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«Unlike the Riemannian manifolds the quantum mechanical unit spheres do not differ
one from another: they are all isomorphic. The worlds of the present-day quantum
mechanics thus present a picture of structural monotony: they are all ‘painted’ on the
same standard ideally symmetric surface. The formalism of the quantum theory of
infinite systems and quantum field theory is not very different from that. (...) the basic
structural framework of the theory is conserved at the cost of quantitative multiplication:
when meeting a new level of physical reality the quantum theory responds by simply
producing infinite tensor products of its basic structure. (...) It may be that present day
quantum theory still represents a relatively primitive stage of development and lacks some
essential evolutionary steps leading towards structural flexibility. If this were so, further
development would involve a programme opposite to the ‘quantization of gravity’:
instead of modifying general relativity to fit quantum mechanics one should rather modify
quantum mechanics to fit general relativity.»

Bogdan Mielnik, 1976, Quantum logic: is it necessarily orthocomplemented?
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Plan

1. Global kinematics: sets of information states equipped with relative entropies &
Lie–Poisson structures

2. Global dynamics: entropic projections/instruments & hamiltonian flows

3. Local kinematics: spaces of local configurations/effects as tangent/cotangent spaces
4. Local dynamics:

I hamiltonian approach: generalised von Neumann equation with a free fall along
entropic geodesics

I lagrangean approach: geometric path integral with generalised hamiltonian and
entropic connection terms, weighted by the curvature-dependent measure

5. Open problems
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1. Global theory

Geometric structures on spaces M of quantum states:
relative entropies & Poisson brackets
Linear operators on Hilbert spaces → real-valued functions on M
Lüders’ rules → constrained relative entropy maximisations on M
Unitary evolution → nonlinear hamiltonian flows on M
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Quantum information models and quantum information distances

trace class operators: T (H) := {ρ ∈ B(H) | ρ ≥ 0, trH|ρ| <∞}
we will consider arbitrary sets of denormalised quantum states: M(H) ⊆ T (H)+

Quantum information distances D :M(H)×M(H)→ [0,∞]s.t. D(ρ, σ) = 0 ⇐⇒ ρ = σ.

E.g.
I D1(ρ, σ) := trH(ρ log ρ− ρ log σ) [Umegaki’62]
I D1/2(ρ, σ) := 2

∣∣∣∣√ρ−√σ∣∣∣∣2
G2(H)

= 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ) (Hilbert–Schmidt norm2)

I DL1(N )(ρ, σ) := 1
2 ||ρ− σ||T (H) = 1

2 trH|ρ− σ| (L1/predual norm)
I Dγ(ρ, σ) := 1

γ(1−γ)
trH(γρ+ (1− γ)σ − ργσ1−γ); γ ∈ R \ {0, 1} [Hasegawa’93]

I Dα,z (ρ, σ) := 1
1−α log trH(ρα/zσ(1−α)/z )z ; α, z ∈ R [Audenauert–Datta’14]

I Df(ρ, σ) := trH(
√
ρ f(LρR

−1
σ )
√
ρ); f operator convex, f(1) = 0 [Kosaki’82,Petz’85]

for ran(ρ) ⊆ ran(σ), and with all D(ρ, σ) := +∞ otherwise.

Various “quantum geometries” will arise from different additional conditions imposed on
pairs (M(H),D):

I Different choices ofM(H) reflect different assumptions on the available possible
knowledge (description of experimental situation).

I Different choices of D reflect different assumptions regarding the convention of
“best/optimal” estimation/inference.

I Both choices are case-to-case-dependent and should be operationally justified.
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Quantum entropic projections

Let Q ⊆ T (H)+ be such that
for each ψ ∈M(H)
there exists a unique solution

PD
Q(ψ) := arg infρ∈Q {D(ρ, ψ)} .

It will be called an entropic projection.

E.g.

for D1/2(ρ, σ) = 4trH( 12ρ+ 1
2σ −

√
ρ
√
σ),

consider the entropic projections P
D1/2
Q

where Q are images of closed convex subspaces Q̃ ⊆ K+ := G2(H)+

under the mapping Q̃ 3 √ρ 7→ ρ ∈ Q.
They coincide with the ordinary projection operators in B(K) ∼= B(H⊗H?).

for D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
andM(H) = T (H)+

1 , ψ ∈ T (H)+
1 , h ∈ B(H)sa, then [Araki’77, Donald’90]

∃! ψh := arg inf
ρ∈T (H)+

1

{D1(ρ, ψ) + trH(ρh)} .
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Quantum measurement, bayesianity, and maximum relative entropy

Lüders’ rules:
ρ 7→ ρnew :=

∑
i

PiρPi (‘weak’)

ρ 7→ ρnew :=
PρP

trH(Pρ)
(‘strong’)

Bub’77’79, Caves–Fuchs–Schack’01, Fuchs’02, Jacobs’02: Lüders’ rules should be
considered as rules of inference (conditioning) that are quantum analogues of

the Bayes–Laplace rule: p(x) 7→ pnew(x) :=
p(x)p(b|x)

p(b)
.

Williams’80, Warmuth’05, Caticha&Giffin’06: the Bayes–Laplace rule is a special
case of

p(x ) 7→ pnew(x ) := arg inf
q∈Q

{D1(q, p)} ; D1(q, p) :=

∫
X
µ(x )q(x ) log

(
q(x )

p(x )

)
.

Douven&Romeijn’12: the Bayes–Laplace rule is also a special case of

p 7→ arg inf
q∈Q

{D1(p, q)} = PD0
Q (p),

where D0(p, q) = D0(q, p).

Ryszard Paweł Kostecki (IFT UW) Towards geometric quantum information theory 7 / 30



Quantum bayesian inference from quantum entropic projections

RPK’13’14, F.Hellmann–W.Kamiński–RPK’14:

1 weak Lüders’ rule is a special case of

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0 ∀i}

2 strong Lüders’ rule derived from

ρ 7→ arg inf
σ∈Q

{D1(ρ, σ)}

with
Q = {σ ∈ T (H)+ | [Pi , σ] = 0, trH(σPi ) = pi ∀i}

under the limit p2, . . . , pn → 0.
3 hence, weak and strong Lüders’ rules are special cases of quantum entropic projection

PD0
Q based on relative entropy D0(σ, ρ) = D1(ρ, σ).

Bayes–Laplace and Lüders’ conditionings are special cases of entropic projections
⇒ “quantum bayesianism ⊆ quantum relative entropism”.

Meaning: the rule of maximisation of relative entropy (entropic projection on the
subspace of constraints) can be considered as a nonlinear generalisation of the dynamics
describing “quantum measurement”. [RPK’10’11]
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Global entropic dynamics: Quantum entropic instruments (RPK’13)
Given a set Ξ of registration parameters, we define a quantum entropic instrument as a map

Ξ 3 η 7→ PD
Q(η) ∈ HomSet(M1(N ),M2(N )).

We will deal only with such Q that are convex.

More generally, the set Ξ can be time
dependent, so the entropic instrument
can describe the time dependent
nonlinear dynamics of quantum states
‘driven’ by the changes of registration
parameters in time.

E.g.: If {Q(t) ⊆ N+
? | t ∈ R} is a

family of convex closed sets with
PD
Q(0)

(φ0) = φ0, and the map
t 7→ Q(t) is continuous, then
t 7→ PD

Q(t)
(φ0) becomes a continuous

trajectory in the tube of convex sets of
quantum states.

If Q(η) is compact, then it is possible to define the corresponding quantum entropic effect
as a maximal central measure on Q(η) with a barycenter PD

Q(η)
(φ0).

(It is unique by virtue of Wils’ theorem.)
If Q(η) is equal to space of all states on some C∗-algebra C, then every quantum entropic
effect determines a unique corresponding POVM acting from Borel subsets of Q(η) to the
positive part of the commutant of the GNS representation of C in the state PD

Q(η)
(φ0).

(This follows from the Tomita–Ruelle theorem [cf. Halvorson’04].)
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DΨ

The choice of the set Q for which the entropic projection PD
Q exists and is unique

depends very strongly on the structure of D: the choice of principle of inference (D)
determines the accepted data types (Q).
This leads to a question of general conditions on D that would be sufficient to
guarantee existence and uniqueness, as well as good composition properties of
subsequent projections (to have a category of entropic instruments).
It turns out that this can be provided by a class of Brègman distances:

DΨ(φ, ω) := D̃Ψ(`(φ), `(ω))

D̃Ψ(x , y) := Ψ(x)−Ψ(y)−DG
+ Ψ(y ; x − y)

` : U → X , U ⊆M

where X is a topological vector space, and Ψ : X →]−∞,+∞] is convex and lower
semi-continuous.

The sets Q are required to be convex closed subsets of the spaces X under the
embedding `. One can think of ` as a coordinate system on U ⊆M, and X as the
linear parameter space used for specification of the data required for the entropic
projection.
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DΨ: Quantum distances satisfying generalised pythagorean equation

A property that is of high importance from information geometric point of view, and is
also crucial geometrically, is a generalised (nonsymmetric, nonlinear) pythagorean
equation.

we say that D satisfies a generalised pythagorean equation at Q iff [Chencov’68]

D(φ, ψ) = D(φ,PD
Q(ψ)) + D(PD

Q(ψ), ψ) ∀(φ, ψ) ∈ Q×M.

Thus, information distance decomposes additively under a projection onto a suitable
subspace, hence we have a nonlinear data = signal + noise decomposition (!)

It turns out that all Brègman distances satisfy generalised pythagorean theorem for
sets that are affine under `-embeddings.

Example 1: If Q forms an affine subset of G2(H)+ under ρ 7→ √ρ, then:∣∣∣∣∣∣x −P
D1/2
Q (z)

∣∣∣∣∣∣2
G2(H)

+
∣∣∣∣∣∣PD1/2
Q (z)− z

∣∣∣∣∣∣2
G2(H)

= ||x − z ||2G2(H).

Example 2: If Q := {φ ∈ G1(H)+
1 | φ(h) = const}, then [Donald’90]

D1(φ, ψh) + D1(ψh, ψ) = D1(φ, ψ) ∀(φ, ψ) ∈ Q×G1(H)+
1 .
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Quantum Poisson structure

Consider the space of self-adjoint trace-class operators: T (H)sa := T (H) ∩B(H)sa.

It can be equipped with a following real Banach smooth manifold structure:

I tangent spaces: Tφ(T (H)sa) ∼= T (H)sa

I cotangent spaces: T~
φ (T (H)sa) ∼= (T (H)sa)? ∼= B(H)sa

Bóna’91,’00: a Poisson manifold structure on T (H)sa is defined by a commutator of
an algebra:

{h, f }(ρ) := trH (ρ i[dh(ρ), df (ρ)]) ∀f , h ∈ C∞(T (H)sa;R) ∀ρ ∈ T (H)sa.

So, ifM(H) ⊆ T (H)+ is a smooth submanifold of T (H)sa,
then every f ∈ C∞(M(H);R) determines a hamiltonian vector field:

Xf (ρ) = −{·, f }(ρ) = trH(ρ i[d(·), df (ρ)]).

More generally, we can choose arbitrary real Banach Lie subalgebra A of B(H) such
that: (i) it has a unique Banach predual A? in T (H); (ii) there exists at least one
M(H) ⊆ T (H)+ which is a smooth submanifold of A?.
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Nonlinear quantum hamiltonian dynamics

For each hamiltonian vector field, the corresponding Hamilton equation reads

d
dt

f (ρ(t)) = {h, f }(ρ(t)) = i trH ([ρ(t), dh(ρ(t))]df (ρ(t))) .

The above equation is equivalent to the Bóna equation [’91’00]

i d
dt ρ(t) = [dh(ρ(t)), ρ(t)].

Hence,

The Poisson structure {·, ·} induced by a commutator of B(H) allows to introduce various
nonlinear hamiltonian evolutions on spacesM(H) of quantum states, generated by arbitrary
real-valued smooth functions onM(H).

The solutions of Bóna equation are state-dependent unitary operators U(ρ, t).
They do not form a group, but satisfy a cocycle relationship:

U(ρ, t + s) = U((Ad(U(ρ, t)))(ρ), s)U(ρ, t) ∀t, s ∈ R.

In a special case, when h(ρ) = trH(ρH) for H ∈ B(H)sa,
the Bóna equation turns to the von Neumann equation:

i
d
dt
ρ(t) = [H, ρ(t)].
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New kinematics: quantum information geometry
Main change: Consider expectation values as more fundamental than eigenvalues
⇒ foundational role of spectral theory replaced by quantum information geometry
(1) spaces:

replace: linear Hilbert spaces H of eigenvectors
by: setsM(N ) of denormalised expectation functionals on W ∗-algebras N .

(2) observables:
replace: linear functions H → H with real eigenvalues
by: nonlinear real valued functionsM(N )→ R.

(3) geometry:
replace: geometry of Hilbert spaces H defined by scalar product 〈·, ·〉
by: geometry of spacesM(N ) defined by quantum relative entropies D(·, ·) and
quantum Poisson structures {·, ·}.

Two fundamental geometric structures on M(N ):
a) Quantum distances D(·, ·)

F represents the choice of a convention of a “global” (nonasymptotic)
estimation/inference/‘best fit’

F large variety of choices
F allows to derive as special cases: riemannian geometry (via ∂i∂jD, see later slides)

and Hilbert space projective geometry (via PD
Q for D = D1/2)

b) Quantum Poisson structures {·, ·}
F represents the choice of a specific algebra of locally conserved quantities
F depends on the choice of a real Banach Lie subalgebra of N
F generalises symplectic geometry
F {h, ·} represents the choice of a convention of a “global” causality

No Hilbert spaces, no probability theory in foundations (derived as special cases)
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New dynamics: information geometric causal inference
Two fundamental dynamic structures on M(N ):
a) Inference: Entropic projections φ 7→ arg infω∈Q(η) {DΨ(ω, φ)} [RPK’10]

F nonlinear and nonlocal
F requires convexity
F represents (“active/external”) information dynamics due to learning/measuring
F allows to encode experimental constraints
F reduces in special cases to Lüders’, Jeffrey’s, Bayes’ rules

b) Causality: Hamiltonian flows φ 7→ wh
t (φ), d

dt f (wh
t (φ)) = {h, f (wh

t )}(φ) ∀f [Bóna’00]
F nonlinear and local
F requires smoothness
F represents (“passive/internal”) changes of information states when no inference is made
F allows to encode theoretical symmetries
F reduces in a special case to the von Neumann equation

Sequential processing postulate: consider the setting of causal inferences
φ 7→ P

DΨ
Q (η) ◦ wh

t (φ) as an alternative to the paradigm of semigroups of CPTP maps
I it generalises unitary evolution followed by a “projective measurement”
I nonlinear and nonmarkovian
I allows for arbitrary correlations between subsystems
I from the bayesian perspective, wh

t (φ) is a prior for PDΨ
Q (η)-updating

I every CPTP instrument [Davies–Lewis’70] can be decomposed into:
(1) tensor product of initial state with uncorrelated environment,
(2) unitary evolution,
(3) projective measurement,
(4) partial trace.
[RPK+M.Munk-Nielsen’15]: (4) is entropic projection for strictly positive states.
It remains to prove that a join action of (3+4) is an entropic projection.
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2. Local theory

Local geometric structure: riemannian-affine geometry from relative
entropy
Local equivalence of entropic projections and free falls (local dual
flatness postulate)
Tangent/cotangent spaces as configuration/effect spaces with a
discrimination functional
Localisation of the Lie–Poisson structure
Local hamiltonian dynamics (generalised von Neumann + free falls)
Local lagrangean dynamics (curvature effects)
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Smooth quantum information geometries
Under some conditions, D induces a generalisation of smooth riemannian geometry onM(N ).

Jenčová’05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W ∗-algebra.

E.g. M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth}
Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth distance D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection ∇̄ = (∇D +∇D†)/2.

Example 1: M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1} and D1(ρ, σ) = trH(ρ log ρ− ρ log σ)
give Mori[’55]–Kubo[’56]–Bogolyubov[’62] gD1 and Nagaoka[’94]–Hasegawa[’95]
(∇D1 ,∇D1†):

gD1
ρ (x , y) = trH

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
, t∇

D1
ρ,ω (x) = x − trH(ωx), t∇

D1†

ρ,ω (x) = x .
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Smooth quantum information geometries

Taylor expansion of D induces a generalisation of a smooth riemannian geometry onM(N ).

M(H) := {ρ(θ) ∈ T (H) | ρ(θ) > 0, θ ∈ Θ ⊆ Rn open, θ 7→ ρ(θ) smooth} is a
C∞-manifold

Jenčová’05: a general construction of smooth manifold structure on the space of all strictly
positive states over arbitrary W ∗-algebra, with tangent spaces given by noncommutative
Orlicz spaces.

Eguchi’83/Ingarden et al’82/Lesniewski–Ruskai’99/Jenčová’04:
Every smooth distance D with positive definite hessian determines
a riemannian metric gD and a pair (∇D ,∇D†) of torsion-free affine connections:

gφ(u, v) := −∂u|φ∂v|ωD(φ, ω)|ω=φ,

gφ((∇u)φv ,w) := −∂u|φ∂v|φ∂w|ωD(φ, ω)|ω=φ,

gφ(v , (∇†u)φw) := −∂u|ω∂w|ω∂v|φD(φ, ω)|ω=φ,

which satisfy the characteristic equation of the Norden[’37]–Sen[’44] geometry,

gD(u, v) = gD(t∇
D

c (u), t∇
D†

c (v)) ∀u, v ∈ TM(N ).

A riemannian geometry (M(N ), gD) has Levi-Civita connection ∇̄ = (∇D +∇D†)/2.
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Example

M(N ) = T (H) ∩ {ρ > 0, trH(ρ) = 1}
D1(ρ, σ) = trH(ρ log ρ− ρ log σ)

give Mori[’55]–Kubo[’56]–Bogolyubov[’62] riemannian metric:

gD1
ρ (x , y) = trH

(∫ ∞
0

dλx
1

λI + ρ
y

1
λI + ρ

)
,

and Nagaoka[’94]–Hasegawa[’95] affine connections:

t∇
D1

ρ,ω (x) = x − trH(ωx), t∇
D1†

ρ,ω (x) = x .
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Hessian geometries = dually flat Norden–Sen geometries

If (M, g,∇,∇†) is a Norden–Sen geometry with flat ∇ and ∇†, then:
1 there exists a unique pair of functions Φ :M→ R, ΦL :M→ R such that g is their

hessian metric,

g(ρ) =
∑
i,j

∂2Φ(ρ(θ))

∂θi∂θj dθi ⊗ dθj ,

g(ρ) =
∑
i,j

∂2ΦL(ρ(η))

∂ηi∂ηj dηi ⊗ dηj ,

where: {θi} is a coordinate system s.t. Γ∇ijk(ρ(θ)) = 0 ∀ρ ∈M,

{ηi} is a coordinate system s.t. Γ∇
†

ijk (ρ(η)) = 0 ∀ρ ∈M,
and ΦL is a Fenchel conjugate of Φ.

2 the Eguchi equations applied to the Brègman distance

DΦ(ρ, σ) := Φ(ρ) + ΦL(σ)−
∑

i

θi (ρ)ηi (σ)

yield (g,∇,∇†) above.
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Smooth generalised pythagorean theorem

Let (M, g,∇,∇†) be a hessian geometry. Then for any Q ⊆M which is:

∇†-autoparallel := ∇†uv ∈ TQ ∀u, v ∈ TQ;
∇†-convex := ∀ρ1, ρ2 ∈ Q ∃! ∇†-geodesics in Q
connecting ρ1 and ρ2;

there exists a unique projection

M3 ρ 7→ P
DΦ
Q (ρ) := arg inf

σ∈Q
{DΦ(σ, ρ)} ∈ Q.

it is equal to a unique projection of ρ onto Q along a
∇-geodesic that is g-orthogonal at Q.
it satisfies a generalised pythagorean equation

DΦ(ω,PDΦ
Q (ρ))+DΦ(PDΦ

Q (ρ), ρ) = DΦ(ω, ρ) ∀(ω, ρ) ∈ Q×M.

Hence, for Brègman distances DΦ the local entropic projections are equivalent with
geodesic projections.
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New kinematics: local (operational) view

Consider local embeddings ` : U → X , U ⊆M, as local coordinate systems,
determining X as a local tangent space ofM
Use the dual space X ? as a local cotangent space
Use the Brègman entropic projections (their existence, uniqueness, and
composability) as a method of crafting a smooth manifold structure onM from the
local embeddings into X :

I finite dimensional case: no problem
I infinite dimensional setting: Jenčová’05 did it for D1 over faithful (strictly positive)

parts of predual of arbitrary W∗-algebras, RPK+Jenčová’16-’17 (in progress):
extension of this approach to a wide class of DΨ

resulting structure: locally dually flat information manifoldM
operational local kinematics:

I local states/preparations: vectors of TψM∼= X (φ(θ)→ θ → ∂
∂θi

)
I local effects/observables: vectors of T∗ψM∼= X? (f (φ)→ df (φ))

basic semantics:
I the description of possible measurements provided in a local laboratory (as in

convex/operational approach to quantum foundations) is expressed in terms of pair
(X ,X?) of spaces

I the elements of a modelM are “global states of multi-user communication system”
I the coordinate maps ` play a similar role to tetrad systems in GR: they translate

between the “multi-user system” states of the manifold, and the local “individual user”
operational description
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Local inference, local causality: free falls and BLP representation

Dually flat manifolds are nonlinear generalisation of the euclidean and Hilbert
spaces, with the generalised pythagorean theorem playing a key role.

Locally dually flat manifolds introduce the shift analogous to the shift from
minkowskian to lorentzian manifolds: dual flatness holds only locally, for tangent
(and cotangent) spaces.

If entropic projections are regarded as a form of information dynamics, then
introducing the structure of quantum information manifold based on a Brègman
distance DΨ (equivalently, local dual flatness) amounts to postulating a “free fall
principle”: if there is no additional causal dynamics or inferential constraints, the
local information flows along ∇DΨ -geodesics.

On the other hand, a localisation of a causal dynamics requires to replace a
representation of a real Banach Lie algebra A in terms of a dual pair (N sa

? ,N sa) by
a representation in terms of a dual pair of real Banach spaces (X ,X ?).

As a result, one has: C∞(U) 3 hA 7→ dhA ∈ T ∗ψU.
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Local effective dynamics: hamiltonian ansatz

One can combine locally the entropic geodesic free falls with hamiltonian flows in a single
formula, describing an effective information dynamics in which causal and inferential parts
are parallely processed.

Given a hamiltonian observable h and a Brègman relative entropy DΨ, the 1-form
dhA(φ) + d∇DΨ (φ) represents a local perturbation of causal dynamics by the information
flow along entropic geodesics (and vice versa).

In particular, D1/2 = 2
∣∣∣∣√ρ−√σ∣∣∣∣2H gives Wigner–Yanase metric g1/2,

with tangent spaces given by the GNS Hilbert space bundle Hρ(t)
∼= G2(H),

and with dg1/2 (ρ, σ) = 2 arccos(trH(
√
ρ
√
σ)). The free fall along the geodesics of

Levi-Civita connection ∇1/2 encodes the continuous process of projective measurement.

The ∇1/2-parallel transport equation of a vector va along the trajectory ρ(t) reads

d
dt

va(t) = −
∑
b,c

(Γ∇
1/2

)abc(ρ(t))vb(t)

(
d
dt
ρ(t)

)c
. (1)

Substituting v = ρ̇(t), and integrating out, we get

i
d
dt
ρ(t) = −

∫ t

−∞
dt
∑
b,c

(Γ∇
1/2

)abc(ρ(t))

(
d
dt
ρ(t)

)b ( d
dt
ρ(t)

)c
. (2)

This equation describes the equation of motion onM⊆ G1(H)+ of the free fall along the
∇1/2-geodesic trajectory ρ(t).
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Local effective dynamics: hamiltonian ansatz
An infinitesimal transformation ρ 7→ ρ+ ðρ can be decomposed as [Hasegawa’93]:

ðρ := ð̃ρ+ [ρ,W ] =
n∑

i=1

(
∂ρ(θ)

∂θi
+ [ρ,Wi ]

)
dθi ,

where ð̃ρ =
∑n

i=1
∂ρ(θ)

∂θi
dθi is defined by [ð̃ρ, ρ] = 0, and W =

∑n
i=1 Widθi is an

antiself-adjoint operator (hence, k∗i = ki := iWi ). The mappings ð, ð̃ and [ · ,W ] are
derivations on B(H).

An explicit representation of the tangent space in terms of G2(H) space by means of finite
dimensional coordinate parametrisation Rn ) Θ 3 θ 7→ ρ(θ) ∈ G1(H)+ reads

Tρ`1/2(u) =
n∑

i=1

ui
(
√
ρ
∂ρ

∂θi
+ 2[
√
ρ,Wi ]

)
.

Interpreting the ansatz of dhA(φ) + d∇DΨ (φ) as a statement that the effective local
dynamics is generated by the sum of vectors ρ̇(t) arising independently from the hamiltonian
flow and the geodesic free fall, we receive the following nonlinear evolution of ρ(t):

i
d
dt
ρ(t) = [dh(ρ(t)), ρ(t)]−

∫ t

−∞
dt
∑
b,c

(Γ∇
1/2

)abc(ρ(t))·

·
(∑

i

ui
(
√
ρ
∂ρ

∂θi
+ 2 [
√
ρ, ki ]

))b (∑
i

ui
(
√
ρ
∂ρ

∂θi
+ 2 [
√
ρ, ki ]

))c

.
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Local effective dynamics: lagrangean ansatz

Daubechies–Klauder’85 introduced exact continuous-time regularised coherent vectors
propagator for the phase space path integral, and proved that under mild assumptions on
hamiltonian (square and quadric integrability) one has:

〈
z(t = s), e−iHsz(t = 0)

〉
H =

= lim
υ→+∞

∫
Dz(·)e(i

∫
i〈z(t),dz(t)〉H)e(−i

∫ s
0 dt h(z(t)))e−

1
2υ

(∫ s
0 dt gFS

ab (z(t))ża żb
)

= 2π lim
υ→+∞

eυs/2
∫
µ̃υW(pΓ, qΓ)ei

∫
(pΓdqΓ−H(pΓ,qΓ)dt),

where h(z(t)) is a hamiltonian function with respect to the symplectic form on the pure
states, h(z(t)) := 〈z(t),Hz(t)〉H for a given H ∈ B(H)sa, gFS is a Fubini–Study
riemannian metric on the pure states, while µ̃υW(pΓ, qΓ) is a pinned Wiener measure on a
phase space Γ.

This formulation is mathematically exact, and covariant under canonical transformations of
phase space coordinates, what is not the case for most of other approaches to quantisation.

For finite value of υ the above propagator is not longer unitary [Klauder’95]. This means
that the metric structure on the Hilbert space allows (some sort of) quantification of the
nonunitary temporal behaviour.
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Local effective dynamics: lagrangean ansatz

This leads us to propose that the langrangean implementation of an ansatz
dhA(φ) + d∇DΨ (φ) should be provided in terms of a continuous-time regularised
path-integral

lim
ε→+0

∫
Dφ(·)e

i
∫
γ dt

〈
Ωφ(t),d∇DΨ

(φ(t))Ωφ(t)

〉
Hφ(t) ·

·e−i
∫
γ dt〈Ωφ(t),πφ(t)(dhA(φ(t)))Ωφ(t)〉e−

ε
2
∫
γ dtgDΨ

ab (φ(t))φ̇aφ̇b
,

If evaluated for D1/2 and A = B(H)sa, only on boundary pure states, and for
h(φ) = φ(H), it reduces to the Daubechies–Klauder integral.

For non-Levi-Civita ∇DΨ (hence, in any other case than D1/2), the corresponding
random walk process will not be markovian, but can be well defined.

The expansion DΨ(φ+ εv , φ) = ε2

2 gDΨ
ab (φ)vavb +O(ε3) suggests furthermore to

replace the regularising term above by exp
(
− 1

2ε

∫
γ

dt DΨ(φ(t) + εφ̇(t), φ(t))
)
.
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Curvature
From our perspective, the above propagator formula makes sense only locally, because only
locally the manifold structure is assumed to be dually flat, and the ansatz
dhA(φ) + d∇DΨ (φ) is valid.
However, one may ask, to what extent the above formulation can be extended, or is there
any specific geometric feature that measures this inextendability?
In principle, the main object that measures the departure ofM from the dual flatness
beyond the local level is the curvature associated with the Levi-Civita connection associated
with the riemannian metric g onM.
Watson–Klauder’02 observe that if the riemannian geometries of the phase space used for
the Wiener measure regularisation have nonconstant scalar curvature, then the weighting of
the phase space paths is nonuniform, corresponding to the phase space point dependency of
the zero-point energy.
From the information-theoretic point of view, one can say that the curvature of a
connection onM measures the desynchronisation of the local systems of inference provided
by the local dual flat geometries. In other words, it measures how the local
tangent/cotangent state/effect pairs are nontrivially changing over the manifold of “global
states”. If the manifold is globally dually flat (hence the Levi-Civita connection is constant),
then all local systems of inference (local notions of free falls) are globally synchronised.
Otherwise, their synchronisation is path dependent: the transport of a vector ρ̇(θ) along two
different paths between a given pair of points will give different results (different
evolutions), and different corresponding expectation values of “the same” local observables.
In RPK’16 we show that within the framework of the Jaynes–Mitchell–Favretti source
theory the nonzero curvature of a model arises from the renormalisation of a
higher-dimensional dually flat geometry which reduces the dimensions corresponding to
additional source (control) terms.
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Open problems

Develop a general theory of quantum locally dually flat manifolds associated to
Brègman distances (an ongoing work with A.Jenčová).

Work out the details of local implementation of Banach Lie–Poisson manifold
structure as represented in the pairs (X ,X ?), especially in the case when X is a
noncommutative Orlicz space. (In the global case, the manifold structure used for
the BLP space construction is different from the manifold structure used for the
smooth geometries derived from the relative entropies, and it is not clear at all how
to relate them.)

Find the exact range of (linear and nonlinear) CPTP instruments that can be
modelled with P

DΨ
Q ◦ wh

t maps.

Show that one can reconstruct a theory that is locally QM using purely geometric
data (hence, characterise local tangent/cotangent spaces as QM state/effect dual
pairs without assuming thatM consists of states over a W∗-algebra).

Provide a rigorous brownian motion based mathematical foundation for the
generalisation of the Klauder–Daubechies integral introduced here.

...
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