ...NC scale

mild UV/IR mixing: finite Λ, such that p2Λ2

Λ4
NC
� 1,

then semi-class. approx. ok even in loops
or: N = 4 model: finite (?!)

H. Steinacker Non-commutative geometry and matrix models II



NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

for computation: use NC gauge theory point of view

perturbation of R4
θ: X a =

(
X̄µ

0

)
+

(
−θ̄µνAν
φi

)
/D2

= �̄ + V , Ḡµν = Λ4
NCθ̄

µµ′ θ̄νν
′
δµ′ν′

V Ψ = −iḠµν
(

2[Aµ, ∂νΨ] + [∂µAν ,Ψ] + i[Aµ, [Aν ,Ψ]]
)

+ δij [ϕ
i , [ϕj ,Ψ]]

+Λ4
NC

(
Σµν [Fµν ,Ψ] + 2Σµi θ̄

µν [∂νφi + i[Aν , φi ],Ψ]− iΣij [[φ
i , φj ],Ψ]

)

compute all dimension 6 operators in effective gauge theory
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... long computation (one-loop NC YM, generic external fields Aµ, ϕi )
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effective gauge theory

induced gauge theory up to dimension 6:

Γeff = tr1l
16

Λ4

Λ4
NC

∫ d4x
(2π)2

√
g
(

gαβDαϕiDβϕi

− 1
2 Λ4

NC

(
θ̄µνFνµθ̄ρσFσρ + (θ̄σσ

′
Fσσ′)(F θ̄F θ̄)

)
−2θ̄νµFµαgαβ∂νϕi∂βϕi + 1

2 (θ̄µνFµν)gαβ∂βϕi∂αϕi + h.o.
)

+ tr1l
4

Λ2

24

∫ d4x
(2π)2

√
g

(
− 11

2 Λ4
NCFρη�̄gFστ ḠρσḠητ − 12Λ8

NC�̄gϕ
i�̄ϕi

+ 1
2 Λ4

NC(θ̄µνFµν)�̄G(θ̄ρσFρσ) + ...

)
+ Λ6

Λ8
NC

∫ d4x
(2π)2

√
g(...)

+...

all of this is due to UV/IR mixing !
(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344 )
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effective generalized matrix model:

re-assemble effective action: X a =

(
X̄µ

0

)
+

(
−θ̄µνAν
φi

)
ΓL[X ] = Tr L4√

1
2 H2 − HabHab+ 1

L2L10,curv[X ]+...

∼
∫

d4x Λ4(x)
√

g(x)

L10,curv[X ] = c1[X c ,Hab][Xc ,Hab] + c2Hcd [Xc , [X a,X b]][Xd , [Xa,Xb]] + ...

Hab = [X a,X c ][X b,Xc ] + (a↔ b), H = Habηab

(D. Blaschke, H.S. M. Wohlgenannt arXiv:1012.4344 )
SO(D) manifest, broken by background (e.g. R4

θ)
⇒ highly non-trivial predictions for (NC) gauge theory

expect generalization to nonabelian N = 4 SYM: full SO(9,1) !

effective generalized matrix model
= powerful new tool for (NC) gauge theory and (emergent) gravity
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SO(9,1) resp. SO(10) symmetry:

e.g. [X a,X b] =

(
θ̄µν + θ̄µµ

′
θ̄νν
′
Fµ′ν′ θ̄µνDνφ

i

θ̄µνDνφ
j [φi , φj ]

)
is SO(9, 1)

multiplet

only possible due to NC !

SO(9,1) acts on X a =

(
X̄µ − θ̄µνAν

φi

)
,

non-linearly realized (cf. SSB) on
(
−θ̄µνAν
φi

)
can use to fix φi |p = 0 = ∂φi |p
... analogous to Riemannian normal coordinates
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full IKKT model around R4
θ: ( ≡ N = 4 SYM on R4

θ!)

background field method X a → X a + Y a,
fully SO(9,1) covariant, e.g.

Γ1−loop = 1
2 Tr

(
log(1l + Σ

(Y )
ab �−1[Θab, .])− 1

2

(
log(1l + Σ

(ψ)
ab �−1[Θab, .])

)
� = [X a, [X a, .]]

Θrs = [X r ,X s]
Σrs = SO(9,1) generator

→ effective generalized M.M.
(work in progress, D. Blaschke, H.S.)

SO(9,1) invariant formalism, broken spontaneously through R4
θ

NC essential.
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dynamics of emergent NC gravity

assume effective action

S ∼
∫

d4x
√
|g| (−2Λ4 + Λ2

4R) + Smatter

leads to

δS =
∫

d4x
√
|g| δgµν(−Λ4gµν + 8πTµν − Λ2

4Gµν)

= −2
∫
δφi∂µ(

√
|g| (−Λ4gµν + 8πTµν − Λ2

4Gµν))∂νφ
i

since gµν = gµν + ∂µφ
i∂νφ

i

1 “Einstein branch”

Λ4gµν + Λ2
4Gµν = 8πTµν

2 “harmonic branch”

Λ4�gφ = (8πTµν − Λ2
4Gµν)∇µ∂νφ

prototype: flat space R4
θ ⊂ R10, even for Λ� 0!
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illustration of Einstein branch

example: Schwarzschild geometry (Blaschke, H.S. arXiv:1005:0499)

embeddingM⊂ R7, asymptotically flat (harmonic), eσ → const

xa =



t
r cosϕ sinϑ
r sinϕ sinϑ

r cosϑ
1
ω

√
rc
r cos (ω(t + r))

1
ω

√
rc
r sin (ω(t + r))

1
ω

√
rc
r


,

with gab = diag(−,+,+,+,+,+,−).

central singularity: embedding ↪→∞
with complexified SD symplectic form
?θ−1 = iθ−1, θ−1 → const for r →∞
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issues remain:

θµν degenerate on a circle on horizon
→ gauge coupling depends on eσ ∼ |θµν |, not good

extrinsic term such as Tr�X a�X a ∼
∫

∆Gxa∆Gxa may arise

→ need to understand (quantum) effective action
show: predominantly intrinsic geometry ≈ GR

Lorentz violating effects due to θµν must be very small
(maybe average out θµν ?)

probably need something likeM4 × K , intersecting branes, ...

singularities ? → presumably resolved by fuzzyness

...
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Fuzzy extra dimensions in field theory

e.g. S2
N may arise in ordinary 4D gauge theory through Higgs effect:

consider SU(N ) Yang-Mills theory on 4-D Minkowski space M4

SYM =
∫

d4y Tr
(

1
4g2 F †µνFµν + (Dµφa)†Dµφa

)
− V (φ)

Aµ ... su(N ) - valued gauge fields, Dµ = ∂µ + [Aµ, .], and
φa = φ†a, a = 1,2,3 ... scalar fields in adjoint of SU(N )

global SO(3) symmetry, gauge symmetry

φa → U†φaU, U = U(y) ∈ U(N )

V (φ) ... renormalizable potential respecting the symmetries
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(almost) most general potential respecting the symmetries:

V (φ) = Tr
(

a2(φaφa − b 1l)2 + c +
1
g̃2 F †abFab

)
for suitable constants a,b, c, g̃, where

Fab = [φa, φb]− iεabcφc

vacuum = minimum of V (φ), achieved if

Fab = [φa, φb]− iεabcφc = 0, a(φaφa − b̃) = 0

⇒ φa ... representation of SU(2)
with Casimir b = C2(N) for some N ∈ N

φa = J(N)
a ⊗ 1ln

J(N)
a ... generator of the N-dimensional irrep of SU(2)

(assume N = Nn)
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note: Mat(N ,C) ∼= Mat(N,C)⊗Mat(n,C) ∼= C(S2
N)⊗Mat(n,C)

interpretation:
φa(y) ... generate u(n)-valued functions on S2

N ×M4

therefore:
(

yµ

φa

)
... functions on M4 × S2

N ↪→ R7

Higgs effect: U(N ) gauge symmetry broken to U(n)

(= commutant of φa = J(N)
a )

spontaneously generated extra dimensions

model describes 6-dimensional U(n) gauge theory on M4 × S2
N

finite tower of massive Kaluza-Klein modes due to Higgs effect

(also true if add fermions to model)
P. Aschieri, T. Grammatikopoulos, H.S., G. Zoupanos 2006; Madore, Manousselis; etc.

... same mechanisms as in string theory, within renormalizable QFT!

full matrix model → same applies to space-time itself
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Y-M. Matrix Models + fermions:
contain all ingredients for theory of fund. interactions.

a priori only SU(n) gauge groups

symmetry breaking, contact with particle physics:
possible mechanisms:

extra-dimensional fuzzy spacesM4 × K ⊂ R10

add cubic terms to matrix model ⇒ extra-dim. fuzzy S2,
interesting low-energy gauge groups, including
SU(3)× SU(2)× U(1) (×U(1)anomalous)

(P. Aschieri, T. Grammatikopoulos, H.S., G. Zoupanos 2006; Madore,
Manousselis; Aoki, Azuma, Iso, ...; H. Grosse, F. Lizzi, H.S. arXiv:1001.2703)

however non-chiral

difference to string theory: RD “bulk” unphysical, nothing
propagates in bulk
predictive framework
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Summary, outlook

”Matrix (fuzzy) geometry“: quantized symplectic spacesM⊂ RD

generic class, many examples

matrix-model Tr [X a,X b][X a′ ,X b′ ] gaa′gbb′

dynamical matrix geometries
→ emergent gravity & gauge thy

not same as G.R., but might be close enough
(extrinsic geometry, physics of vacuum energy, ...)

can address curvature, etc.

suitable for quantizing gravity !
(IKKT model D = 10, maximal SUSY)

new powerful techniques: effective generalized matrix models
... to be developed

... ”new”, more work is needed
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Cosmological solution

D. Klammer, H. S., PRL 102 (2009)

assume: vacuum energy Λ4 � energy density ρ

⇒ look for harmonic embedding ∆xa = 0 of FRW metric

ds2 = −dt2 + a(t)2(dχ2 + sinh2(χ)dΩ2),

Ansatz

xa(t , χ, θ, ϕ) =

 a(t)
(

cosψ(t)
sinψ(t)

)
⊗


sinh(χ) sin θ cosϕ
sinh(χ) sin θ sinϕ
sinh(χ) cos θ
cosh(χ)


0

xc(t)

 ∈ R10

(cf. B. Nielsen, JGP 4, (1987) )

Evolution a(t),Ψ(t), xc(t) determined by ∆xa = 0

solution of M.M + leading term
∫

d4x
√

GΛ4 in Γ1−loop
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NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

harmonic embedding ∆gxa = 0 leads to

analog of Friedmann equations

H2 = ȧ2

a2 = −b2a−10 + d2a−8 − k
a2 .

ä
a = −3d2a−8 + 4b2a−10.

largely independent of detailed matter/energy content
as long as Λ4 � ρ

k = −1 (negative spatial curvature) most interesting
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NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

Implications:

1) early universe:

big bounce: ȧ = 0 for a = amin ∼ b1/4

(∃ bound for energy density ρ vs. vacuum energy Λ4)

inflation-like phase a(t) ∼ t2, ends at a(texit) =
√

4
3

b
d

geometric mechanism (no scalar field required),
no fine-tuning
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NC gauge theory curved NC branes Quantization quantum effective M.M. further aspects

2) late evolution (now): ȧ→ 1

approaches Milne-like universe (k = −1, spatial curvature),

in remarkably good agreement with observation
(age 13.8 · 109 yr , type Ia supernovae)
different physics for early universe (recombination etc.)

A. Benoit-Levy and G. Chardin, [arXiv:0903.2446]
CMB acoustic peak argued to be at correct scale (?)

no fine-tuning of cosm. const., no need for dark energy !

H. Steinacker Non-commutative geometry and matrix models II
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