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Abstract

In this paper we review the theory of compact quantum groups.

0 Introduction

There are two possible approaches to the theory of groups. In the first one, more
concrete, from the very beginning we deal with groups with elements of definite mathe-
matical nature like matrices or transformations. The group multiplication is then some
mathematical operation that is known in advance. Similarly the topology of the group
is taken from the surrounding space. In this approach we need not to postulate that the
group multiplication is associative and continuous. These are satisfied automatically.
Instead, we have to assume that multiplying two elements of a group G we get the
result belonging to G, that all elements of G have inverses belonging to G and that G is
a closed subset of the surrounding space. For example, introducing a (N ×N)-matrix
group G we postulate, that G is a closed subset of the set of all (N × N)-matrices,
closed under matrix multiplication and that all elements of G are invertible matrices.
G is automatically locally compact and the matrix multiplication is associative and
continuous. The second example is a transformation group of a space X. In this case G
is a set of bijections of X. One has to assume that the composition gog′ and the inverse
bijection g−1 belong to G for any g, g′ ∈ G. If X is equipped with a topology, then there
is a topology on G induced by that on X. Again, the group multiplication (composition
of mappings in this case) is automatically associative and continuous. This approach
to the group theory is preferred in elementary handbooks for physicist.

The second approach is more abstract and more general. We start with a set G
endowed with a topological structure and a binary operation. In this case one has to
postulate, that the binary operation is associative and continuous, that there exists a
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neutral element and that any element of G has an inverse. All the theory is based
on these axioms. For compact groups, after a long deduction one is able to prove the
existence of finite-dimensional representations establishing in this way the equivalence
of the two approaches.

The two approaches are also possible in the theory of quantum groups. In the papers
[13, 18] the first approach is used. It is assumed that the C∗-algebra of functions on
G is generated by N2-elements ukl (k, l = 1, 2, . . . , N) organized in a N ×N -matrix u.
In other words, G is a ’quantum space of N ×N -matrices’. The comultiplication is of
standard form:

Φ(ukl) =
N∑
m=1

ukm ⊗ uml.

It means that matrix multiplication is the group rule on G. The reader should notice,
that one need not assume the coassociativity of Φ; it follows immediately from the
above equation.

In this approach, from the very beginning we have at our disposal a large class of
finite-dimensional representations (the fundamental representation u, its conjugate and
their tensor products). This fact essentially simplifies the theory.

In the present paper we have chosen the second more ambitious approach. We
start with a unital C∗-algebra A. Elements of the algebra are interpreted as continuous
functions on a quantum space G. The group structure on G is described by a C∗-algebra
homomorphism (comultiplication) Φ acting from A into A⊗A. We do not assume any
particular form of Φ, instead we demand Φ to be coassociative. The second axiom
that is used corresponds to the cancellation low in the classical group theory. Then
the main result is the existence of a rich set of finite-dimensional representations. To
have the paper as selfconsistent as possible we reproduce most of the results obtained
in [13]. Comparing the present paper with [13] one should stress one point. As it was
indicated by T. Koornwinder in an unpublished manuscript, the theory of C∗-algebras
play in [13] rather decorative role. The whole theory could be easily formulated on the
level of ∗-algebra A generated by {ukl : k, l = 1, 2, . . . , N}. Passing to the closure gives
no essentially new results. On the other hand, in the present approach we are able to
introduce the ∗-algebra A only after the great part of the theory is developed, so the
C∗-algebra language is inherent in our theory.

The theory of compact quantum groups is now well established. There is a common
agreement on the basic concepts. The situation in the theory of non-compact quantum
groups is rather unsatisfactory. We believe that the approach using the multiplicative
unitaries [2, 20] is the most promising. More traditional approach will be presented in
[6]. The essential defeat of the last paper consists in lack of the proof of the existence
of the Haar measure. The authors were forced to include the existence of the Haar
measure in one of the axioms.

A few words about the content of the paper. At the end of this section we recall
the basic notions of the theory of C∗-algebras that are used in the subsequent sections.
In Section 1 one can find the definition of compact quantum group. Next we present
the main results. Probably the most interesting is the theorem saying that the C∗-
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algebra of all ‘continuous functions on a compact quantum group contains a dense Hopf
∗-subalgebra. The other theorems concern the Haar measure and its modular proper-
ties. A special attention is paid to the groups with faithful Haar measure. In Section
2 we prove the existence of the Haar measure. Section 3 contains the theory of unitary
representations of a compact quantum group. We consider representations acting on
infinite-dimensional Hilbert spaces. The main result says that any representation is
equivalent to a direct sum of irreducible representations and that any irreducible repre-
sentation is finite-dimensional. We use this result in Section 4, where the right regular
representation is constructed and investigated. Decomposing this representation into
irreducible ones we obtain a rich set of finite-dimensional representations establishing
in this way a link with the theory of compact matrix groups. In Section 5 we show,
that the linear span of matrix elements of finite-dimensional unitary representations
is a dense Hopf ∗-subalgebra. Section 6 is devoted to the modular properties of the
Haar measure. We show that the modular group is determined by an analytic family
of linear multiplicative functionals on the Hopf ∗-subalgebra. The same family enters
the formula for the square of the coinverse. At the end of this section the Peter-Weyl
orthonormality relations for matrix elements of irreducible representations are derived.
The last section is devoted to the groups with faithful Haar measure.

Dealing with compact quantum groups we mainly work with unital C∗-algebras.
However the Pontryagin dual of a compact group is not compact and this fact introduces
non-unital algebras into our considerations. For these algebras the concept of multiplier
algebra [7, 17] is of great importance.

Let A be a C∗-algebra and a and a′ be linear bounded operators acting on the
Banach space A. We say that a′ is the adjoint of a if a(b)

∗
c = b∗a(c) for any b, c ∈ A.

The adjoint operator will be denoted by a∗. Its existence is a non-trivial requirement.
By definition the multiplier algebra M(A) is the subalgebra of B(A) consisting of all
operators on A that have the adjoint. Then M(A) is a unital C∗-algebra. Each element
a ∈ A defines (by left multiplication) an operator on A. Identifying a ∈ A with the left
multiplication by a we embed A ⊂ M(A). One can easily show that A is an essential
ideal in M(A). We shall use the following simple

Proposition 0.1 Let A be a C∗-algebra and v : A → A be a linear map such that
v(A) = A and v(a)∗v(b) = a∗b for any a, b ∈ A. Then v is an unitary element of M(A).

Proof: It follows immediately from the assumptions, that v is an isometry mapping A
onto itself and that v−1 is the adjoint of v. Therefore v has the adjoint and v ∈M(A).
Clearly v is unitary.

Q.E.D.

For any Hilbert space K, B(K) will denote the C∗-algebra of all bounded operators
acting on K and CB(K) ⊂ B(K) will denote the subalgebra consisting of all compact
operators. It is well known, that B(K) = M(CB(K)).

If A and B are linear subsets of the same algebra, then AB will always denote the
set of all linear combinations of elements {ab : a ∈ A, b ∈ B}.

For any Hilbert space K we denote by C∗(K) the set of all separable C∗-algebras of
operators acting on K in a nondegenerate way: for any A ∈ C∗(K), 0 ∈ K is the only
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vector killed by all a ∈ A. The tensor product of C∗-algebras appearing in this paper
is always the minimal tensor product: For any A ∈ C∗(H) and B ∈ C∗(K) (H and K
are Hilbert spaces), A⊗B ∈ C∗(H ⊗B).

If B ∈ C∗(K) then M(B) may be identified with the set

M(B) =

{
a ∈ B(K) :

ab ∈ B and ba ∈ B
for any a ∈ B

}
. (0.1)

The elements of (0.1) act on B by left multiplication. More generally: let B be a C∗-
subalgebra of M(A). We say that B is A-non-degenerate if the closure of AB coincides
with A. If this is the case, then M(B) may be identified with the set

M(B) =

{
a ∈M(A) :

ab ∈ B and ba ∈ B
for any a ∈ B

}
. (0.2)

The elements of (0.2) act on B by left multiplication. In particular if B ∈ C∗(K) and
A is a C∗-algebra, then B⊗A ⊂ B(K)⊗A ⊂M(CB(K)⊗A), B⊗A is (CB(K)⊗A)-
non-degenerate and M(A⊗B) may be identified with the set

M(B ⊗ A) =

{
a ∈M(CB(K)⊗ A) :

ab, ba ∈ B ⊗ A
for any a ∈ B ⊗ A

}
. (0.3)

The elements of (0.3) act on B ⊗ A by left multiplication.

Let K be a Hilbert space. C∗(K) is equipped with a natural order relation. Let
A,B ∈ C∗(K). We say that A is smaller than B if AB is a dense subset of B:

A ≤ B ⇐⇒ The closure of AB
coincides with B.

(0.4)

In other words, A ≤ B if B ∈ M(A) and B is A-nondegenerate. One can easily show,
that (C∗(K),≤) is a partially ordered set. The algebra CB(K) of all compact operators
acting on K is the largest element of C∗(K) and CI is the smallest one. In general
unital algebras are smaller than non-unital.

Passing to the multiplier algebra does not preserve the inclusion. If A,B ∈ C∗(K)
and A ⊂ B, then in general M(A) is not a subset of M(B). However

A ≤ B =⇒ M(A) ⊂M(B)

If moreover C is another C∗ algebra, then

A ≤ B =⇒ M(A⊗ C) ⊂M(B ⊗ C),

where M(A⊗C) and M(B⊗C) are considered as subsets of M(CB(K)⊗C) (cf (0.3)).
This nice behavior of the ordering in C∗(K) is the reason, why it is more useful then
the inclusion relation.

Let A and B be C∗-algebras. A ∗-algebra homomorphism φ : A→M(B) is called a
morphism from A to B, if the image φ(A) is B-non-degenerate. The set of all morphisms
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from A to B will be denoted by Mor(A,B). Any φ ∈ Mor(A,B) extends in a unique
way to the ∗-algebra homomorphism from M(A) into M(B). Due to this fact, the
morphisms may be composed. One may also consider the tensor product of morphisms:
For any φ ∈ Mor(A,B) and φ′ ∈ Mor(A′, B′) (A,B,A′ and B′ are C∗-algebras) there
exists unique φ⊗ φ′ ∈ Mor(A⊗A′, B ⊗B′) such that (φ⊗ φ′)(a⊗ b) = φ(a)⊗ φ′(b) for
any a ∈ A and b ∈ B. For further details see [17].

1 Definitions and results

We shall use symbol Φ for comultiplication reserving ∆ for the modular operator of
Tomita–Takesaki theory.

Definition 1.1 Let G = (A,Φ), where A is a separable unital C∗-algebra and Φ : A −→
A⊗A is a unital ∗-algebra homomorphism. We say that G is a compact quantum group
if

1. The diagram

A
Φ

−−−−−−→ A⊗ A

Φ

y
y Φ⊗id

A⊗ A −−−−−−→
id⊗Φ

A⊗ A⊗ A

is commutative,
2. The sets

{(b⊗ I)Φ(c) : b, c ∈ A} , (1.1)

{(I ⊗ b)Φ(c) : b, c ∈ A} (1.2)

are linearly dense subsets of A⊗ A.

Remark 1. Let G = (A,Φ) be a compact quantum group, sA : A⊗A→ A⊗A be
the flip: sA(a⊗ b) = b⊗ a for all a, b ∈ A and Φopp = sAoΦ. Then one can easily verify
that Gopp = (A,Φopp) is a compact quantum group. We say that Gopp is the group
opposite to G.

Remark 2. If (A, u) is a compact matrix quantum group (pseudogroup) in the
sense of [13, 18] and Φ is the corresponding comultiplication, then due to the Theorem
4.9 of [13], (A,Φ) is a compact quantum group in the sense of the above definition.

Remark 3. If in Definition 1.1 the algebra A is commutative then (Gelfand –
Naimark theory [5]) A = C(Λ), where Λ is a compact space and for any a ∈ C(Λ) and
λ1, λ2 ∈ Λ we have (Φa)(λ1, λ2) = a(λ1 · λ2), where

Λ× Λ 3 (λ1, λ2) 7→ λ1 · λ2 ∈ Λ (1.3)
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is a continuous mapping. In this case Condition 1 of Definition 1.1 means that

(λ1 · λ2) · λ3 = λ1 · (λ2 · λ3) (1.4)

for any λ1, λ2, λ3 ∈ Λ. One can easily verify that the density of (1.1) is equivalent to
the following implication:

(λ · λ1 = λ · λ2) =⇒ (λ1 = λ2) (1.5)

for any λ, λ1, λ2 ∈ Λ. Similarly the density of (1.2) is equivalent to the implication:

(λ1 · λ = λ2 · λ) =⇒ (λ1 = λ2) (1.6)

for any λ, λ1, λ2 ∈ Λ. The results of the present paper show that any compact space
Λ endowed with a continuous binary operation (1.3) satisfying conditions (1.4) – (1.6)
is a topological group.

Let G = (A,Φ) be a compact quantum group. Applying the hermitian conjugation
to the elements of (1.1) and (1.2) we show that

{Φ(c)(b⊗ I) : b, c ∈ A} , (1.7)

{Φ(c)(I ⊗ b) : b, c ∈ A} (1.8)

are linearly dense subsets of A⊗ A.

Let G = (A,Φ) be a compact quantum group and v = (vkl)k,l=1,2,...,N be an N ×N
matrix with entries belonging to A. We recall [13] that v is an N–dimensional unitary
representation of G if v is a unitary element of MN(A) = MN(C)⊗ A and

Φ(vkl) =
∑
r

vkr ⊗ vrl

for all k, l = 1, 2, . . . , N . More general notion of unitary representation of G is in-
troduced in Section 3, where infinite–dimensional representations are also considered.

Let A be a unital ∗-algebra and Φ : A → A⊗alg A be a unital ∗-algebra homomor-
phism such that (Φ ⊗ id)Φ = (id ⊗ Φ)Φ (coassociativity). We recall that (A,Φ) is a
Hopf ∗-algebra if there exist linear mappings e : A → C and κ : A → A such that

(e⊗ id)Φ(a) = a (1.9)

(id⊗ e)Φ(a) = a (1.10)

m(κ⊗ id)Φ(a) = e(a)I (1.11)

m(id⊗ κ)Φ(a) = e(a)I (1.12)

for any a ∈ A. In the above formulae m denotes the multiplication map m : A⊗algA →
A i.e. the linear map such that m(a⊗ b) = ab for any a, b ∈ A.

It is known that e (called counit) and κ (called coinverse or antipode) are uniquely
determined. e is a unital ∗-algebra homomorphism. κ is antimultiplicative, anticomul-
tiplicative and

κ (κ(a∗)∗) = a

for any a ∈ A.
The main result of this paper is contained in the following theorem.
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Theorem 1.2 Let G = (A,Φ) be a compact quantum group and A be the set of all
linear combinations of matrix elements of all finite-dimensional unitary representations
of G. Then A is a dense ∗-subalgebra of A and Φ(A) ⊂ A ⊗alg A. Moreover (A,Φ|A)
is a Hopf ∗-algebra.

We shall prove this theorem in Section 5. To this and we shall use the right regular
representation of G introduced in Section 4.. The latter notion is in turn closely related
to the Haar measure.

Let G = (A,Φ) be a compact quantum group, A′ be the set of all continuous linear
functionals defined on A, ξ, ξ′ ∈ A′ and a ∈ A. We shall use the convolution products
(cf [12, 13]):

ξ ∗ a = (id⊗ ξ)Φ(a) ∈ A (1.13)

a ∗ ξ′ = (ξ′ ⊗ id)Φ(a) ∈ A (1.14)

ξ′ ∗ ξ = (ξ′ ⊗ ξ)Φ ∈ A (1.15)

Due to the condition 1 of Definition 1.1, the convolution product is associative:

(a ∗ ξ′) ∗ ξ′′ = a ∗ (ξ′ ∗ ξ′′)
(ξ ∗ a) ∗ ξ′ = ξ ∗ (a ∗ ξ′)
(ξ′′ ∗ ξ) ∗ a = ξ′′ ∗ (ξ ∗ a)

(ξ ∗ ξ′) ∗ ξ′′ = ξ ∗ (ξ′ ∗ ξ′′)

for any ξ, ξ′, ξ′′ ∈ A′ and a ∈ A. Moreover

(ξ′ ∗ ξ)(a) = ξ(a ∗ ξ′) = ξ′(ξ ∗ a) (1.16)

for any ξ, ξ′ ∈ A′ and a ∈ A.
Taking into account the inclusion Φ(A) ⊂ A⊗algA we see that the right-hand-sides

of (1.13) – (1.15) are meaningful for any linear functionals ξ, ξ′ defined on A and any
a ∈ A. In this case ξ ∗ a, a ∗ ξ′ ∈ A and ξ′ ∗ ξ is a linear functional defined on A.

In the next Section we shall prove the following

Theorem 1.3 Let G = (A,Φ) be a compact quantum group. Then there exists unique
state (positive normalized linear functional) h on A such that

a ∗ h = h ∗ a = h(a)I (1.17)

for any a ∈ A. In what follows h is called the Haar measure.

Using the two above theorems one can easily reproduce all the essential results of
[13, 14, 15] and [8] – Sections 2, 3 and 4. The only difference between the theory of
compact quantum matrix groups developed in these papers and the theory of compact
quantum groups based on Definition 1.1 lies in the fact that in the latter theory we do
not distinguish any particular finite-dimensional (so called fundamental) representation.
Consequently in all statements of [13] the phrase ‘A is the ∗-subalgebra generated by
matrix elements of the fundamental representation’ should be replaced by ‘A is the
∗-subalgebra introduced in Theorem 1.2’. In particular we have
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Theorem 1.4 Let G = (A,Φ) be a compact quantum group, h be the Haar measure
on G, A be the dense Hopf ∗-algebra related to G via Theorem 1.2 and e and κ be the
counit and coinverse on A. Then there exists one and only one family (fz)z∈C of linear
multiplicative functionals defined on A such that

1. fz(I) = 1 z ∈ C.

2. For any a ∈ A, the mapping

C 3 z 7→ fz(a) ∈ C

is an entire holomorphic function.

3. fz1 ∗ fz2 = fz1+z2 for any z1, z2 ∈ C. Moreover f0 = e.

4. For any z ∈ C and any a ∈ A,

fz(κ(a)) = f−z(a), (1.18)

fz(a
∗) = f−z(a). (1.19)

In particular for purely imaginary z, fz is a ∗-character defined on A.

5. For any a ∈ A,
κ2(a) = f−1 ∗ a ∗ f1. (1.20)

6. The formula
σt(a) = fit ∗ a ∗ fit

defines a one parameter group σ = (σt)t∈R of modular automorphisms of A. h is a
σ-KMS state: for any a ∈ A and b ∈ A,

h(ab) = h(b(f1 ∗ a ∗ f1)). (1.21)

The proof of this Theorem will be given in Section 6. Let us also notice the following
result implicitly contained in [13] and [8] (Section 3):

Theorem 1.5 With the notation introduced in Theorem 1.4, the following conditions
are equivalent

1. fz = e for all z ∈ C.

2. h is central.

3. κ2 = id.

4. The Pontryagin dual Ĝ of G is unimodular.

5. The left Haar measure on Ĝ is central.

6. The right Haar measure on Ĝ is central.

For each a ∈ A we shall denote by ha (ah respectively) the linear functional on A
such that (ha)(b) = h(ab) ((ah)(b) = h(ba) respectively) for any b ∈ a.

Like in [13], in the theory based on Definition 1.1, the Haar measure h need not
to be faithful (We know only that the restriction of h to the dense ∗-subalgebra A is
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faithful (cf Proposition 3.2). We believe that this (in a sense pathological) possibility
will be removed in the future, more satisfactory theory of compact quantum groups
based on a set of axioms stronger than the one used in Definition 1.1. From this point
of view the following result is very interesting.

Theorem 1.6 Let G = (A,Φ) be a compact quantum group, (A,Φ) be the Hopf ∗-
algebra related to G via Theorem 1.2 and κ be the coinverse acting on A. Assume that
the Haar measure on G is faithful. Then

1. There exist closed operators r, s acting on A ⊗ A such that A ⊗alg A is a
core for r and s and

r(a⊗ b) = (a⊗ I)Φ(b),

s(a⊗ b) = (I ⊗ a)Φ(b)

for all a, b ∈ A. Moreover ker r = ker s = {0}.

2. A = {a ∈ A : Φ(a) ∈ A⊗alg A}.

3. There exists one parameter group (σt)t∈R of ∗-automorphisms of the C∗-
algebra A such that the Haar measure h is a σ-KMS state (cf [4]).

4. The coinverse κ (considered as a linear operator acting on A) is closeable
and its closure κ admits the following polar decomposition:

κ = R ◦ τi/2 (1.22)

where τi/2 is the analytic generator of a one parameter group (τt)t∈R of ∗-automorphisms
of the C∗-algebra A and R is a linear antimultiplicative, commuting with the hermitian
conjugation, norm preserving involution acting on A such that τt ◦ R = R ◦ τt for all
t ∈ R. In particular D(κ) = D(τi/2). Moreover b ∗ ha, bh ∗ a ∈ D(κ), κ(b ∗ ha) = a ∗ bh
and κ(bh ∗ a) = ha ∗ b for all a, b ∈ A.

Let us recall that the analytical generator τi/2 of a (pointwise continuous) one pa-
rameter group (τt)t∈R of ∗-automorphisms of a C∗-algebra A is the linear operator acting
on A in the following way:

For any a, b ∈ A: a ∈ D(τi/2) and b = τi/2(a) if and only if there exists a mapping
z 7→ az ∈ A continuous on the strip {z ∈ C : =z ∈ [0, 1/2]} and holomorphic on the
interior of this strip such that at = τt(a) for all t ∈ R and ai = b.

It is known that τi/2 is a closed linear mapping, D(τi/2) is a dense subalgebra and τi/2
is multiplicative. Moreover τi/2(a)∗ ∈ D(τi/2) and τi/2(τi/2(a)∗)

∗
= a for any a ∈ D(τi/2).

2 The Haar measure

In this section we prove Theorem 1.3. We start with the following
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Lemma 2.1 Let G = (A,Φ) be a compact quantum group and h, ρ be states on A.
Assume that ρ is faithful and

h ∗ ρ = ρ ∗ h = h (2.1)

Then h is the Haar measure.

Proof: Let
Lh⊗ρ = {q ∈ A⊗ A : (h⊗ ρ)(q∗q) = 0}

be the left ideal related to the state h⊗ ρ. For any c ∈ A we set

ΨL(c) = h ∗ c− h(c)I (2.2)

Clearly ΨL is a linear mapping acting on A. By definition ΨL is completely bounded
(ΨL is the difference of two completely positive mappings). We shall prove that

(id⊗ΨL)Φ(c) ∈ Lh⊗ρ (2.3)

for any c ∈ A. Indeed, denoting the above element by q we have:

q = (id⊗ΨL)Φ(c)

= (id⊗ id⊗ h)(id⊗ Φ)Φ(c)− (id⊗ h)Φ(c)⊗ I
= (id⊗ id⊗ h)(Φ⊗ id)Φ(c)− (id⊗ h)Φ(c)⊗ I
= Φ(h ∗ c)− (h ∗ c)⊗ I.

Therefore

q∗q = Φ((h∗ c)∗(h∗ c))−Φ(h∗ c)∗[(h∗ c)⊗ I]− [(h∗ c)∗⊗ I]Φ(h∗ c) + [(h∗ c)∗(h∗ c)]⊗ I

and

(h⊗ ρ)(q∗q) =��
��

I −��
��

II −��
��
III +��
��
IV ,

where

��
��

I = (h⊗ ρ)Φ((h ∗ c)∗(h ∗ c)) = (h ∗ ρ)((h ∗ c)∗(h ∗ c)),

��
��

II = ��
��
III

∗
,

��
��
III = (h⊗ ρ) {[(h ∗ c)∗ ⊗ I] Φ(h ∗ c)} = h((h ∗ c)∗(ρ ∗ h ∗ c)),

��
��
IV = (h⊗ ρ)((h ∗ c)∗(h ∗ c)⊗ I) = h((h ∗ c)∗(h ∗ c)).

Now, using (2.1) we get��
��

I =��
��

II =��
��
III =��
��
IV , (h ⊗ ρ)(q∗q) = 0 and (2.3)

follows.
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Let a ∈ A. Using the density of (1.1), for any ε > 0, one can find b1, b2, . . . , bn, c1,
c2, . . . , cn ∈ A such that

‖I ⊗ a−
∑

(bk ⊗ I)Φ(ck)‖ ≤ ε

Remembering that ΨL is completely bounded (with the bound smaller or equal 2) we
have

‖I ⊗ΨL(a)−
∑

(bk ⊗ I)(id⊗ΨL)Φ(ck)‖ ≤ 2ε

Using (2.3) and remembering that Lh⊗ρ is a closed left ideal we get I ⊗ΨL(a) ∈ Lh⊗ρ.
It means that

(h⊗ ρ)(I ⊗ΨL(a)∗ΨL(a)) = ρ(ΨL(a)∗ΨL(a)) = 0

We assumed that ρ is faithful. Therefore ΨL(a) = 0 and (cf (2.2)) h∗a = h(a)I for any
a ∈ A.

In the similar way introducing the completely bounded mapping ΨR : A → A by
the formula

ΨR(c) = c ∗ h− h(c)I

one can show that (ΨR ⊗ id)Φ(c) ∈ Lρ⊗h. Then using the density of (1.2) one obtains
ΨR(a) = 0 for any a ∈ A. The latter means that a ∗ h = h(a)I. Combining the two
results we see that h is a Haar measure

Q.E.D.
Proof of Theorem 1.3. Let ρ be a faithful state on A (the existence of such a state
follows from the separability of A),

ρ∗n = ρ ∗ ρ ∗ . . . ∗ ρ

be the convolution product of n-copies of ρ,

hn =
1

n

n∑
k=1

ρ∗k

be the Cesaro sum and h be a weak accumulation point of the sequence (hn)n=1,2,... (the
set of states of any unital C∗-algebra is compact with respect to the weak topology, so
the accumulation point always exists).

One can easily verify that

hn ∗ ρ = ρ ∗ hn = hn +
1

n
(ρ∗(n+1) − ρ).

Therefore h ∗ ρ = ρ ∗ h = h and (cf Lemma 2.1) h is a Haar measure.
To prove the uniqueness assume that h and h′ are Haar measures. Then (cf (1.16))

for any a ∈ A we have

h′(a) = h(h′(a)I) = h(h′ ∗ a) = h′(a ∗ h) = h′(h(a)I) = h(a).

Q.E.D.
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Remark: In this way we showed that the sequence (hn)n=1,2,... has only one accumu-
lation point. Therefore (the state space is weakly compact) hn converges weakly to h.
In other words

h = C − lim
n→∞

ρ∗n

where C − lim denotes the Cesaro weak limit (cf formula (4.18) of [13]).
Let a ∈ A. Relation (1.17) means that

(id⊗ h)Φ(a) = h(a)I, (2.4)

(h⊗ id)Φ(a) = h(a)I. (2.5)

3 Unitary representations

Let G = (A,Φ) be a compact quantum group and K be a Hilbert space. We use the
notation introduced in Section 0. We recall ([11], [8] Remark on page 397, [19]) that
v is a (strongly continuous) unitary representations of G acting on K if v is a unitary
element of M(CB(K)⊗ A) such that

(id⊗ Φ)v = v12v13. (3.1)

The leg numbering notation used in the above formula is explained in [8] page 385.
We shall prove the following

Theorem 3.1 Let v be a unitary representation of a compact quantum group G =
(A,Φ), h be the Haar measure on G, K be the carrier Hilbert space of v and B ⊂ B(K)
be the norm closure of the set of all operators of the form (cf [8, 18])

Fv(a) = (id⊗ ha)v∗, (3.2)

where a ∈ A. Then
1. B ∈ C∗(K)
2. v ∈M(B ⊗ A)

This relation should be understood in the sense of (0.3).
3. B is the smallest (in the sense of the ordering introduced by (0.4)) element of

C∗(K) such that the Statement 2 holds.
4. An operator X ∈ B(K) intertwines v with itself if and only if X commutes with

all elements of B.

Proof:

Ad 1. According to (2.4)

(id⊗ id⊗ h)(id⊗ Φ)[(I ⊗ a)v∗] = (id⊗ h)[(I ⊗ a)v∗]⊗ I

for any a ∈ A. The right-hand-side equals to Fv(a)⊗ I. To compute the left-hand-side
we use the multiplicativity of Φ and formula (3.1). We get

(id⊗ id⊗ h)[(I ⊗ Φ(a))v13
∗]v∗ = Fv(a)⊗ I

12



and (v is unitary)

(id⊗ id⊗ h)[(I ⊗ Φ(a))v13
∗] = (Fv(a)⊗ I)v (3.3)

Let b ∈ A. Then (b∗h ⊗ id)Φ(a) = a ∗ b∗h, (id ⊗ b∗h)v = Fv(b)∗ and applying
(id⊗ b∗h) to the both sides of (3.3) we obtain

Fv(a ∗ b∗h) = Fv(a)Fv(b)∗ (3.4)

Let

C = BB∗ =
the linear envelope

of {mn∗ : m,n ∈ B}

Remembering that (1.2) is dense in A ⊗ A one can easily show that the set of linear
combinations of elements of the form a ∗ b∗h (where a, b ∈ A) is dense in A and using
(3.4) we see that C is a dense subset of B. Clearly C is invariant under hermitian
conjugation, so is B: B∗ = B. Moreover BB = BB∗ = C ⊂ B. It shows that B is a
∗-subalgebra of B(K).

To end this part of the proof we have to show that the embedding B ↪→ B(K) is
non-degenerate, i.e. that ⋂

a∈A
kerFv(a) = {0}. (3.5)

Let (ψn)n=1,2,... be an orthonormal basis in K. Then (using Dirac notation) for any
compact operator x ∈ CB(K) we have the norm convergence[

N∑
n=1

|ψn)(ψn|
]
x −→ x

for N →∞. Using this fact one can easily show that the sequence

v

[
N∑
n=1

|ψn)(ψn| ⊗ I
]
v∗

converges (for N →∞) to I ∈M(CB(K)⊗A) in the sense of almost uniform topology.
Therefore for any ϕ ∈ K

∞∑
n=1

(ϕ|(id⊗ h) [v(|ψn)(ψn| ⊗ I)v∗]ϕ) = (ϕ|ϕ). (3.6)

Let ρnϕ be the linear functional on CB(K) introduced by the formula ρnϕ(m) =
(ϕ|mψn) (m ∈ CB(K)) and anϕ = (ρnϕ ⊗ id)v. Then using (3.2) we may rewrite (3.6)
in the following way:

∞∑
n=1

(ψn|Fv(anϕ)ϕ) = (ϕ|ϕ)

and (3.5) follows.

13



Ad 2. Let sA be the flip automorphism acting on A⊗ A: sA(a⊗ b) = b⊗ a for all
a, b ∈ A. One can easily check that the mapping Fv : A → B introduced by (3.2) is
completely bounded. Therefore we may consider the tensor product map

Fv ⊗ id : A⊗ A −→ B ⊗ A. (3.7)

This mapping is continuous and its range is dense in B ⊗ A. For any a, b ∈ A we
have

(Fv ⊗ id)sA(a⊗ b) = Fv(b)⊗ a = (id⊗ id⊗ h) [(I ⊗ a⊗ b)v13
∗] .

Comparing this formula with (3.3) we get

(Fv ⊗ id)sAΦ(a) = (Fv(a)⊗ I)v

for any a ∈ A. Therefore

(Fv ⊗ id)sA [(b⊗ I)Φ(a)] = (Fv(a)⊗ b)v

for any a, b ∈ A. This formula shows that (B ⊗ A)v ⊂ B ⊗ A for any p ∈ B ⊗ A.
Moreover using the density of (1.1) and the properties of (3.7) we see that (B ⊗A)v is
dense in B⊗A. Therefore the right multiplication by v maps B⊗A onto itself. So does
the inverse map: (B ⊗A)v∗ = B ⊗A. Passing to the hermitian conjugate elements we
get v(B ⊗ A) = B ⊗ A. Now Statement 2 follows from (0.3).

Ad 3. Let B1 be a C∗-algebra of operators acting on K such that v ∈M(B1 ⊗A).
Then

(m⊗ a)v∗ ∈ B1 ⊗ A (3.8)

for any m ∈ B1 and a ∈ A. Moreover the set of all linear combinations of elements of
the above form is dense in B1 ⊗ A (= (B1 ⊗ A)v∗). Applying (id ⊗ h) to (3.8) we see
that

mFv(a) ∈ B1

for any m ∈ B1 and a ∈ A and the set of linear combinations of elements of this form
is dense in B1. Therefore B1B is a dense subset of B1 and relation B ≤ B1 follows (cf
definition (0.4).

Ad 4. If m ∈ B(K) intertwines v with itself then (m ⊗ I)v∗ = v∗(m ⊗ I) and
applying (id ⊗ ha) to the both sides of this relation we get mFv(a) = Fv(a)m. It
shows that m belongs to the commutant of B. The converse follows immediately from
Statement 2.

Q.E.D.
We shall prove that the Haar measure restricted to the matrix elements of a unitary

representation is faithful.

Proposition 3.2 Let G = (A,Φ) be a compact quantum group, h be the Haar measure,
v be a unitary representation of G acting on a Hilbert space K, ρ be a linear functional
on CB(K) and b = (ρ⊗ id)v∗. Assume that h(b∗b) = 0. Then b = 0.
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Proof: We use the notation introduced in Theorem 3.1. By the Schwarz inequality
|h(ab)|2 ≤ h(aa∗)h(b∗b) = 0 and ρ(Fv(a)) = h(ab) = 0 for any a ∈ A. It shows that ρ
kills all elements of the algebra B. Therefore (ρ⊗ id)q = 0 for any q ∈ B ⊗ A. By the
continuity argument the same relation holds for any q ∈ M(B ⊗ A) and (cf Theorem
3.1.2) b = (ρ⊗ id)v∗ = 0.

Q.E.D.
Using the same technic we shall prove

Proposition 3.3 Let v ∈ M(CB(K)⊗ A) be a unitary representation of G acting on
a Hilbert space K and ρ be a linear functional on CB(K). Then(

(ρ⊗ id)v∗ = 0
)
⇐⇒

(
(ρ⊗ id)v = 0

)
Proof: Assume that (ρ⊗ id)v∗ = 0. Then ρ(Fv(a)) = (ha)[(ρ⊗ id)v∗] = 0. Therefore
(cf the previous proof) (ρ⊗ id)q = 0 for any q ∈M(B ⊗A). Setting q = v we see that
(ρ⊗ id)v = 0. This way the ‘⇒’ part of our statement is proved. To prove the converse
implication it is sufficient to replace ρ by ρ∗.

Q.E.D.
It is well known that any finite-dimensional representation of a C∗-algebra decom-

poses into a direct sum of irreducible representations. Using Theorem 3.1.4 we conclude
that any finite-dimensional unitary representation of a compact quantum group is a di-
rect sum of irreducible representations. In fact, like in the classical theory of compact
groups we have much stronger result:

Theorem 3.4 Let v be a unitary representation of a compact quantum group G =
(A,Φ) acting on a Hilbert space of any dimension. Then v is a direct sum of finite-
dimensional irreducible representations.

Proof: By the remark preceding the text of the theorem it is sufficient to show that
v is a direct sum of finite-dimensional representations. The latter statement reduces
easily to the following one

For any unitary representation v of G acting on a Hilbert space
K there exists a non-zero finite-dimensional orthogonal projection
P ∈ B(K) intertwining v with itself.

 (3.9)

Indeed then PK is a finite-dimensional subspace of K, K = PK ⊕ (I − P )K, PK
and (I − P )K are v-invariant and v = v1 ⊕ v′, where v1 and v′ are restrictions of v to
PK and (I − P )K respectively. Using the transfinite induction we obtain the desired
decomposition.

Let ψ ∈ K and
Q = (id⊗ h) {v [|ψ)(ψ| ⊗ I] v∗}

Using (3.1) and (2.4) we compute

v(Q⊗ I)v∗ = (id⊗ id⊗ h) {v12v13 [|ψ)(ψ| ⊗ I ⊗ I] v∗13v
∗
12}

= (id⊗ id⊗ h)(id⊗ Φ) {v [|ψ)(ψ| ⊗ I] v∗}
= (id⊗ h) {v [|ψ)(ψ| ⊗ I] v∗} ⊗ I
= Q⊗ I.
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It shows that Q intertwines v with itself. Clearly Q ≥ 0. Remembering that v ∈
M(CB(K)⊗A) we get v [|ψ)(ψ| ⊗ I] v∗ ∈ CB(K)⊗A and Q ∈ CB(K). According to
(3.6) there exists ψ such that Q 6= 0.

This way we showed that there exists a non-zero positive compact operator Q inter-
twining v with itself. Let P be the spectral projection of Q corresponding to a strictly
positive eigenvalue. Then P 6= 0, P is finite-dimensional, P intertwines v with itself
and (3.9) follows.

Q.E.D.
We end this Section with the following

Proposition 3.5 Let v be a unitary representation of a compact quantum group G =
(A,Φ) acting on a Hilbert space K and h be the Haar measure on G. Then P = (id⊗h)v
is the orthogonal projection onto the subspace of all v-invariant vectors (A vector x ∈ K
is said to be v-invariant if [(id⊗ ξ)v]x = ξ(I)x for any ξ ∈ A′).

Proof: According to Theorem 3.4 we may assume that v is irreducible. Applying
id⊗ id⊗ h to the both sides of (3.1) we see that v(P ⊗ I) = P ⊗ I. It shows that the
range of P consists of v-invariant elements. If v is a nontrivial irreducible representation
then K contains no v-invariant element and P = 0. Otherwise dimK = 1, v = IB(K)⊗I
and P = IB(K). In both cases our statement holds.

Q.E.D.

4 Right regular representation

Let G = (A,Φ) be a compact quantum group, h be the Haar measure, π be the
representation of the C∗-algebra A obtained by the GNS construction applied to the
state h, H be the carrier Hilbert space of π and Ω ∈ H be the cyclic vector. Then

{π(a)Ω : a ∈ A} (4.1)

is dense in H and
h(a) = (Ω|π(a)Ω) (4.2)

for any a ∈ A. Let A′ (CB(H)′ respectively) be the set of all continuous linear func-
tionals defined on A (on CB(H) respectively).

The right regular representation of G is the unitary representation u introduced in
the following

Theorem 4.1 With the notation introduced above

1. There exists unique u ∈M(CB(H)⊗ A) such that

[(id⊗ ξ)u] π(a)Ω = π(ξ ∗ a)Ω. (4.3)

2. u is a unitary representation of G.

16



3. The set
{(ρ⊗ id)u : ρ ∈ CB(H)′} (4.4)

is dense in A.

Proof:

Ad 1. Using the density of (4.1) one can easily show that the linear envelope of all
elements of the form

π(a)|Ω)(x| ⊗ c, (4.5)

where a, c ∈ A, x ∈ H is a dense subset of CB(H)⊗ A.
We know that π ∈ Mor(A,CB(H)). Hence (π ⊗ id) ∈ Mor(A ⊗ A,CB(H) ⊗ A),

(π⊗ id)Φ ∈ Mor(A,CB(H)⊗A) and (π⊗ id)Φ(a) ∈M(CB(H)⊗A) for all a ∈ A. On
the other hand |Ω)(x| ⊗ c ∈ CB(H)⊗ A for all x ∈ H and c ∈ A. Therefore

[(π ⊗ id)Φ(a)] [|Ω)(x| ⊗ c] ∈ CB(H)⊗ A

for all a, c ∈ A and x ∈ H. Using the density of (1.8) in A⊗ A one can show that the
linear envelope of the above elements is dense in CB(H)⊗ A.

Let us notice that using (4.2), (2.5) and again (4.2) we obtain

{[(π ⊗ id)Φ(a)] [|Ω)(x| ⊗ c]}∗ {[(π ⊗ id)Φ(a′)] [|Ω)(x′| ⊗ c′]}

= [|x)(Ω| ⊗ c∗] (π ⊗ id)Φ(a∗a′) [|Ω)(x′| ⊗ c′]
= |x)(x′| ⊗ c∗(h⊗ id)Φ(a∗a′)c′

= |x)(x′| ⊗ c∗h(a∗a′)c′

= |x)(x′| ⊗ c∗(Ω|π(a∗a′)Ω)c′

= {π(a)|Ω)(x| ⊗ c}∗ {π(a′)|Ω)(x′| ⊗ c′}

Now we use Proposition 0.1. It shows that there exists a unitary u ∈M(CB(H)⊗A)
such that

u [π(a)|Ω)(x| ⊗ c] = [(π ⊗ id)Φ(a)] [|Ω)(x| ⊗ c] (4.6)

for any a, c ∈ A and x ∈ H.
Let ξ ∈ A′. Inserting in the above relation c = I and applying (id⊗ ξ) to the both

sides we obtain
[(id⊗ ξ)u] π(a)|Ω)(x| = π(ξ ∗ a)|Ω)(x|

and (4.3) follows. Obviously (4.3) determines u in the unique way. The proof of
Statement 1 is complete.

Ad 2. We have to show that

(id⊗ Φ)u = u12u13. (4.7)

Let ξ, ξ′ ∈ A′ and a ∈ A. Then using (1.15) we have

[(id⊗ ξ ⊗ ξ′)(id⊗ Φ)u] π(a)Ω = [(id⊗ ξ ∗ ξ′)u] π(a)Ω

= π(ξ ∗ ξ′ ∗ a)Ω.
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On the other hand

[(id⊗ ξ ⊗ ξ′)u12u13] π(a)Ω = [(id⊗ ξ)u] [(id⊗ ξ′)u] π(a)Ω

= [(id⊗ ξ)u] π(ξ′ ∗ a)Ω

= π(ξ ∗ ξ′ ∗ a)Ω.

Remembering that (4.1) is dense in H and that ξ and ξ′ are arbitrary elements of A′

we get (4.7).

Ad 3. Let b, c ∈ A and ρbc be the linear functional on CB(H) introduced by the
formula

ρbc(m) = (π(b∗)Ω|mπ(c)Ω) (4.8)

for all m ∈ CB(H). Let ξ ∈ A′. Then using (4.3), (4.1) and (1.16) we obtain

ξ [(ρbc ⊗ id)u] = ρbc [(id⊗ ξ)u]

= (π(b∗)Ω| [(id⊗ ξ)u] π(c)Ω)

= (π(b∗)Ω|π(ξ ∗ c)Ω) = h(b(ξ ∗ c)) = (hb)(ξ ∗ c)
= ξ(c ∗ hb).

It shows that
(ρbc ⊗ id)u = c ∗ hb. (4.9)

Let us notice that c ∗ hb = (id ⊗ h)[(I ⊗ b)Φ(c)]. Remembering that (1.2) is dense
in A⊗ A we get the required result.

Q.E.D.

The C∗-algebra B related (via Theorem 3.1) to the right regular representation u of
a compact quantum group G will be denoted by C∗(G):

C∗(G) =
{

(id⊗ ha)u∗ : a ∈ A
}norm closure

.

Then
u ∈M(C∗(G)⊗ A).

Inserting ba instead of a in (4.6) and remembering that the linear envelope of the
elements (4.5) is dense in CB(H)⊗ A we get

u [π(a)⊗ I]u∗ = (π ⊗ id)Φ(a) (4.10)

for any a ∈ A.

Let K be a Hilbert space and v ∈M(CB(K)⊗A) be a unitary representation of G
acting on K. Using the last formula one can easily show that

u23 [(id⊗ π)(x)⊗ I]u23
∗ = (id⊗ π ⊗ id)(id⊗ Φ)(x).
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for any x ∈ CB(H)⊗ A. The same relation holds for all x ∈M(CB(H)⊗ A). Setting
x = v and using (3.1) we get

u23V12u23
∗ = V12v13,

where V is a unitary operator acting on K⊗H introduced by the formula V = (id⊗π)v.
Rearranging the factors we get

v13u23 = V12
∗u23V12 (4.11)

It shows that the right regular representation has the following absorption property:
the tensor product of any unitary representation with the right regular one is equivalent
to a multiple of the right regular representation. Applying (id ⊗ id ⊗ π) to the both
sides of the above relation we get

V13U23 = V12
∗U23V12,

where U is a unitary operator acting on H⊗H introduced by the formula U = (id⊗π)u.
In particular case K = H and v = u we obtain

U13U23 = U12
∗U23U12

This is the important pentagonal relation. It shows that U is a ‘multiplicative unitary’
in the sense of Baaj and Scandalis [2]. According to the last but one relation, V is
a unitary adapted to U (cf [20]). It turns out that the multiplicative unitary U is
manageable in the sense of [20]. The proof is given in [6]

Let b, c ∈ A and ρbc be the linear functional on CB(H) introduced by (4.8). Applying
the hermitian conjugation to the both sides of (4.9) and using the obvious relation
ρbc
∗ = ρc∗b∗ we get:

(ρc∗b∗ ⊗ id)u∗ = c∗ ∗ b∗h.

Inserting in this formula c∗ and b∗ instead of b and c respectively we have:

(ρbc ⊗ id)u∗ = b ∗ ch.

Comparing this formula with (4.9) and taking into account Proposition 3.3 we see that(
c ∗ hb = 0

)
⇐⇒

(
b ∗ ch = 0

)
(4.12)

for any b, c ∈ A. In what follows we shall use the similar formula:(
hb ∗ c = 0

)
⇐⇒

(
ch ∗ b = 0

)
(4.13)

for any b, c ∈ A. This is the formula (4.12) written for the opposite group Gopp (cf the
Remark 1 following the Definition 1.1).

Let a be an element of A such that Φ(a) ∈ A ⊗alg A i.e. Φ(a) is a sum of finite
number of elements of the form a′ ⊗ a′′ (a′, a′′ ∈ A). Then

codim{b ∈ A : hb ∗ a∗ = 0} <∞
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and, by virtue of (4.13)

codim{b ∈ A : a∗h ∗ b = 0} <∞

It shows that
dim{a∗h ∗ b : b ∈ A} <∞ (4.14)

With this inequality we shall prove the following generalization of Riemann-Lebesgue
lemma.

Proposition 4.2 Let G = (A,Φ) be a compact quantum group and H be H be the
carrier Hilbert space of the right regular representation of G. Then

C∗(G) ⊂ CB(H) (4.15)

Proof: We have to show, that Fu(a) ∈ CB(H) for any a ∈ A. According to Theorem
3.4 (applied to the right regular representation) and Theorem 4.1.3 the set A of all
linear combinations of matrix elements of finite dimensional representations of G is
dense in A. For any a ∈ A we have Φ(a) ∈ A⊗alg A.

Combining (3.2) and (4.3) we get

Fu(a)∗π(b)Ω = π(a∗h ∗ b)Ω.

The relation (4.14) shows that the operator Fu(a)∗ is finite-dimensional for any a ∈ A.
Therefore Fu(a)∗ is compact for any a ∈ Anorm closure = A. So is Fu(a).

Q.E.D.

By virtue of Theorem 3.4 and Theorem 3.1.4, any C∗(G)-irreducible subspace of H
is finite-dimensional. Using Theorem 1.4.5 of [1] we get

Corollary 4.3 C∗(G) is a direct sum of finite-dimensional full matrix algebras.

Proposition 4.2 implies that each irreducible representation of G enters the right
regular representation with finite multiplicity. In Section 6 we shall prove

Proposition 4.4 The right regular representation u contains all irreducible represen-
tations of G. Each irreducible representation enters u with the multiplicity equal to its
dimension.

Continuing this line of research one can reproduce the theory of Pontryagin duality
of compact quantum groups presented in [8] (Sections 2 and 3).
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5 The Hopf algebras

This section is devoted to the proof of Theorem 1.2.
Let G = (A,Φ) be a compact quantum group and (uα)α∈Ĝ be the complete family of

irreducible unitary representations of G: The representations uα (α ∈ Ĝ) are pairwise
inequivalent and any unitary irreducible representation of G is equivalent to uα for one
α ∈ Ĝ.

Let Hα be the carrier Hilbert space of uα and Nα = dimHα. We know that all
Nα < ∞. Introducing an orthonormal basis in Hα we may identify uα with a matrix
(uαkl)k,l=1,2,...,Nα

, where uαkl are elements of A such that:

∑
uαkru

α
lr
∗ = δkl, (5.1)

∑
uαrk
∗uαrl = δkl, (5.2)

Φ(uαkl) =
∑

uαkr ⊗ uαrl, (5.3)

where the summation index r runs over 1, 2, . . . , Nα and k, l = 1, 2, . . . , Nα.

Proposition 5.1 The set

{uαkl : α ∈ Ĝ, k, l = 1, 2, . . . , Nα} (5.4)

is a linear basis in A.

Proof: Any finite-dimensional unitary representation of G decomposes into direct sum
of irreducible representations. Therefore any element of A is a linear combination of
elements (5.4).

Let F be a finite subset of Ĝ and

uF =
∑
α∈F

⊕
uα.

Then uF is a unitary representation of G acting on

HF =
∑
α∈F

⊕
Hα.

Elements m ∈ B(HF ) are represented by matrices (mαβ)α,β∈F , where mαβ ∈ B(Hβ, Hα).
Remembering that uα (α ∈ F ) are irreducible and pairwise inequivalent and using the
Schur lemma one can easily show that m intertwines uF with itself if and only if

mαβ = δαβIB(Hα) (5.5)

for all α, β ∈ F .
Let BF be the C∗-algebra related to uF via Theorem 3.1. By virtue of Theorem

3.1.4 the commutant of BF coincides with the set of all m ∈ B(HF ) satisfying relation
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(5.5). Therefore, using the bicommutant theorem (HF is finite-dimensional) we see that
m ∈ BF if and only if mαβ = δαβmα, where mα ∈ B(Hα), α, β ∈ F . It shows that

dimBF =
∑
α∈F

N2
α. (5.6)

On the other hand BF = {(id⊗ ha)uF
∗

: a ∈ A}. Therefore the number of linearly
independent matrix elements of uF is larger or equal to dimBF . In other words the set

{uαkl : α ∈ F, k, l = 1, 2, . . . , Nα} (5.7)

contains at least dimBF linearly independent elements. According to (5.6) the total
number of elements (5.7) equals to dimBF . It shows that elements (5.7) are linearly
independent. Using the freedom of choice of F ⊂ Ĝ we see that elements (5.4) are
linearly independent.

Q.E.D.

Proposition 5.2 For any α ∈ Ĝ there exists β ∈ Ĝ such that uαkl
∗ (k, l = 1, 2, . . . , Nα)

are linear combinations of matrix elements of uβ.

Proof: Let α ∈ Ĝ. Then

Nα∑
k,l=1

h(uαklu
α
kl
∗) = Nαh(I) = Nα.

We already know (cf Proof of Proposition 4.2) that the set A of all linear combinations
of elements (5.4) is dense in A. Therefore there exist k, l ∈ {1, 2, . . . , Nα}, β ∈ Ĝ and
m,n ∈ {1, 2, . . . , Nβ} such that

Emk = h(uαklu
β
mn) 6= 0 (5.8)

According to (5.3)

Φ(uαklu
β
mn) =

Nα∑
r=1

Nβ∑
s=1

uαkru
β
ms ⊗ uαrluβsn

Applying id⊗ h to the both sides and using (2.4) we obtain

Emk =
∑
rs

uαkru
β
msEsr

and (uα is unitary) ∑
s

uβmsEsr =
∑
k

uαkr
∗Emk (5.9)

for any m = 1, 2, . . . , Nβ and n = 1, 2, . . . , Nα.
Let λr (r = 1, 2, . . . , Nα) be complex numbers such that

∑
r Esrλr = 0 for any

s = 1, 2, . . . , Nβ. Then
∑
rk Emku

α
kr
∗λr = 0 and using the linear independence of (5.4)

and relation (5.8) we get λr = 0 for all r. It shows that RankE = Nα. Similarly if
µm (m = 1, 2, . . . , Nβ) are complex numbers such that

∑
m µmEmk = 0 for any k =

1, 2, . . . , Nα then
∑
sm µmu

β
msEsr = 0 and µm = 0 for all m. Therefore RankE = Nβ.
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This way we showed that E is a quadratic invertible matrix and (5.9) implies that

uαkr
∗ =

∑
sm

(E−1)kmu
β
msEsr (5.10)

for any k, r = 1, 2, . . . , Nα.
Q.E.D.

Let A be the set of all linear combinations of matrix elements of finite-dimensional
representations of G. Then ab ∈ A for any a, b ∈ A (the tensor product of unitary
representations is a unitary representation). By virtue of Theorem 3.4, Theorem 4.1.3,
Proposition 5.2 and Proposition 5.1, A is a dense ∗-subalgebra of A and (5.4) is a basis
(in the sense of the vector space theory) of A.

Let e : A → C and κ : A → A be linear mappings introduced by the formulae

e(uαkl) = δkl (5.11)

κ(uαkl) = uαlk
∗ (5.12)

for any α ∈ Ĝ and k, l = 1, 2, . . . , Nα. Using these definitions and formulae (5.1) – (5.3)
one can easily verify relations (1.9) – (1.12) for a = uαkl (α ∈ Ĝ, k, l = 1, 2, . . . , Nα). By
linearity, these relations hold for any a ∈ A. The proof of Theorem 1.2 is complete.

6 Peter-Weyl theory

In this Section we derive the orthonormality relations for the matrix elements of irre-
ducible representations of a compact quantum group G and investigate the modular
properties of the Haar measure. It follows from Proposition 5.2 that the irreducible
representations of G appear in conjugate pairs: We say that uα and uβ are conjugate
if the matrix elements of uα are hermitian conjugation of matrix elements of uβ. The
case uα = uβ is not excluded.

Let G = (A,Φ) be a compact quantum group and (uα)α∈Ĝ be the complete family of
irreducible unitary representations of G. The carrier Hilbert space of uα will be denoted
by Kα (α ∈ Ĝ). Then dimKα <∞ and uα ∈ B(Kα)⊗A. In what follows we shall use
more explicit notation for the matrix elements of irreducible representations of G. For
any α ∈ Ĝ, w ∈ B(Kα)⊗ A and x, y ∈ Kα we set:

(x w y) = (ρxy ⊗ id)w,

where ρxy is the linear functional on B(Kα) introduced by the formula ρxy(m) =
(x|m|y), (m ∈ B(Kα)). The reader should notice that (x uα y) ∈ A. With this
notation formulae (5.11) and (5.12) take the following form: for any x, y ∈ Kα we have

e((x uα y)) = (x|y),

κ((x uα y)) = (y uα x)∗ . (6.1)

Let α, β ∈ Ĝ and uαβ be the tensor product of uα and uβ: uαβ = uα13u
β

23. uαβ is a
unitary representation of G acting on Kα ⊗Kβ. It follows immediately from the proof
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of Proposition 5.2 that uα and uβ is a pair of conjugate representations if and only if
there exists a non-zero uαβ-invariant element E ∈ Kα ⊗Kβ. If this is the case, then E
is of maximal rank: rankE = dimKα = dimKβ.

It is well known that Kα ⊗ Kβ may be identified with the space of all antilinear
maps Kβ → Kα: for any element E ∈ Kα ⊗ Kβ there exists unique antilinear map
J : Kβ → Kα such that

(x⊗ y|E) = (x|Jy) = (y|J∗x) (6.2)

for all x ∈ Kα and y ∈ Kβ (the second equality in (6.2) defines the hermitian conjuga-
tion for antilinear operators). J is invertible if and only if rankE = dimKα = dimKβ.
Using the orthonormal basis expansion one can easily compute the square of the norm
of E:

(E|E) = Tr J∗J (6.3)

Let E ∈ Kα ⊗ Kβ, E ′ ∈ Kβ ⊗ Kα and J : Kβ → Kα and J ′ : Kα → Kβ be
corresponding antilinear maps. For any x ∈ Kα we set:(

E ⊗ IB(Kα)

)
x = E ⊗ x,

(
IB(Kα) ⊗ E ′

)
x = x⊗ E ′,

Then E ⊗ IB(Kα) and IB(Kα) ⊗ E ′ belong to B(Kα, Kα ⊗ Kβ ⊗ Kα). Consequently(
IB(Kα) ⊗ E ′

)∗ (
E ⊗ IB(Kα)

)
∈ B(Kα). Using again the orthonormal basis expansion

one can easily verify that(
IB(Kα) ⊗ E ′

)∗ (
E ⊗ IB(Kα)

)
= JJ ′.

If E is uαβ-invariant and E ′ 6= 0 is uβα-invariant then E ⊗ IB(Kα) and IB(Kα) ⊗ E ′

intertwin uα and uαβα. Consequently
(
IB(Kα) ⊗ E ′

)∗ (
E ⊗ IB(Kα)

)
intertwins uα with

itself and using irreducibility of uα we see that JJ ′ is a multiple of IB(Kα). Therefore

J = λ (J ′)−1, where λ ∈ C, λ 6= 0. It shows that J (and consequently E) is determined
up to a numerical factor. It means that the subspace of uαβ-invariant elements is one
dimensional.

For any β ∈ Ĝ we set:

β = the element of Ĝ such that uβ and uβ are conjugate,

Eβ = a non-zero uββ-invariant element of Kβ ⊗Kβ,

Jβ = the invertible antilinear map: Kβ → Kβ related to Eβ via (6.2),

F β =
(
Jβ
)∗
Jβ.

Till now the invariant elements Eβ and Eβ are defined up to a non-zero multiplicative
factors. We choose these factors in such a way, that(

Eβ Eβ
)

=
(
Eβ Eβ

)
(6.4)
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and
Jβ =

(
Jβ
)−1

.

Then we have: F βJβ =
(
Jβ
)∗
JβJβ = JβJβ

(
Jβ
)∗

= Jβ
(
F β
)−1

. Remembering, that

Jβ is antilinear we see that (
F β
)it
Jβ = Jβ

(
F β
)it

(6.5)

for any t ∈ R

Let β ∈ Ĝ. The uββ-invariance of Eβ means that uβ13u
β

23E
β

12 = Eβ
12. Remem-

bering that uβ is unitary we get (cf (5.9))

uβ23E
β

12 =
(
uβ
)∗

13
Eβ

12.

Computing the ‘scalar product’ with x⊗ y (where x ∈ Kβ and y ∈ Kβ) we obtain:

∑
k

(
y uβ ek

) (
x⊗ ek Eβ

)
=
∑
l

(
x
(
uβ
)∗

εl

) (
εl ⊗ y Eβ

)
.

where (ek) ((εl) - respectively) is an orthonormal basis in Kβ (Kβ - respectively). Taking
into account (6.2) we have:

∑
k

(
y uβ ek

) (
ek

(
Jβ
)∗
x
)

=
∑
l

(
x
(
uβ
)∗

εl

) (
εl J

βy
)
.

Therefore (
y uβ

(
Jβ
)∗
x
)

=
(
x
(
uβ
)∗

Jβy
)

and finally (
y uβ

(
Jβ
)∗
x
)

=
(
Jβy uβ x

)∗
. (6.6)

This is our basic formula. It holds for any x ∈ Kβ and y ∈ Kβ.

Now we are able to derive the orthogonality relations for matrix elements of irre-
ducible unitary representations. Setting v = uαβ in Proposition 3.5 we get

(id⊗ h)uα13u
β

23 =


0 if α 6= β

1

Mβ

∣∣∣Eβ
) (
Eβ
∣∣∣ if α = β

where
Mβ =

(
Eβ Eβ

)
= TrF β

Let x′, y′ ∈ Kα and x, y ∈ Kβ. Computing the matrix elements between vectors x′ ⊗ x
and y′ ⊗ y we get:

h
( (

x′ uα y′
) (
x uβ y

))
=


0 if α 6= β

1

Mβ

(
x′ Jβx

) ((
Jβ
)∗
y′ y

)
if α = β.
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Replacing x by Jβx and y′ by
(
Jα
)∗
y′ we see that

h
( (

x′ uα
(
Jα
)∗
y′
) (
Jβx uβ y

))
=


0 if α 6= β

1

Mβ
(x′ x) (y′ y) if α = β

for any x′ ∈ Kα, y′ ∈ Kα, y ∈ Kβ and x ∈ Kβ. Now using (6.6) (with β replaced by
α) we get:

h
( (

Jαx′ uα y′
)∗ (

Jβx uβ y
))

=


0 if α 6= β

1

Mβ
(x′ ⊗ y′ x⊗ y) if α = β.

(6.7)

For any β ∈ Ĝ we shall consider the linear map ψβ : Kβ ⊗Kβ → A introduced by
the formula:

ψβ(x⊗ y) =
(
Jβx uβ y

)
for any for any y ∈ Kβ and x ∈ Kβ. Then

h
(
ψα(z′)∗ψβ(z)

)
=


0 if α 6= β

1

Mβ
(z′ z) if α = β.

(6.8)

for any z′ ∈ Kα ⊗Kα and z ∈ Kβ ⊗Kβ.

Let π be the GNS-representation of the algebra A produced by the Haar measure h,
H be the carrier Hilbert space of π and Ω be the corresponding cyclic vector (cf Section

4). For any β ∈ Ĝ and z ∈ Kβ ⊗Kβ we set:

Ψβ(z) = π(ψβ(z))Ω.

Then Ψβ ∈ B(Kβ ⊗Kβ, H). Relation (6.8) shows that

(Ψα)∗Ψβ =
δαβ

Mβ
I
B(Kβ⊗Kβ)

,

where δαβ is the Kronecker symbol. It means that Ψβ is a multiple of an isometry
and that the ranges Hβ = Ψβ

(
Kβ ⊗Kβ

)
for different β are orthogonal. By definition

elements of A are linear combinations of matrix elements of finite-dimensional unitary
representations of G: any a ∈ A is of the form: a =

∑
ψβ(zβ), where zβ ∈ Kβ ⊗ Kβ

and only finite number of zβ are not zero. Remembering that A is dense in A and that
Ω is cyclic we see that

H =
∑
β∈Ĝ

⊕
Hβ. (6.9)

Moreover ∑
β∈Ĝ

⊕√
Mβ Ψβ :

∑
β∈Ĝ

⊕
Kβ ⊗Kβ −→ H (6.10)
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is a unitary map. It will be denoted by Ψ.

Let β ∈ Ĝ, x ∈ Kβ, y ∈ Kβ and ξ ∈ A′. We compute:

ξ ∗ ψβ(x⊗ y) = (id⊗ ξ)Φ
((
Jβx uβ y

))
= (id⊗ ξ)

(
Jβx uβ12u

β
13 y

)
=
(
Jβx uβ12 my

)
= ψβ(x⊗my)

where m = (id ⊗ ξ)uβ. Let u be the right regular representation of G (cf Section 4).
By virtue of (4.3) we have:

[(id⊗ ξ)u]Ψβ(x⊗ y) = [(id⊗ ξ)u]π(ψβ(x⊗ y))Ω

= π
(
ξ ∗ ψβ(x⊗ y)

)
Ω

= π
(
ψβ(x⊗my)

)
Ω = Ψβ(x⊗my)

Therefore taking into account the formula for m we obtain:

u
(
Ψβ ⊗ I

)
=
(
Ψβ ⊗ I

) (
I
B(Kβ)

⊗ uβ
)
.

It means that Ψβ intertwins u and I
B(Kβ)

⊗ uβ. The latter representation is equivalent

to the sum of dimKβ = dimKβ copies of uβ. Remembering that (6.10) is unitary we
get Proposition 4.4.

Now we have to use elements of the Tomita–Takesaki theory [4, 10]. For any a ∈ A
we set:

Sπ(a)Ω = π(a)∗Ω.

S is an antilinear (unbounded) operator acting on H. Using (6.6) one can easily show

that ψβ(y ⊗ x)
∗

= ψβ
(
Jβy ⊗

(
Jβ
)∗
x
)

for any y ∈ Kβ and x ∈ Kβ. Therefore, for any

z ∈ Kβ ⊗Kβ we have:

SoΨβ(z) = Ψβ
o

[
Jβ ⊗

(
Jβ
)∗]

(z).

We see that S is not decomposable in the sense of (6.9). However it respects the
decomposition (6.9) in the following sense: for any β ∈ Ĝ, Hβ is contained in the

domain of S and S(Hβ) = Hβ. Remembering that all Hβ are finite dimensional one
can easily show, that S is closeable (hence A equipped with the scalar product induced
by h is a generalized Hilbert algebra in the sense of [10]). So, we can consider the
modular operator:

∆ = S∗S.

Clearly ∆ is decomposable in the sense of (6.9): For any z ∈ Kβ ⊗Kβ we have:

∆oΨβ(z) = Ψβo

[
Jβ ⊗

(
Jβ
)∗]∗

o

[
Jβ ⊗

(
Jβ
)∗]

(z)

= Ψβo

[
F β ⊗

(
F β
)−1

]
(z)
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and

∆it
oΨβ(z) = Ψβ

o

[(
F β
)it
⊗
(
F β
)−it]

(z)

for any t ∈ R.

According to the Tomita–Takesaki theory the modular automorphism group (σt)t∈R

is introduced by the formula:

π (σt(a)) Ω = ∆itπ(a)Ω.

In general the modular automorphisms act within the weak closure of the considered
algebra, it turns out however, that in our case σt(A) = A. Indeed, comparing the two

last formulae we see that for any z ∈ Kβ ⊗Kβ

σt(ψ
β(z)) = ψβ(z′). (6.11)

where z′ =
[(
F β
)it
⊗
(
F β
)−it]

(z)

Let x, y ∈ Kβ and z = Jβx ⊗ y. Then (cf (6.5)) z′ = Jβ
(
F β
)it
x ⊗

(
F β
)−it

y.

Formula (6.11) shows now, that

σt
((
x uβ y

))
=
((
F β
)it
x uβ

(
F β
)−it

y
)
.

Therefore

(id⊗ σt)
(
uβ
)

=
[(
F β
)−it
⊗ I

]
uβ
[(
F β
)−it
⊗ I

]
. (6.12)

Now we are able to give

Proof of Theorem 1.4: At first we introduce the family of linear functionals (fz)z∈C.
Let z ∈ C. By definition fz is the linear functional on A such that

(id⊗ fz)uβ =
(
F β
)−z

(6.13)

for any β ∈ Ĝ. The existence of such a functional follows easily from Proposition 5.1.

The right hand side of the above equation is a holomorphic function of z ∈ C, so
Statement 2 of Theorem 1.4 holds.

We shall prove, that
σt(a) = fit ∗ a ∗ fit (6.14)

for any a ∈ A and t ∈ R. Indeed, denoting by σ′t(a) the right hand side of (6.14) we
easily verify that (id⊗ σ′t)uβ = (id⊗ fit⊗ id⊗ fit)uβ12u

β
13u

β
14 coincides with the right

hand side of (6.12). This way Statement 6 of Theorem 1.4 is proven (formula (1.21)
coincides with the KMS-condition for the Haar measure).

Applying the counit e to the both sides of (6.14) we get f2it(a) = e(σt(a)). It shows
that for any t ∈ R, the functional f2it is a ∗-character: for any a, b ∈ A

f2it(ab) = f2it(a)f2it(b) (6.15)
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and
f2it(a

∗) = f2it(a). (6.16)

By analytical continuation in (6.15), all functionals fz (z ∈ C) are multiplicative. In
particular Statement 1 holds: fz(I) = 1 (otherwise fz would be zero in contradiction
with definition (6.13)).

To prove Statement 3 we compute:

(id⊗ fz1 ∗ fz2)uβ = (id⊗ fz1 ⊗ fz2)(id⊗ Φ)uβ

= (id⊗ fz1 ⊗ fz2)uβ12u
β

13 =
(
F β
)−z1 (

F β
)−z2

=
(
F β
)−(z1+z2)

= (id⊗ fz1+z2)uβ

and Statement 3 of Theorem 1.4 follows.

The formula (1.19) is the analytical continuation of (6.16). The formula (1.18)
follows from (5.12). Indeed:

(id⊗ fzoκ)uβ = (id⊗ fz)
(
uβ
)∗

=
[
(id⊗ f−z)uβ

]∗
=
[(
F β
)z]∗

=
(
F β
)z

= (id⊗ f−z)uβ.

This way Statement 4 is proved.

Combining (6.1) with (6.6) one can easily show that

κ ((x uα y)) = (y uα x∗)

=
(
Jαy uα

(
Jα
)∗
x
)

for any x, y ∈ Kα. Iterating this formula we get:

κ2 ((x uα y)) =
(
Jα
(
Jα
)∗
x uα

(
Jα
)∗
Jαy

)
=
(
(Fα)−1 x uα Fαy

)
Therefore

(id⊗ κ2) (uα) =
[
(Fα)−1 ⊗ I

]
uα
[
Fα ⊗ I

]
(6.17)

Now, denoting by τ(a) the right hand side of (1.20) we easily verify that (id⊗ τ)uα =
(id⊗ f1 ⊗ id⊗ f−1)uα12u

α
13u

α
14 coincides with the right hand side of (6.17). This way

Statement 5 of Theorem 1.4 is proven.
Q.E.D.

The matrix elements of irreducible representations satisfy the famous Peter–Weyl
orthonormality relations. Inserting Jαx′ and Jβx instead of x′ and x in (6.7) we obtain:

h
( (

x′ uα y′
)∗ (

x uβ y
))

=


0 if α 6= β

1

Mβ

(
x′

(
F β
)−1

x
)

(y′ y) if α = β.
(6.18)
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Combining this result with (1.21) we get

h
( (

x uβ y
) (
x′ uα y′

)∗)
=


0 if α 6= β

1

Mβ
(x′ x)

(
y′ F β y

)
if α = β.

(6.19)

These formulae coincide with the ones in [13, Theorem 5.7.4]. They hold for any
α, β ∈ Ĝ, x, y ∈ Kβ and x′, y′ ∈ Kα.

7 Groups with faithful Haar measure

Throughout this Section we assume that G = (A,Φ) is a compact quantum group and
that the Haar measure h on G is faithful.

Proof of Theorem 1.6:

Ad 1. For any ω ∈ A′, x ∈ A and Q ∈ A⊗ A we set

ρωx(Q) = (ω ⊗ h)(QΦ(x)) (7.1)

ρ′ωx(Q) = (ω ⊗ h)(Q(I ⊗ x)) (7.2)

Clearly ρωx and ρ′ωx are continuous linear functionals defined on A⊗ A. Let r0 be the
linear operator acting on A⊗A, defined on the domain D(r0) = A⊗algA by the formula

r0(a⊗ b) = (a⊗ I)Φ(b)

One can easily verify that
ρωx(r0(Q)) = ρ′ωx(Q) (7.3)

for any Q ∈ D(r0). We have to show that r0 is closeable. Assume that (Qn)n=1,2,... is
a sequence of elements of D(r0) such that Qn → 0 and r0(Qn) → R ∈ A ⊗ A. Using
(7.2), (7.3) and (7.1) we get

(ω ⊗ h)(RΦ(x)) = ρωx(R) = lim ρωx(r0(Qn))
= lim ρ′ωx(Qn) = 0

for any x ∈ A and ω ∈ A′. Therefore (id⊗h)(RΦ(x)) = 0 and (id⊗h)(RΦ(x)(y⊗I)) = 0
for any x, y ∈ A. Remembering that (1.7) is dense in A⊗ A we get (id⊗ h)(RR∗) = 0
and R = 0. It shows, that r0 is closeable.

Let r be the closure of r0. Then (cf (7.3))

ρωx(r(Q)) = ρ′ωx(Q)

for any Q ∈ D(r). Let Q ∈ ker r. Then ρ′ωx(Q) = (ω⊗h)(Q(I ⊗x)) = 0 for any ω ∈ A′
and x ∈ A. Therefore (id⊗ h)(Q(I ⊗ x)) = 0, (id⊗ h)(Q(y ⊗ x)) = 0 for any x, y ∈ A,
(id⊗ h)(QQ∗) = 0 and Q = 0.
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In the similar way one can prove the existence of the mapping s and the triviality of
its closure. To this end, instead of (7.1) and (7.2), one has to consider the functionals

ρωx(Q) = (h⊗ ω)(QΦ(x)),

ρ′ωx(Q) = (h⊗ ω)(Q(x⊗ I)).

We left to the reader the details of this part of the proof.

Ad 2. Let a ∈ A and Φ(a) ∈ A ⊗alg A. Inserting b = uαkl in (4.14) we see that the
set {

Nα∑
r=1

uαkrh(a∗uαrl) : α ∈ Ĝ, k, l = 1, 2, . . . , Nα

}
is contained in a finite-dimensional linear subspace of A. Remembering that elements
(5.4) are linearly independent we see that there exists a finite subset F ⊂ Ĝ such that

h(a∗uαrl) = 0

for all α ∈ Ĝ− F and r, l = 1, 2, . . . , Nα. It shows that π(a)Ω ⊥ Hα for all α ∈ Ĝ− F .
By virtue of (6.9)

π(a)Ω ∈
∑
α∈F

⊕
Hα.

Remembering that h is faithful one can show that a is a linear combination of elements
uαrl (α ∈ F , r, l = 1, 2, . . . , Nα). Therefore a ∈ A. This way we showed that

{a ∈ A : Φ(a) ∈ A⊗alg A} ⊂ A.

The converse inclusion is obvious.

Ad 3 and 4. We shall use the holomorphic family (fz)z∈C of linear multiplicative
functionals on A introduced in the previous section. For any a ∈ A and t ∈ R we set

σt(a) = fit ∗ a ∗ fit, (7.4)

τt(a) = fit ∗ a ∗ f−it, (7.5)

R(a) = κ(f 1
2
∗ a ∗ f− 1

2
). (7.6)

Using Theorem 1.4 of [13] one can easily verify that (σt)t∈R and (τt)t∈R are one-
parameter groups of ∗-automorphisms and R is an antiisomorphism of the ∗-algebra
A. Moreover Rτt(a) = τtR(a) and

h(σt(a)) = h(a),

h(τt(a)) = h(a),

h(R(a)) = h(a)

for any a ∈ A and t ∈ R. Therefore σt, τt and R are unitarily implemented

π(σt(a)) = ∆itπ(a)∆−it,

π(τt(a)) = Q2itπ(a)Q−2it,

π(R(a)) = Zπ(a∗)Z∗,
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where π is the GNS-representation of A introduced in Section 4, ∆ and Q are strictly
positive selfadjoint operators and Z is an antiunitary operator acting on H.

We assumed that h is faithful. So is π and the above relations show that σt, τt and
R are norm preserving and admit continuous extensions to the whole A.

Statement 3 follows immediately from the formula (1.21).

Combining (7.5) and (7.6) we see that

κ(a) = R(τi/2(a)) (7.7)

for any a ∈ A. To show that D(κ) = D(τi/2), it is sufficient to prove that A is a core
for τi/2. We shall use a regularization operator. Let n be a natural number. For any
a ∈ A we set

Rn(a) =
n√
π

∫
R
e−n

2t2τt/2(a)dt.

We know that τt(a) depends continuously on t. Therefore ‖Rn(a) − a‖ → 0, when
n → ∞. Taking into account (7.5) one can easily show, that RnA ⊂ A. One should
notice that ‖Rn(a)‖ ≤ ‖a‖. Moreover Rn(a) ∈ D(τi/2) and ‖τi/2(Rn(a))‖ ≤ en

2‖a‖.
Indeed τi/2Rn = n√

π

∫
exp[−n2(t − i)2]τt/2dt, ‖τi/2Rn‖ ≤ n√

π

∫
| exp[−n2(t − i)2]|dt and

the estimate follows.

Let a ∈ D(τi/2), b = τi/2(a) and ε > 0. Then for sufficiently large n we have

‖Rn(a)− a‖ ≤ ε

2
, ‖Rn(b)− b‖ ≤ ε

2
.

Clearly τi/2Rn(a) = Rn(b). We know that A is dense in A. Let aε be an element of A
such that

‖aε − a‖ ≤
ε

2
e−n

2

.

Then Rn(aε) ∈ A and using the above estimates we have

‖Rn(aε)− a‖ ≤ ‖Rn(aε − a)‖+ ‖Rn(a)− a‖ ≤ ε

2
(e−n

2

+ 1) ≤ ε,

‖τi/2(Rn(aε))− b‖ ≤ ‖τi/2Rn(aε − a)‖+ ‖Rn(b)− b‖ ≤ ε.

It shows that the closure of τi/2|A coincides with τi/2 and the statement follows.

Let a = uβrs
∗

and b = uαkl (where α, β ∈ Ĝ, r, s = 1, 2, . . . , Nβ and k, l = 1, 2, . . . , Nα).
Using (5.3), (5.12) and the orthonormality relations (6.18), (6.19) one can check that

κ(b ∗ ha) = a ∗ hb,

κ(bh ∗ a) = ha ∗ b.

By linearity these relations hold for any a, b ∈ A. Remembering that A is dense in A
we get the remaining part of Statement 4.

The proof of Theorem 1.6 is complete.
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