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1. Nonlinear generalisation of quantum dynamics

Geometric structures on spaces of quantum states:
relative entropies & Poisson brackets
Lüders’ rules → constrained relative entropy maximisations
Unitary evolution → nonlinear hamiltonian flows
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trace class operators: T (H) := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞}
we will consider arbitrary sets of denormalised quantum states: M(H) ⊆ T (H)+

Quantum information distances D :M(H)×M(H)→ [0,∞]s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
I D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]
I D1/2(ρ, σ) := 2

∣∣∣∣√ρ−√σ∣∣∣∣2
G2(H)

= 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ) (Hilbert–Schmidt norm2)

I DL1(N )(ρ, σ) := 1
2 ||ρ− σ||T (H) = 1

2 trH|ρ− σ| (L1/predual norm)
I Dγ(ρ, σ) := 1

γ(1−γ)
trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1} [Hasegawa’93]

I Dα,z (ρ, σ) := 1
1−α log trH(ρα/zσ(1−α)/z )z ; α, z ∈ R [Audenauert–Datta’14]

I Df(ρ, σ) := trH(
√
ρ f(LρR

−1
σ )
√
ρ); f operator convex, f(1) = 0 [Kosaki’82,Petz’85]

for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.
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Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

E.g.

for D1/2(ρ, σ) = 2
∣∣∣∣√ρ−√σ∣∣∣∣2H,

consider the entropic projections P
D1/2
Q

where Q are images of closed convex subspaces Q̃ ⊆ K+ := G2(H)+

under the mapping Q̃ 3 √ρ 7→ ρ ∈ Q.
They coincide with the ordinary projection operators in B(K) ∼= B(H⊗H?).
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Quantum measurement, bayesianity, and maximum relative entropy

Lüders’ rules:
ρ 7→ ρnew :=

∑
i

PiρPi (‘weak’)

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02: Lüders’ rules should be
considered as rules of inference (conditioning) that are quantum analogues of

the Bayes–Laplace rule: p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ; D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D0(q, p).
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Quantum bayesian inference from quantum entropic projections

RPK’13’14, F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}

2 strong Lüders’ rule derived from

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}

under the limit p2, . . . , pn → 0.

3 hence, weak and strong Lüders’ rules are special cases of quantum entropic projection PD0
Q

based on relative entropy D0(σ, ρ) = D1(ρ, σ).

Bayes–Laplace and Lüders’ conditionings are special cases of entropic projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.

Meaning: the rule of maximisation of relative entropy (entropic projection on the
subspace of constraints) can be considered as a nonlinear generalisation of the dynamics
describing “quantum measurement”. [RPK’10’11]
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Quantum Poisson structure

Consider the space of self-adjoint trace-class operators: T (H)sa := T (H) ∩B(H)sa.

It can be equipped with a following real Banach smooth manifold structure:

I tangent spaces: Tφ(T (H)sa) ∼= T (H)sa

I cotangent spaces: T~
φ (T (H)sa) ∼= (T (H)sa)? ∼= B(H)sa

Bóna’91,’00: a Poisson manifold structure on T (H)sa is defined by a commutator of an
algebra. Given any f , h ∈ C∞(T (H)sa;R), ρ ∈ T (H)sa,

{h, f }(ρ) := trH (ρ i[dh(ρ), df (ρ)]).

So, ifM(H) ⊆ T (H)+ is a smooth submanifold of T (H)sa,
then every f ∈ C∞(M(H);R) determines a hamiltonian vector field:

Xf (ρ) = −{·, f }(ρ) = trH(ρ i[d(·), df (ρ)]).

More generally, we can choose arbitrary real Banach Lie subalgebra A of B(H) such
that: (i) it has a unique Banach predual A? in T (H); (ii) there exists at least one
M(H) ⊆ T (H)+ which is a smooth submanifold of A?.
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Nonlinear quantum hamiltonian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation is equivalent to the Bóna
equation [’91’00]

i d
dt ρ(t) = [dh(ρ(t)), ρ(t)].

Hence,

The Poisson structure {·, ·} induced by a commutator of B(H) allows to introduce various
nonlinear hamiltonian evolutions on spacesM(H) of quantum states, generated by arbitrary
real-valued smooth functions onM(H).

The solutions of Bóna equation are state-dependent unitary operators U(ρ, t).
They do not form a group, but satisfy a cocycle relationship:

U(ρ, t + s) = U((Ad(U(ρ, t)))(ρ), s)U(ρ, t) ∀t, s ∈ R.

In a special case, when h(ρ) = trH(ρH) for H ∈ B(H)sa,
the Bóna equation turns to the von Neumann equation:

i
d
dt
ρ(t) = [H, ρ(t)].
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Quantum causal inferences by entropic-hamiltonian dynamics
Two elementary geometric structures:

I D(·, ·) represents the convention of “best estimation/inference”
I {h, ·} represents a convention of causality (“internal dynamics”)

Two elementary forms of quantum dynamics:
I entropic projections PD

Q generated by quantum distances D(·, ·)
I hamiltonian flows wh

t generated by nonlinear hamiltonian vector fields {h, ·}

A general form of quantum dynamics is defined as a causal inference PD
Q ◦ wh

t .

It generalises unitary evolution followed by a “projective measurement”.

Postulate: consider the setting of causal inferences PD
Q ◦ wh

t as an alternative to the paradigm of
semigroups of CPTP maps.

Basic idea: every CPTP instrument [Davies–Lewis’70] can be decomposed into:

(1) tensor product of initial state with uncorrelated environment,
(2) unitary evolution,
(3) projective measurement,
(4) partial trace.

It remains to prove that (4) and (3+4) are entropic projections.
M.Munk-Nielsen’15: (4) is entropic projection at least for strictly positive states. Ongoing work
RPK+MMN’16: prove (3+4) for all states and (4) for nonfaithful ones.
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2. Geometric framework for quantum information
theories beyond quantum mechanics

Principles of geometric (post)quantum kinematics
Global/sequential and local/parallel dynamics
Global and local reconstruction of QM
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Towards new foundations
Key mathematical and conceptual change:
A shift from ontology of eigenvalues (implemented by operators on Hilbert spaces and
probabilistic statistics) to epistemology of expectations (implemented by geometry of state spaces
of W ∗-algebras and quantum statistics).

Idea:
consider spacesM(H) as fundamental

allow any nonlinear functionsM(H)→ R as observables
(smooth determine hamiltonian functions, affine determine self-adjoint operators)

define geometry ofM(H) by means of D(·, ·) and {·, ·}

define dynamics ofM(H) by means of PD
Q(·, ·) and w{h,·}t

Questions:
what’s up with Hilbert spaces?

what’s up with spectral theory, probability, Born rule, etc?

Answers:
replace Hilbert spaces H by W ∗-algebras N

replace setsM(H) of density matrices on H by setsM(N ) of positive integrals on W ∗-algebras
N

this setting is an exact generalisation of Kolmogorov’s measure theoretic setting for probability
theory

Ryszard Paweł Kostecki (Perimeter Institute) Towards (post)quantum information relativity 12 / 33



W ∗-algebras and integration

A W ∗-algebra N :

I an algebra over C with unit I,
I with ∗ operation s.t. (xy)∗ = y∗x∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x , (λx)∗ = λ∗x∗,
I that is also a Banach space,
I with ·, +, ∗ continuous in the norm topology (implied by the condition ||x∗x || = ||x ||2),
I such that there exists a Banach space N? satisfying Banach duality: (N?)? ∼= N ,

Special cases:

I if N is commutative then ∃ a measure space (X , µ) s.t. N+ ∼= L∞(X , µ)+ and
N? ∼= L1(X , µ)

I if N is “type I factor” then ∃ a Hilbert space H s.t. N ∼= B(H) and N+
?
∼= T (H)+.

Hence, the element φ ∈ (N?)+ provides a joint generalisation of probability density and
of density operator. By means of embedding of N? into N ?, it is also an integral on N .

We choseM(N ) ⊆ N+
? as our generic quantum state spaces.
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Noncommutative integration on W ∗-algebras

Commutative integration:

spatial representation algebraic formulation
underlying object localisable measure space: (X ,f(X ), µ) localisable boolean algebra: A

Lp-spaces Lp(X ,f(X ), µ) Lp(A)

states q ∈ M(X ,f(X ), µ) ⊆ L1(X ,f(X ), µ)+ φ ∈ M(A) ⊆ L1(A)+

expectations of observables L∞(X ,f(X ), µ) 3 f 7→
∫
X µqf ∈ R φ ∈ L∞(A) 3 f 7→ φ(f ) ∈ R

Noncommutative integration:

spatial representation algebraic formulation
underlying object Hilbert space with std. trace: (H, trH) W∗-algebra: N

Lp-spaces Gp(H) = Lp(B(H), tr) Lp(N )

states ρ ∈ M(H) ⊆ G1(H)+ ∼= B(H)+
? φ ∈ M(N ) ⊆ L1(N )+ ∼= N+

?
expectations of observables B(H) = G∞(H) 3 x 7→ tr(ρx) ∈ C N = L∞(N ) 3 x 7→ φ(x) ∈ C
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Orthodox quantum mechanical paradigm (von Neumann, 1926-1932):

a solution of a particular problem (solid mathematical framework providing unifying foundations
for ‘wave mechanics’ and ‘matrix mechanics’)

von Neumann’1935: “I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space anymore.”

Some key observations:
Probability theory is just a special case of integration theory on W ∗-algebras.

From the perspective of this theory, quantum states are just integrals, so there is no a priori
reason why “general” quantum theory (beyond QM) should depend on probabilities.

Quantum states (and structures over them) can be associated directly with the epistemic data by
generalising the methods of associating epistemic data with probabilities (and with structures
over them).
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New paradigm:

Basic object of interest: spacesM(N ) ⊆ N+
? of states over W ∗-algebras N .

Quantum theoretic kinematics generalises and replaces probability theory.

Quantum theoretic dynamics generalises and replaces causal statistical inference.

Nonlinear information geometry of spaces of quantum states replaces the role of (linear) spectral
theory of quantum mechanics.

Replace the use of eigenvalues and expectations of self-adjoint operators on H (or in N ) by
observables f :M(N )→ R. Given any model construction rule Rn ⊃ Θ 3 θ 7→ ρ(θ) ∈M(N ),
and the set of experimental functions fΘ : Θ→ R the set of observables relevant to the problem
is given by {f :M(N )→ R | fΘ = f ◦ θ}
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New dynamics: information geometric causal inference
Main change: Consider nonlinear state changes defined by geometric structures on quantum
models as more important than linear CP maps (= “no-initial-correlations + unitary evolution +
projective measurement + partial trace”)

Two fundamental dynamic structures on M(N ):

a) Inference: Entropic projections φ 7→ arg infω∈Q(η) {D(ω, φ)} [RPK’10]
F nonlinear and nonlocal
F requires convexity
F represents (“active/external”) information dynamics due to learning/measuring
F allows to encode experimental constraints
F reduces in special cases to Lüders’, Jeffrey’s, Bayes’ rules

b) Causality: Hamiltonian flows φ 7→ wh
t (φ), d

dt f (wh
t (φ)) = {h, f (wh

t )}(φ) ∀f [Bóna’00]
F nonlinear and local
F requires smoothness
F represents (“passive/internal”) changes of information states when no inference is made
F allows to encode theoretical symmetries
F reduces in a special case to the von Neumann equation.

They allow for two main descriptions of total information dynamics:

a) Sequential processing: entropic projections composed with hamiltonian flows:
φ 7→ PD

Q(η) ◦ wh
t (φ)

F nonlinear and nonmarkovian
F allows for arbitrary correlations between subsystems
F from the bayesian perspective, wh

t (φ) is a prior for PD
Q(η)-updating

b) Parallel processing: infinitesimal hamiltionian flows perturbed by dissipative dynamics
given by free falls along geodesics determined by entropic projections
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Smooth quantum information geometries

Under some conditions, D induces a generalisation of smooth riemannian geometry onM(N ).

M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth} is a C -manifold

Jenčová’05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W ∗-algebra, with tangent spaces given by noncommutative Orlicz
spaces.

Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth distance D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection ∇̄ = (∇D +∇D†)/2.
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Example

Example 1: M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1}
D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
give Mori[’55]–Kubo[’56]–Bogolyubov[’62] gD1 and Nagaoka[’94]–Hasegawa[’95]
(∇D1 ,∇D1†):

gD1
ρ (x , y) = trH

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
,

t∇
D1

ρ,ω (x) = x − trH(ωx), t∇
D1†

ρ,ω (x) = x .
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Hessian geometries = dually flat Norden–Sen geometries

If (M, g,∇,∇†) is a Norden–Sen geometry with flat ∇ and ∇†, then:

1 there exists a unique pair of functions Φ :M→ R, ΦL :M→ R such that g is their
hessian metric,

gij (ρ) =
∂2Φ(ρ(θ))

∂θi∂θj dθi ⊗ dθj , gij (ρ) =
∂2ΦL(ρ(η))

∂ηi∂ηj dηi ⊗ dηj ,

where: {θi} is a coordinate system s.t. Γ∇ijk(ρ(θ)) = 0 ∀ρ ∈M,

{ηi} is a coordinate system s.t. Γ∇
†
ijk(ρ(η)) = 0 ∀ρ ∈M.

2 the Eguchi equations applied to the Brègman distance

DΦ(ρ, σ) := Φ(ρ) + ΦL(σ)−
∑

i

θi (ρ)ηi (σ)

yield (g,∇,∇†) above.
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Smooth generalised pythagorean theorem

Let (M, g,∇,∇†) be a hessian geometry. Then for any Q ⊆M which is:

∇†-autoparallel := ∇†uv ∈ TQ ∀u, v ∈ TQ;
∇†-convex := ∀ρ1, ρ2 ∈ Q ∃! ∇†-geodesics in Q
connecting ρ1 and ρ2;

there exists a unique projection

M3 ρ 7→ P
DΦ
Q (ρ) := arg inf

σ∈Q
{DΦ(σ, ρ)} ∈ Q.

it is equal to a unique projection of ρ onto Q along a
∇-geodesic that is g-orthogonal at Q.
it satisfies a generalised pythagorean equation

DΦ(ω,PDΦ
Q (ρ))+DΦ(PDΦ

Q (ρ), ρ) = DΦ(ω, ρ) ∀(ω, ρ) ∈ Q×M.

Hence, for Brègman distances DΦ the local entropic projections are equivalent with
geodesic projections.
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Local effective dynamics

One can combine locally the entropic projections with hamiltonian flows, by passing to
the derived geodesic projections, and combining both in a single formula for effective
dynamics.

Given a hamiltonian observable h and a relative entropy D, the 1-form dh(φ)− d∇D (φ)
represents a local perturbation of causal dynamics by the information flow along entropic
geodesics.

In particular, D1/2 = 2
∣∣∣∣√ρ−√σ∣∣∣∣2H gives Wigner–Yanase metric g1/2, with

dg1/2(ρ, σ) = 2 arccos(trH(
√
ρ
√
σ)). The free fall along the geodesics of Levi-Civita

connection ∇1/2 encodes the continuous process of projective measurement.

The resulting effective dynamics can be given mathematically exact form in terms of a
continuous-time regularised path-integral

lim
ε→+0

∫
Dφ(·)e

i
∫
γ dt〈Ωφ(t),d∇1/2 (φ(t)Ωφ(t)〉Hφ(t) · (1)

·e−i
∫
γ dt〈Ωφ(t),πφ(t)(dh(φ(t)))Ωφ(t)〉e−

ε
2
∫
γ dtg1/2

ab (φ(t))φ̇aφ̇b
, (2)

If evaluated only on boundary pure states, and for h(φ) = φ(H), it is known
(Daubechies–Klauder’85, Anastopoulos–Savvidou’03) to be equal to〈
Ω(t = s), e−iHsΩ(t = 0)

〉
H.
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Backwards compatibility: Global reconstructions

1a. (Global) Reconstruction of quantum
mechanics:

I N : type I W ∗-algebras
I M(N ): normalised states
I D: D1/2 or D0
I {·, ·}: generated by Banach Lie algebra N sa

I observables: linear functions onM(N )

2. Reconstruction of probability theory:
I N : commutative algebras
I M(N ): normalised states
I D: arbitrary (but for D1 or D0, and specific

types of constraints, Bayes’ and Jeffrey’s
rules are recovered)

I {·, ·}: trivialises for commutative algebras
I observables: arbitrary or affine functions on
M(N )
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Backwards compatibility: Local reconstruction of [W ∗-]QM

1 localc kinematics (only in tangent space):

I states: vectors of TφM(N ) (configurations: φ(θ)→ θ → ∂
∂θ

)

I effects: vectors of T~
φM(N ) (observables: f → df (φ))

2 local dynamics (only in tangent space):

I causality: hamiltonian causality is local
I inference: arbitrary entropic projections are nonlocal, but the Norden–Sen geometries

derived from relative entropies allow to localise entropic projections
I causality+inference: as presented few slides ago

3 reconstruction of W ∗-algebras: Can we start from arbitrary setsM, equipped with
geometric structures {·, ·} and D(·, ·), without knowing that they are over W ∗-algebras,
and reconstructM =M(N ) from some conditions? → work in progress!

4 Basic idea of a proof: W ∗-algebras = LJBW∗-algebras = BLP submanifolds extendible
to convex hull, with observables having Jordan structure = BLP submanifolds (=Poisson
spaces)M with riemannian structure induced from relative entropy and Kähler
compatibility condition on the convex hull ofM ← main conjecture
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What is the predictive content of semantics of probability theory?
Consider:

Θ: a space of possible configurations

Θ 3 θ = (θ1, . . . , θn): average values of n types of experimental configuration variables

Ξ: a space of registrations

Example: MaxEnt + entropic projections (or Bayes’ rule) + prediction:

configurations & registrations
model construction // beliefs & updatings
predictive verification
oo

Θ
θi =trH(ρhi ) //

Ξ

��

{ρ(θ) = e−
∑

i β(θi )hi | θ ∈ Θ}

P
D1
Q(Ξ)

��

oo

Θ̃
θ̃i =trH(ρ̃hi ) //

Ξ̃

��

{ρ̃ = PD1
Q(Ξ)(ρ(θ)) | θ ∈ Θ}

P
D1
Q(Ξ̃)

��

oo

Θ̂
θ̂i =trH(ρ̂hi ) // {ρ̂ | . . .}oo
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Towards new semantics
One can use other model construction principles

There is no need to use linear expectation type constraints

This what we should care about is the relationship between model construction
(information encoding), inference (information processing), and predictive verifiability
(information decoding).

f =`Θ(fΘ(θ)) //

Ξ

��

({ρ(θ) = proc(f ,Θ) | θ ∈ Θ}, f )

PD
Q(Ξ)

��

oo

... //

Ξ̃

��

({ρ̃ = PD
Q(Ξ)(ρ(θ)) | θ ∈ Θ}, f )

PD
Q(Ξ̃)

��

oo

...
... // ...oo
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Adjointness in the foundations (of inductive inference)
We can relax the condition of bijectivity of arrows between models and configurations to one that
makes the relationship between encoding and decoding to be optimal in the following sense:

The method of encoding (model construction) should be the most effective solution of the
problem provided by the given decoding (prediction).

Let TheorMod be a category of theoretical models as objects and inferences as arrows.
Let ExpDes be a category of experimental designs as objects and registrations as arrows.
Model construction is defined as a functor ModConstr : ExpDes→ TheorMod.
Predictive verification is defined as a functor PredVer : TheorMod→ ExpDes.

Mutual consistency condition: ModConstr a PredVer

This means: there is a natural bijection
homExpDes(X ,PredVer(Y )) ∼= homTheorMod(ModConstr(X ),Y )

X

���� ��

ModConstr(X )

���� ��

ExpDes
ModConstr+3

PredVer
ks TheorMod

PredVer(Y ) Y
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(Some blackboard, dependently on time)

F&f functors

Localisation by groupoids

A resource theory of knowledge is (C, T ), where T is a submonoid of a functor category
CC

LdR–LK–RR setting as an example of this framework:

I Posets as categories
I Galois insertions as adjoint functors
I Localisation by division by equivalence as a coarse-grained groupoidal localisation
I Compatibility of local descriptions as isomorphism to a terminal object
I ...

Monad–comonad systems as more pluralistic multi-agency.
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Jacobson’95: Einstein equations *from* space-time thermodynamics
Consider:

a space-time (M, gab)

a point p ∈M
a small 2-dimensional surface element P
a Killing vector field χa generating local boost orthogonal to P

Define:
a local causal horizon H as a boundary of the past of P, generated
by χa

a heat flow δQ as an energy flux across a local causal horizon:
δQ :=

∫
H dΣaTabχ

b

a temperature T as an Unruh temperature associated with a
uniformly accelerated observer.

Assume:

that entropy S is proportional to the area of H: S = λA

that Clausius’ law holds: δQ = TdS .

Then:
Rab −

1
2
Rgab + Λgab =

2π
λ
Tab.
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Beyond quantum gravity

Jacobson’95:

“This perspective suggests that it may be no more appropriate to canonically quantize
the Einstein equation than it would be to quantize the wave equation for sound in air.”

“one might expect that sufficiently high frequency or large amplitude disturbances of the
gravitational field would no longer be described by the Einstein equation, not because
some quantum operator nature of the metric would become relevant, but because the
local equilibrium condition would fail. It is my hope that, by following this line of inquiry,
we shall eventually reach an understanding of the nature of “non-equilibrium spacetime”. ”

Our conclusions:

Instead of quantising gravity lets try to derive kinematics and dynamics of space-time
from suitably generalized kinematics and dynamics of quantum theory [recall Mielnik’76:
“instead of modifying general relativity to fit quantum mechanics one should rather
modify quantum mechanics to fit general relativity”]

Equilibrium and nonequilibrium thermodynamics can be described using information
geometry. It seems plausible that quantum information geometry may play a key role in
the space-time emergence.
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(Some blackboard, dependently on time)

Nonequilibrium setting: Chirco–Liberati observation

Daubechies–Klauder Wiener measure

Idea: emergence of local space-time from local quantum geometry of 2-surfaces.
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Summary of open problems and ongoing work

Kinematics and global dynamics of (post)quantum geometric information theory: quite ok!

Open problem: characterise CPTP maps as a special case of composition of ⊗, hamiltonian flow,
and entropic projections (ongoing project with Morten Munk-Nielsen)

Local dynamics: quite ok & new! to be submitted today on arXiv :).

Semantics for operational consistency: quite ok, based on adjointness, LdR-LK-RR scheme as its
special case (soon on arXiv).

Open problem: make kinematics and dynamics canonical in ∞-dimensional case, using quantum
Brègman entropies and noncommutative Orlicz spaces as tangent/cotangent spaces (project with
Anna Jenčová)

Open problem: local reconstruction of QM (projects with Berna Lessel [Jordan/riemannian part]
and Wojtek Kamiński [Kähler part])

Open problem: emergent space-times via noneq thermodynamics and D–K approach (project
with Daniel Guariento)

& ...

Open problem: more explicit models of nonstandard composition of submodels and subdynamics
(planned work with Karol Horodecki)

Open problem: generalisation of adjointness semantics to monad-comonad localisation (planned
work with Tobias Fritz)
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