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Approaches to quantum foundations

1 Quantum logics

I main contributions: von Neumann’32, Birkhoff–von Neumann’36, Mackey’57,
Gleason’57, Piron’64, Kochen–Specker’65, ..., Randall–Foulis’81, Aerts’81, ...

I main structure: orthomodular orthocomplemented posets or lattices
I main advantage: generalisation of structure of Kolmogorov’s probability theory
I main disadvantage: no-go for tensor products

2 Operator algebras

I main contributions: Jordan’32’33, Jordan–von Neumann–Wigner’34, von
Neumann–Murray’36+, Gel’fand–Năımark’43, Segal’47, Haag–Kastler’64, ...

I main structure: Jordan–Banach, C∗, or W ∗ algebras
I main advantage: generalisation of the notion of observable from quantum mechanics
I main disadvantage: lack of conceptual justification of the basic axioms

3 Convex sets

I main contributions: Ludwig’64+, Mielnik’68+, Davies–Lewis’70, ...,
Alfsen–Shultz’78+,...

I main structure: ordered real vector equipped with a distinguished positive cone and a
linear functional

I main advantage: operational probabilistic semantics
I main disadvantage: lack of direct relationship with “physical” model construction
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Quantum information geometric approach

1 Key insights:

I Main idea:Consider state spaces as more important structurally and conceptually than
algebras of observables and consider interpretation of quantum states as integrals to be
more fundamental than interpretation of quantum states as measures.
→ Expectation values instead of eigenvalues.

I Structural consequence: Investigate geometric structures on state spaces for the
purpose of axiomatisation and model construction.
→ Quantum information geometry instead of spectral theory.

I Conceptual consequence: Interpret framework of quantum states as an environment for
information processing.
→ Information theoretic/quantum bayesian interpretation instead of ontic
interpretation.

2 In what follows:

I Nonlinear geometries of spaces of quantum states (density matrices) will be
investigated.

I Quantum dynamics will be defined in terms of these geometries.
I New approach to measurement theory will be proposed.
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1. Geometry of quantum states and nonlinear
generalisation of quantum dynamics

Geometric structures on spaces of quantum states:
relative entropies & Poisson brackets
Lüders’ rules → constrained relative entropy maximisations
Unitary evolution → nonlinear hamiltonian flows
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Probability theory:
Underlying structure: measure space (X , µ)

Main spaces: Probabilistic models:

M(X , µ) ⊆ L1(X , µ)+ := {p : X → R |
∫
X
µ|p| <∞, p ≥ 0}

e.g. Gaussian models: {p(x , (m, s)) = 1√
2πs

e−
(x−m)2

2s2 | (m, s) ∈ Θ ⊆ R× R+}.
Observables (estimators): functions f : X → R

Quantum mechanics:
Underlying structure: Hilbert space H
Main spaces: Spaces of density matrices:

M(H) ⊆ T (H)+ := {ρ ∈ B(H) | trH(|ρ|) <∞, ρ ≥ 0}

e.g. Gibbs states: {e−βH | β ∈ ]0,∞[}, for a fixed self-adjoint H.

Observables: self-adjoint operators x : H → H
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Quantum information models and quantum information distances

trace class operators: T (H) := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞}
we will consider arbitrary sets of denormalised quantum states: M(H) ⊆ T (H)+

Quantum information distances D :M(H)×M(H)→ [0,∞]s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
I D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]
I D1/2(ρ, σ) := 2

∣∣∣∣√ρ−√σ∣∣∣∣2
G2(H)

= 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ) (Hilbert–Schmidt norm2)

I DL1(N )(ρ, σ) := 1
2 ||ρ− σ||T (H) = 1

2 trH|ρ− σ| (L1/predual norm)
I Dγ(ρ, σ) := 1

γ(1−γ)
trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1} [Hasegawa’93]

I Dα,z (ρ, σ) := 1
1−α log trH(ρα/zσ(1−α)/z )z ; α, z ∈ R [Audenauert–Datta’14]

for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.

Various “quantum geometries” will arise from different additional conditions imposed on
pairs (M(H),D):

I Different choices ofM(H) reflect different assumptions on the available possible
knowledge (description of experimental situation).

I Different choices of D reflect different assumptions regarding the convention of
“best/optimal” estimation/inference.

I Both choices are case-to-case-dependent and should be operationally justified.
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Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

E.g.

for D1/2(ρ, σ) = 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ),

consider the entropic projections P
D1/2
Q

where Q are images of closed convex subspaces Q̃ ⊆ K+ := G2(H)+

under the mapping Q̃ 3 √ρ 7→ ρ ∈ Q.
They coincide with the ordinary projection operators in B(K) ∼= B(H⊗H?).

for D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
andM(H) = T (H)+

1 , ψ ∈ T (H)+
1 , h ∈ B(H)sa, then [Araki’77, Donald’90]

∃! ψh := arg inf
ρ∈T (H)+

1

{D1(ρ, ψ) + trH(ρh)} .
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Bayes–Laplace rule and maximum relative entropy

Fundamental principle of statistical inference in the bayesian statistics:

the Bayes–Laplace rule: p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special
case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ,

where D1 is the Kullback–Leibler distance

D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D1(q, p).
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Lüders’ rules

Lüders’ rules provide the basic paradigm for the description of quantum state change
due to measurement of an observable x =

∑
i λiPi :

ρ 7→ ρnew :=
∑

i

PiρPi (‘weak’ = ‘nonselective’),

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’ = ‘selective’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02: Lüders’ rules should be
considered as rules of inference (conditioning) that are quantum analogues of the
Bayes–Laplace rule.

Yet, no mathematically exact relationship was provided.
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Quantum bayesian inference from quantum entropic projections

RPK’13’14, F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}

2 strong Lüders’ rule derived from

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}

under the limit p2, . . . , pn → 0.
3 hence, weak and strong Lüders’ rules are special cases of quantum entropic projection

PD0
Q based on relative entropy D0(σ, ρ) = D1(ρ, σ).

Meaning: the rule of maximisation of relative entropy (entropic projection on the
subspace of constraints) can be considered as a nonlinear generalisation of the
dynamics describing “quantum measurement”. [RPK’10’11]
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Quantum Poisson structure

Consider the space of self-adjoint trace-class operators: T (H)sa := T (H) ∩B(H)sa.

It can be equipped with a following real Banach smooth manifold structure:

I tangent spaces: Tφ(T (H)sa) ∼= T (H)sa

I cotangent spaces: T~
φ (T (H)sa) ∼= (T (H)sa)? ∼= B(H)sa

Bóna’91,’00: a Poisson manifold structure on T (H)sa is defined by a commutator of
an algebra:

{h, f }(ρ) := trH (ρ i[dh(ρ), df (ρ)]) ∀f , h ∈ C∞(T (H)sa;R) ∀ρ ∈ T (H)sa.

So, ifM(H) ⊆ T (H)+ is a smooth submanifold of T (H)sa,
then every f ∈ C∞(M(H);R) determines a hamiltonian vector field:

Xf (ρ) = −{·, f }(ρ) = trH(ρ i[d(·), df (ρ)]).

More generally, we can choose arbitrary real Banach Lie subalgebra A of B(H) such
that: (i) it has a unique Banach predual A? in T (H); (ii) there exists at least one
M(H) ⊆ T (H)+ which is a smooth submanifold of A?.
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Nonlinear quantum hamiltonian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation reads

d
dt

f (ρ(t)) = {h, f }(ρ(t)) = i trH ([ρ(t), dh(ρ(t))]df (ρ(t))) .

The above equation is equivalent to the Bóna equation [’91’00]

i d
dt ρ(t) = [dh(ρ(t)), ρ(t)].

Hence,

The Poisson structure {·, ·} induced by a commutator of B(H) allows to introduce various
nonlinear hamiltonian evolutions on spacesM(H) of quantum states, generated by arbitrary
real-valued smooth functions onM(H).

The solutions of Bóna equation are state-dependent unitary operators U(ρ, t).
They do not form a group, but satisfy a cocycle relationship:

U(ρ, t + s) = U((Ad(U(ρ, t)))(ρ), s)U(ρ, t) ∀t, s ∈ R.

In a special case, when h(ρ) = trH(ρH) for H ∈ B(H)sa,
the Bóna equation turns to the von Neumann equation:

i
d
dt
ρ(t) = [H, ρ(t)].
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Geometry ⇒ dynamics

Two elementary geometric structures:
I D(·, ·) represents the convention of “best estimation/inference”
I {h, ·} represents a convention of causality (“internal dynamics”)

Two elementary forms of quantum dynamics:
I entropic projections PD

Q generated by quantum distances D(·, ·)
I hamiltonian flows wh

t generated by nonlinear hamiltonian vector fields {h, ·}

They allow for two main descriptions of total information dynamics:
a) Sequential processing: entropic projections composed with hamiltonian flows:

φ 7→ PD
Q(η) ◦ wh

t (φ)
F nonlinear and nonmarkovian
F allows for arbitrary correlations between subsystems
F from the bayesian perspective, wh

t (φ) is a prior for PD
Q(η)-updating

b) Parallel processing: infinitesimal hamiltionian flows perturbed by dissipative dynamics
given by free falls along geodesics determined by entropic projections
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Quantum causal inferences by entropic-hamiltonian dynamics

A ’sequential’ (global) form of quantum dynamics is defined as a causal inference
PD
Q ◦ wh

t .

It generalises unitary evolution followed by a “projective measurement”.

Postulate: consider the setting of causal inferences PD
Q ◦ wh

t as an alternative to the
paradigm of semigroups of CPTP maps.
Basic idea: every CPTP instrument [Davies–Lewis’70] can be decomposed into:
(1) tensor product of initial state with uncorrelated environment,
(2) unitary evolution,
(3) projective measurement,
(4) partial trace.
It remains to prove that (4) and (3+4) are entropic projections.

I M.Munk-Nielsen’15: (4) is entropic projection at least for strictly positive states.
I Work in progress by RPK+MMN’16: proving that (3+4) for all states and (4) for

nonfaithful ones.

Now let us consider the ’parallel’ (local) quantum dynamics (information processing).
For this purpose we need first to investigate the local (differential-geometric) structures
induced by relative entropy.
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Smooth quantum information geometries

Under some conditions, D induces a generalisation of smooth riemannian geometry onM(N ).

M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth} is a C -manifold

Jenčová’05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W ∗-algebra, with tangent spaces given by noncommutative
Orlicz spaces.

Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth distance D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection ∇̄ = (∇D +∇D†)/2.
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Example

M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1}
and D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
give the Mori[’55]–Kubo[’56]–Bogolyubov[’62] metric gD1

and Nagaoka[’94]–Hasegawa[’95] connections (∇D1 ,∇D1†) :

gD1
ρ (x , y) = trH

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
,

t∇
D1

ρ,ω (x) = x − trH(ωx), t∇
D1†

ρ,ω (x) = x .
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Hessian geometries = dually flat Norden–Sen geometries

If (M, g,∇,∇†) is a Norden–Sen geometry with flat ∇ and ∇†, then:
1 there exists a unique pair of functions Φ :M→ R, ΦL :M→ R such that g is their

hessian metric,

gij (ρ) =
∂2Φ(ρ(θ))

∂θi∂θj dθi ⊗ dθj , gij (ρ) =
∂2ΦL(ρ(η))

∂ηi∂ηj dηi ⊗ dηj ,

where: {θi} is a coordinate system s.t. Γ∇ijk(ρ(θ)) = 0 ∀ρ ∈M,

{ηi} is a coordinate system s.t. Γ∇
†
ijk(ρ(η)) = 0 ∀ρ ∈M.

2 the Eguchi equations applied to the Brègman distance

DΦ(ρ, σ) := Φ(ρ) + ΦL(σ)−
∑

i

θi (ρ)ηi (σ)

yield (g,∇,∇†) above.
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Smooth generalised pythagorean theorem

Let (M, g,∇,∇†) be a hessian geometry. Then for any Q ⊆M which is:

∇†-autoparallel := ∇†uv ∈ TQ ∀u, v ∈ TQ;
∇†-convex := ∀ρ1, ρ2 ∈ Q ∃! ∇†-geodesics in Q
connecting ρ1 and ρ2;

there exists a unique projection

M3 ρ 7→ P
DΦ
Q (ρ) := arg inf

σ∈Q
{DΦ(σ, ρ)} ∈ Q.

it is equal to a unique projection of ρ onto Q along a
∇-geodesic that is g-orthogonal at Q.
it satisfies a generalised pythagorean equation

DΦ(ω,PDΦ
Q (ρ))+DΦ(PDΦ

Q (ρ), ρ) = DΦ(ω, ρ) ∀(ω, ρ) ∈ Q×M.

Hence, for Brègman distances DΦ the local entropic projections are equivalent with
geodesic projections.
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Local effective dynamics = parallel quantum information processing

One can combine locally the entropic projections with hamiltonian flows, by passing
to the derived geodesic projections, and combining both in a single formula for
effective dynamics.

Given a hamiltonian observable h and a relative entropy D, the 1-form
dh(φ)− d∇D (φ) represents a local perturbation of causal dynamics by the
information flow along entropic geodesics.

In particular, D1/2 = 2
∣∣∣∣√ρ−√σ∣∣∣∣2H gives Wigner–Yanase metric g1/2, with

dg1/2(ρ, σ) = 2 arccos(trH(
√
ρ
√
σ)). The free fall along the geodesics of Levi-Civita

connection ∇1/2 encodes the continuous process of projective measurement.

The resulting effective dynamics can be given mathematically exact form in terms of
a continuous-time regularised path-integral

lim
ε→+0

∫
Dφ(·)e

i
∫
γ dt〈Ωφ(t),d∇1/2 (φ(t)Ωφ(t)〉Hφ(t) ·

·e−i
∫
γ dt〈Ωφ(t),πφ(t)(dh(φ(t)))Ωφ(t)〉e−

ε
2
∫
γ dtg1/2

ab (φ(t))φ̇aφ̇b
,

If evaluated only on boundary pure states, and for h(φ) = φ(H), it is known
(Daubechies–Klauder’85, Anastopoulos–Savvidou’03) to be equal to a propagator〈
Ω(t = s), e−iHsΩ(t = 0)

〉
H.
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3. Quantum information geometric approach to
foundations of quantum theory beyond quantum

mechanics

States on W∗-algebras as noncommutative integrals
Information theoretic/bayesian measurement theory
Towards purely geometric reconstruction
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Towards new foundations

Idea:
consider spacesM(H) as fundamental

allow any nonlinear functionsM(H)→ R as observables

define geometry ofM(H) by means of D(·, ·) and {·, ·}
define dynamics ofM(H) by means of PD

Q(·, ·) and w{h,·}t

Questions:
what’s up with Hilbert spaces? (are they necessary? if not, then what?)

what’s up with spectral theory, probability, Born rule, etc?

Answers:
replace Hilbert spaces by W ∗-algebras

replace density matrices by positive integrals on W ∗-algebras

this setting is an exact generalisation of Kolmogorov’s measure theoretic setting for
probability theory

build up all remaining semantics for quantum theory
in the analogy to semantics of probability theory and statistical inference
(hence: no Born rule, no probabilities, no spectral theory)
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W ∗-algebras and integration

A W ∗-algebra N :
I an algebra over R or C with unit I,
I with ∗ operation s.t. (xy)∗ = y∗x∗, (x + y)∗ = x∗ + y∗, (x∗)∗ = x , (λx)∗ = λ∗x∗,
I that is also a Banach space,
I with ·, +, ∗ continuous in the norm topology (implied by the condition ||x∗x || = ||x ||2),
I such that there exists a Banach space N? satisfying the Banach space duality:

(N?)? ∼= N ,
Special cases:

I if N is commutative
then ∃ a measure space (X , µ) s.t. N ∼= L∞(X , µ) and N? ∼= L1(X , µ)

I if N is “type I factor”
then ∃ a Hilbert space H s.t. N ∼= B(H) and N? ∼= T (H).

Hence, the element φ ∈ (N?)+ provides a joint generalisation of probability density
and of density operator. By means of embedding of N? into N ?, it is also an
integral on N .

Key fact: The above setting allows to develop full-fledged integration theory on
noncommutative W ∗-algebras, which generalises integration theory on measure
spaces (with partial integration, conditional expectations, Lp(N ) spaces,...).
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New kinematics: quantum models and observables
General quantum information models:

For any W ∗-algebra N ,M(N ) will be defined as an arbitrary subset of a positive part of
a Banach predual space of N ,M(N ) ⊆ N+

? .

Special cases:
N is commutative ⇒ M(N ) =M(X , µ)

N is type I factor ⇒ M(N ) =M(H).

We do not assume that:
M(N ) is convex (⇐⇒ probabilistic mixing)

M(N ) is smooth (⇐⇒ asymptotic estimation)

M(N ) is normalised (⇐⇒ frequentist interpretation)

Observables:

Observables are defined as arbitrary functions f :M(N )→ R.

Hence: smooth observables define hamiltonian vector fields.

Each “observable in the old sense” x ∈ N sa determines a corresponding “observable
in the new sense” by fx(φ) := φ(x).
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Orthodox quantum mechanical paradigm (von Neumann, 1926-1932):

a solution of a particular problem (solid mathematical framework providing unifying
foundations for ‘wave mechanics’ and ‘matrix mechanics’)
von Neumann’1935: “I would like to make a confession which may seem immoral: I do not
believe absolutely in Hilbert space anymore.”

Some key observations:
Probability theory is just a special case of integration theory on W ∗-algebras.
From the perspective of this theory, quantum states are just integrals, so there is no a priori
reason why “general” quantum theory (beyond QM) should depend on probabilities.
Quantum states (and structures over them) can be associated directly with the epistemic
data by generalising the methods of associating epistemic data with probabilities (and with
structures over them).
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New paradigm:

Basic object of interest: spacesM(N ) ⊆ N+
? of states over W ∗-algebras N .

Quantum theoretic kinematics generalises and replaces probability theory.

Quantum theoretic dynamics generalises and replaces causal statistical inference.

Nonlinear information geometry of spaces of quantum states replaces the role of (linear)
spectral theory of quantum mechanics.

Replace the use of eigenvalues and expectations of self-adjoint operators on H (or in N ) by
observables f :M(N )→ R. Given any model construction rule
Rn ⊃ Θ 3 θ 7→ ρ(θ) ∈M(N ), and the set of experimental functions fΘ : Θ→ R the set of
observables relevant to the problem is given by {f :M(N )→ R | fΘ = f ◦ θ}
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Locally quantum mechanical quantum information theory
1 local kinematics (only in tangent space):

I states: vectors of TφM(N ) (configurations: φ(θ)→ θ → ∂
∂θ

)
I effects: vectors of T~

φM(N ) (observables: f → df (φ))

2 local dynamics (only in tangent space):
I causality: hamiltonian causality is local
I inference: arbitrary entropic projections are nonlocal, but the Norden–Sen geometries

derived from relative entropies allow to localise entropic projections
I causality+inference: as presented few slides ago

3 main insight: Quantum mechanics holds locally, but does not have to hold globally.
The degree to which it does not hold is measured by the differential geometric
structure of the state space.

4 reconstruction of W ∗-algebras: Can we start from arbitrary setsM, equipped with
geometric structures {·, ·} and D(·, ·), without knowing that they are over
W ∗-algebras, and reconstructM =M(N ) from some conditions? → work in
progress!

5 Basic idea of a proof: W ∗-algebras = LJBW∗-algebras = BLP submanifolds
extendible to convex hull, with observables having Jordan structure = BLP
submanifolds (=Poisson spaces)M with riemannian structure induced from relative
entropy and Kähler compatibility condition on the convex hull ofM ← main
conjecture
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∞-dim dynamics: Banach–Lie–Poisson spaces

A real Banach–Lie–Poisson space is defined as a pair (X , {·, ·}) s.t.
1) X is a Banach space over R
2) (X , {·, ·}) is a Banach Poisson manifold:

F (C∞F (X ; R), {·, ·}) is a Lie algebra,
F {f1, f2f3} = {f1, f2}f3 + f2{f1, f3} ∀f1, f2, f3 ∈ C∞F (X ; R),
F {·, f } is a vector on X ,

3) X? := C(X ;R) ⊆ C∞F (X ;R) is a Banach Lie algebra w.r.t. [·, ·] related to {·, ·} by

{f , k}(z) =
(

[DF
z f ,DF

z k]
)

(z) ∀f , k ∈ C∞F (X ;R) ∀z ∈ X .

Under these conditions, the hamiltonian vector associated to any k ∈ C∞F (X ;R)
reads

Xk(z) = −{·, k}(z) = ([k, ·]) (z),

and the Hamilton equation

d
dt

f (wh
t (x)) = {h, f (wh

t (x))} ∀f ∈ C∞F (X ;R)

determines a unique local map wh
t : X → X called a hamiltonian flow.

Odzijewicz–Ratiu’03: for arbitrary W ∗-algebra N : X = N sa
? , X ? = N sa.

Symplectic leaves: spaces of states with finite and constant rank.
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