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Hoża 74, 00-682 Warsaw, Poland

and

S. Zakrzewski†‡

Arnold Sommerfeld Institute, TU Clausthal

Leibnizstr. 10, W– 3392 Clausthal–Zellerfeld, Germany

Abstract

Three properties characteristic for the Lorentz group are selected and all quantum
groups with the same properties are found. As a result, a number of one, two and
three parameter quantum deformations of the Lorentz group are discovered. The
deformations described in [1] and [2] are among them. Only the Hopf ∗-algebra level
is discussed.

0 Introduction

The existence of several different quantum deformations of the Lorentz group (cf. [1], [2])
rises the question of their classification. In this paper we give a complete answer to this
question. More precisely we describe (on the Hopf ∗-algebra level) all quantum groups of
2× 2 matrices having the following properties:

1. The tensor square of the fundamental representation splits into a direct sum of two
components, one of which is the one-dimensional trivial representation.

2. The tensor product of the fundamental representation by the complex conjugate one
is irreducible and does not depend on the order of factors.

3. The group is not a proper subgroup of a group satisfying two above conditions.
It is not difficult to show that among the classical groups, SL(2,C) is the only one

having the above properties.
Among quantum groups, the solution is given by a few families described in Sec-

tion 3. Half (roughly speaking) of those families turn out to be continuous deformations
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of SL(2,C). Among those continuous deformations we have one three-parameter family
(relations (29)–(35) and those in subsection 3.1.1). It would be interesting to compare our
classification with that of possible Poisson group structures [3] on the Lorentz group (the
latter classification is not known to us at the moment; general statements on the classifica-
tion of simple Poisson groups, like Theorem 1 in [4] concerning the compact case, could be
very useful).

The paper is organized as follows. In Section 1 a general strategy is presented. The
quantum group satisfying properties characteristic for Lorentz group is shown to be de-
termined by two basic intertwiners, one of which is the ‘twisted volume element’ E:C →
K ⊗ K (K – the space of the fundamental representation) related also to well known R-
matrix R: K ⊗ K → K ⊗ K for complex SLq(2,C) (cf. [5]). The second intertwiner,
X: K ⊗K → K ⊗K (K is the complex conjugate of K), tells how to commute the matrix
elements of the fundamental representation with their adjoints. The intertwiners have to
satisfy certain compatibility conditions. In Section 2 we classify the intertwiners (satisfying
required conditions) modulo the action of the general linear group of K. In Section 3 we
give a list of the corresponding commutation relations defining the algebra of polynomials
on the deformed Lorentz group. Lengthy proofs are pushed to the last two sections.

Quantum groups considered in this paper are formulated on the (preliminary) Hopf ∗-
algebra level. A Hopf ∗-algebra is a (complex) Hopf algebra (A, ∆) with an additional star
operation * (making A a ∗-algebra) such that ∆∗ = (∗ ⊗ ∗)∆ (for Hopf algebras see [3]
and references therein; more about Hopf ∗-algebras can be found in [9, 13]). If a quantum
group G is given by a Hopf ∗-algebra (A, ∆) then elements of A are called polynomials
on G. G is said to be a quantum group of matrices if there is a distinguished finite-
dimensional representation (of G) whose matrix elements generate A (the representation is
called fundamental).

For the basic notation we refer to [10, 1]. In particular, we shall use symbols ©> and
©⊥ introduced in [10].

Let us mention that the approach to study quantum groups which are close to a given
classical group — by selecting some properties of representations — has been used effectively
in previous papers [1, 11]. The procedure described in the present paper may be applied
to study complex quantum groups of the series An, Bn, Cn, Dn (as given by [5]) as real
groups (see the discussion of a realification procedure in [13]).

1 General framework

Let G be a quantum group satisfying the requirements 1, 2 and 3 of Section 0, A be the
∗-algebra of polynomials on G, u be the fundamental representation of G and K be the
two-dimensional vector space carrying u: u ∈ B(K)⊗A. The ∗-algebra A is generated by
matrix elements of u.

Let K be the complex conjugate of K. It means that an invertible antilinear mapping
K 3 x 7→ x ∈ K is given. For any m ∈ B(K) and x ∈ K we set mjx = mx. Clearly,
mj ∈ B(K) and B(K) 3 m 7→ mj ∈ B(K) is an antilinear multiplicative bijective map.
Let B(K) 3 n 7→ nj−1 ∈ B(K) be the inverse map. The complex conjugate (of the
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fundamental) representation is introduced by the formula

u = uj⊗∗.

Property 1 means that there exist linear mappings E:C → K ⊗K and E ′: K ⊗K → C
such that E ′E 6= 0 and

(u©> u)(E ⊗ I) = (E ⊗ I) (1)

(E ′ ⊗ I)(u©> u) = (E ′ ⊗ I). (2)

Let us notice that (E ′ ⊗ idK)(idK ⊗ E) ∈ B(K ⊗ C,C ⊗ K) = B(K) intertwins the
representation u with itself. It follows immediately from property 2 that u is irreducible.
Therefore (Schur lemma), (E ′ ⊗ idK)(idK ⊗ E) = λ idK , where λ ∈ C. Assume for the
moment that λ = 0. Then E(1) is of rank 1 tensor: E(1) = x ⊗ y, where x, y ∈ K and
using (1) one can easily show that the subspaces Cx and Cy are u-invariant, so we get a
contradiction with the irreducibility of u. Therefore λ 6= 0. Rescaling E ′ we may assume
that

(E ′ ⊗ idK)(idK ⊗ E) = idK . (3)

Due to this relation E ′ is determined by E .
According to Property 2, the representations u©> u and u©> u are equivalent. It means

that there exists an invertible X ∈ B(K ⊗K,K ⊗K) such that

(X ⊗ I)(u©> u) = (u©> u)(X ⊗ I). (4)

Let us notice that (X⊗E ′)(idK⊗X⊗idK)(E⊗idK⊗idK) ∈ B(C⊗K⊗K, K⊗K⊗C) =
B(K⊗K) intertwins u©> u with itself. Remembering that u⊗u is irreducible (cf. Property
2) we get

(X ⊗ E ′)(idK ⊗X ⊗ idK)(E ⊗ idK ⊗ idK) ∼ idK ⊗ idK ,

where ∼ denotes the equality modulo a non-zero complex numerical factor (we use this
notation also in the sequel). Tensoring both sides (from the right) by idK , composing with
idK ⊗ E and using (3) we get

(X ⊗ idK)(idK ⊗X)(E ⊗ idK) ∼ (idK ⊗ E). (5)

Let σ: K ⊗K → K ⊗K denote the linear bijection such that σ(x ⊗ y) = y ⊗ x for all
x, y ∈ K. One can easily verify that

(u©> u)j−1⊗j⊗∗ = (σ ⊗ I)(u©> u)(σ−1 ⊗ I)

[(σ−1 ⊗ I)(u©> u)(σ ⊗ I)]j
−1⊗j⊗∗ = u©> u.

Multiplying the both sides of (4) by σ ⊗ I we get

(Xσ ⊗ I)(σ−1 ⊗ I)(u©> u)(σ ⊗ I) = (u©> u)(Xσ ⊗ I).

Applying now j−1 ⊗ j ⊗ ∗ to the both sides and using the two preceding formulae we get

(σ−1(Xσ)j−1⊗j ⊗ I)(u©> u) = (u©> u)(σ−1(Xσ)j−1⊗j ⊗ I).
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Since u©> u and u©> u are irreducible, there exists at most one (up to numerical factor)
operator intertwining them. Therefore σ−1(Xσ)j−1⊗j ∼ X and

(Xσ)j−1⊗j ∼ σX. (6)

Remark: By a choice of basis in K, relation (4) is equivalent to a system of 16 relations
containing matrix elements of u and their conjugates. Due to (6) this system is selfadjoint:
applying * to the both sides of any relation of the system we obtain a relation belonging to
the system.

Property 3 means that (1), (2) and (4) are the only algebraic relations that are imposed
on matrix elements of u.

Theorem 1.1 Let E:C → K ⊗ K, E ′: K ⊗ K → C and X: K ⊗ K → K ⊗ K be linear
maps. Assume that E and E ′ are of rank 2. Let A be the universal ∗-algebra generated by
matrix elements of u satisfying relations (1), (2) and (4). Then there exists unique unital
∗-homomorphism ∆:A → A⊗A such that (id⊗∆)u = u©⊥ u. (A, ∆) is a Hopf ∗-algebra.

Proof: We give only a sketch, since the procedure is quite standard. Since the value of ∆
on the generators uk

l (matrix elements of u in some basis of K) is fixed:

∆uk
l =

∑
r

uk
r ⊗ ur

l,

the morphism ∆ is unique, if exists. For the existence one has to show that ∆uk
l satisfy the

same relations as uk
l (relations (1), (2) and (4)). One can check it by a direct calculation

(usually omitted in papers on the subject). However, one can easily observe that this
follows from the form of the defining relations, which are given by intertwiners (for a
general statement concerning this point see e.g. [9]). The existence of the anitpode is
related to the invertibility of u, which holds by the non-degeneracy of E and E ′.

Q.E.D.
Remark: Theorem 1.1 is in fact very weak. It says nothing about the size of the algebra
A. If E, E ′ and X do not satisfy relations (3), (5) and (6) then A may be very small. In
a generic case A is generated by single unitary element v such that v2 = I (dimA = 2)

and u =

(
v 0
0 v

)
. Such a Hopf algebra is related to the Z2 group. On the other hand

relations (3), (5) and (6) imply that A is as large as the algebra of polynomials on the
classical Lorentz group SL(2,C). Indeed, we have

Theorem 1.2 Let A be the ∗-algebra introduced in Theorem 1.1 and AN denote the sub-
space in A of all polynomials (in matrix elements of u and u) of degree ≤ N . Let E, E ′

and X satisfy relations (3), (5), (6) and assume that X is invertible. Then dim AN is the
same as for the classical Lorentz group.

For the proof we refer to Section 4, in which further information on the structure of A
is contained.

Let G(E, X) denote the quantum group determined by a choice of E and X as in
Theorem 1.2. Relations (1), (2), (4) can be written as conditions for u:

(u©> u)(πE ⊗ I) = (πE ⊗ I) ((πE)′ ⊗ I)(u©> u) = ((πE)′ ⊗ I)
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(X−1 ⊗ I)(u©> u) = (u©> u)(X−1 ⊗ I),

where π is the permutation in K ⊗K. It follows that

G(E, X) = G(πE,X−1), (7)

since u can be treated as a fundamental representation of G(E, X).

2 Classification theorem

In this section we present all solutions of (3), (5) and (6). As before, K denotes a 2-
dimensional complex vector space.

For simplicity, we shall not distinguish between E and E(1) in the sequel. Let Esym

denote the symmetric part of E. The normal form of E is given by the following algebraic
lemma, stated in [11] (cf. also [7, 8]).

Lemma 2.1 Let E ∈ K⊗K be of rank 2. There exists a basis e1, e2 in K such that either

E = Eq = e1 ⊗ e2 − qe2 ⊗ e1, (8)

where q is a non-zero complex number (the case of rank Esym 6= 1),
or

E = Especial = e1 ⊗ e2 − e2 ⊗ e1 + e1 ⊗ e1 (9)

(the case of rank Esym = 1).

In the sequel we replace X by Q = σX ∈ End (K ⊗K). In terms of Q, conditions (5)
and (6) read as follows

Q13Q23E12 ∼ E12, (10)

σQ̄σ−1 ∼ Q, (11)

where we have used the usual leg-numbering notation and Q̄ = Qj⊗j−1
.

In order to formulate our main result, we adopt the following notation. Given a basis
e1, e2 of K, we denote by Qe the matrix of Q in the basis e1⊗ ē1, e1⊗ ē2, e2⊗ ē1, e2⊗ ē2. (in
another basis f1, f2 of K, the corresponding matrix of Q is Qf , etc.). If Q =

∑
kl ek

l ⊗ qk
l,

where ek
l = ek ⊗ el (here e1, e2 is the dual basis) and qk

l ∈ End(K), then

Qe =

[
a b
c d

]
, (12)

where a, b, c and d are the matrices of q1
1, q1

2, q2
1 and q2

2, respectively.

Theorem 2.2 Let E ∈ K ⊗K be of rank 2 and let an invertible Q ∈ End (K ⊗K) satisfy
conditions (10) and (11). Then there exists a basis e1, e2 in K such that either
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I. E is given by (8) and Qe has one of the following forms

Qe ∼


1 0 0 0
0 t 0 0
0 0 t 0
0 0 0 1

 t ∈ R \ {0} (13)

Qe ∼


1 0 0 0
0 t 0 0
0 0 −t 0
0 0 0 −1

 t ∈ iR \ {0} (14)

Qe ∼


1 0 0 ±1
0 q−1 0 0
0 0 q−1 0
0 0 0 1

 (only if q is real) (15)

Qe ∼


1 0 0 ±1
0 q−1 0 0
0 0 −q−1 0
0 0 0 −1

 (only if q is imaginary) (16)

For q = −1 we have additionally three following cases:

Qe ∼


0 1 s 0
1 0 0 −s
s 0 0 −1
0 −s −1 0

 |s| = 1, s 6= ±1 (17)

Qe ∼


1 0 0 p
0 −1 p 0
0 p −1 0
p 0 0 1

 p ∈ R, p 6= ±1 (18)

Qe ∼


1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1

 (19)

or,
II. E is given by (9) and Qe has one of the following forms

Qe ∼


1 0 0 r
0 1 0 0
0 0 1 0
0 0 0 1

 r ∈ R (20)
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Qe ∼


1 1 1 0
0 1 0 −1
0 0 1 −1
0 0 0 1

 (21)

For the proof we refer to Section 5.

Remark: It is possible to describe Q given by formulas (17)–(19) in a more convenient
form. Let σx, σy, σz be linear operators in K with matrices[

0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

]
,

respectively. Then Q in formulas (17)–(19) can be written as follows:

Q ∼ σz ⊗ σ̄x + sσx ⊗ σ̄z (formula (17)) (22)

Q ∼ σz ⊗ σ̄z + pσx ⊗ σ̄x (formula (18)) (23)

Q ∼ I ⊗ (I + σ̄x) + σx ⊗ (I − σ̄x) (formula (19)). (24)

Matrices of σx and σz in the basis f1 = e1 + ie2, f2 = e1 − ie2 of eigenvectors of σy are the
same as matrices of σy and σx in the basis e1, e2. It follows that

Qf ∼


0 0 0 1
0 0 t 0
0 t 0 0
1 0 0 0

 t ∈ R \ {0} (25)

in the case (23) (or (18)), and

Qf ∼


0 0 0 1
0 0 t 0
0 −t 0 0
−1 0 0 0

 t ∈ iR \ {0} (26)

in the case (22) (or (17)). In case (24) we pass to the basis f1 = e1 + e2, f2 = e1 − e2 of
eigenvectors of σx and we have

Qf ∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (27)

In the new basis, E has no longer the form (8). Instead, it has the following form:

E ∼ f1 ⊗ f1 − f2 ⊗ f2 (28)

(in all three above cases!).
The following table introduces notation for quantum groups G(E, X) corresponding to

pairs (E, Q) classified in Theorem 2.2.
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G(E, X) formula for E formula for Q parameters

Gq,t (8) (13) or (14) 0 6= q ∈ C, 0 6= t ∈ R ∪ iR

G±
q (8) (15) or (16) 0 6= q ∈ R ∪ iR

Gt
−1 (28) (25) or (26) 0 6= t ∈ R ∪ iR

G−1 (28) (27)

Gr
spec (9) (20) r ∈ R

Gspec (9) (21)

The range of parameters can be in fact restricted, because of the following equalities
implied by (7):

Gq,t = G1/q,1/t, G±
q = G∓

1/q (real q), G±
q = G±

1/q (imaginary q),

Gt
−1 = G

1/t
−1 , Gr

spec = G−r
spec.

Additionally, due to the invariance of Qe in (13), (14) with respect to the permutation
e1 → e2, e2 → e1, we have the following equality:

Gq,t = G1/q,t.

3 Commutation relations

In this section we write down explicitly the commutation rules (1), (2) and (4) corresponding
to E and Q as classified in preceding section, thus giving a detailed list of Hopf ∗-algebra
deformations of SL(2,C).

Let e1, e2 be a basis as in Theorem 2.2. The commutation relations (1), (2) for the

elements of u = (uk
l) =

[
α β
γ δ

]
turn out to be the following (cf. [11])

αβ = qβα (29)

αγ = qγα (30)

βδ = qδβ (31)

γδ = qδγ (32)

βγ = γβ (33)

αδ = I + qβγ (34)

δα = I + q−1βγ (35)

in the case E = Eq, q 6= 0, and

α2 − βα + αβ = I (36)

αγ − βγ + αδ = I (37)
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γα− δα + γβ = −I (38)

γ2 − δγ + γδ = 0 (39)

γ2 − αγ + γα = 0 (40)

γδ − αδ + γβ = −I (41)

δγ − βγ + δα = I (42)

δ2 − βδ + δβ = I (43)

in the case E = Especial (see also [6, 7]).
The commutation relations between uk

l and (um
n)∗ are given by

Qe


αα∗ αβ∗ βα∗ ββ∗

αγ∗ αδ∗ βγ∗ βδ∗

γα∗ γβ∗ δα∗ δβ∗

γγ∗ γδ∗ δγ∗ δδ∗

 =


α∗α β∗α α∗β β∗β
γ∗α δ∗α γ∗β δ∗β
α∗γ β∗γ α∗δ β∗δ
γ∗γ δ∗γ γ∗δ δ∗δ

Qe. (44)

Corresponding to different solutions for E and Q given by Theorem 2.2 we have several
particular cases of commutation relations. We list them in three following subsections.

3.1 The case of E = Eq, where q is a complex non-zero parameter.

In this case we have relations (29)–(35) for α, β, γ, δ and the following four possibilities
for rules (44) (corresponding to (13), (14), (15), (16)).

3.1.1 Gq,t ; t real, non-zero.

αα∗ = α∗α
αβ∗ = tβ∗α ββ∗ = β∗β
αγ∗ = t−1γ∗α βγ∗ = γ∗β γγ∗ = γ∗γ
αδ∗ = δ∗α βδ∗ = t−1δ∗β γδ∗ = tδ∗γ δδ∗ = δ∗δ.

Remark: In the case q = t, we obtain the quantum deformation of SL(2,C), related to
the Gauss decomposition as investigated in [2].

3.1.2 Gq,t ; t imaginary, non-zero.

αα∗ = α∗α
αβ∗ = tβ∗α ββ∗ = −β∗β
αγ∗ = t−1γ∗α βγ∗ = −γ∗β γγ∗ = −γ∗γ
αδ∗ = δ∗α βδ∗ = −t−1δ∗β γδ∗ = −tδ∗γ δδ∗ = δ∗δ.

3.1.3 G±
q ; q real.

αα∗ ± γγ∗ = α∗α
αβ∗ ± γδ∗ = q−1β∗α ββ∗ ± δδ∗ = β∗β ± α∗α

αγ∗ = qγ∗α βγ∗ = γ∗β γγ∗ = γ∗γ
αδ∗ = δ∗α q−1βδ∗ = δ∗β ± γ∗α γδ∗ = q−1δ∗γ δδ∗ = δ∗δ ± γ∗γ.

9



Relations in this form do not lead to a commutative algebra for q = 1. However, passing
to a new basis f1 = |s|−1/2e1, f2 = e2 we obtain relations of the following form (cf. the
prototype of (15) given in (72) below for r = 1, t = q−1):

αα∗ + sγγ∗ = α∗α
αβ∗ + sγδ∗ = q−1β∗α ββ∗ + sδδ∗ = β∗β + sα∗α

αγ∗ = qγ∗α βγ∗ = γ∗β γγ∗ = γ∗γ
αδ∗ = δ∗α q−1βδ∗ = δ∗β + sγ∗α γδ∗ = q−1δ∗γ δδ∗ = δ∗δ + sγ∗γ,

where s is an arbitrary real number (s = 0 is admitted by 3.1.1). The commutative case
is now recovered in the limit s → 0, q → 1. Quantum groups corresponding to the same q
and the same sign of s are isomorphic.
Remark: The above relations in the form corresponding to s = q2 − 1 have been studied
in [1] as a first example of a deformation of the Lorentz group. This case turns out to
be both the quantum double and the real complexification (cf. [9]) of SUq(2) . The case
s = 1 − q2 corresponds to real complexification (quantum double) of SUq(1, 1) (cf. [9],
formulae (3.77)–(3.80)).

3.1.4 G±
q ; q imaginary.

αα∗ ± γγ∗ = α∗α
αβ∗ ± γδ∗ = q−1β∗α ββ∗ ± δδ∗ = −β∗β ± α∗α

αγ∗ = qγ∗α βγ∗ = −γ∗β γγ∗ = −γ∗γ
αδ∗ = δ∗α q−1βδ∗ = −δ∗β ± γ∗α γδ∗ = −q−1δ∗γ δδ∗ = δ∗δ ∓ γ∗γ.

3.2 Three additional cases for q = −1.

We use here the form of E given in (28), which yields the following commutation relations
for α, β, γ and δ:

αβ = γδ

βα = δγ

αγ = βδ

γα = δβ

α2 = δ2

β2 = γ2

α2 − β2 = 1

We have then three following cases (corresponding to (25)–(27)).

3.2.1 Gt
−1 ; t real, non-zero.

αα∗ = δ∗δ
αβ∗ = tγ∗δ ββ∗ = γ∗γ
αγ∗ = t−1β∗δ βγ∗ = β∗γ γγ∗ = β∗β
αδ∗ = α∗δ βδ∗ = t−1α∗γ γδ∗ = tα∗β δδ∗ = α∗α.

10



3.2.2 Gt
−1 ; t imaginary, non-zero.

αα∗ = δ∗δ
αβ∗ = tγ∗δ ββ∗ = −γ∗γ
αγ∗ = t−1β∗δ βγ∗ = −β∗γ γγ∗ = −β∗β
αδ∗ = α∗δ βδ∗ = −t−1α∗γ γδ∗ = −tα∗β δδ∗ = α∗α.

3.2.3 G−1

αα∗ = α∗α
αβ∗ = β∗α ββ∗ = −β∗β
αγ∗ = γ∗α βγ∗ = γ∗β γγ∗ = −γ∗γ
αδ∗ = δ∗α βδ∗ = −δ∗β γδ∗ = −δ∗γ δδ∗ = δ∗δ.

3.3 The case of E = Especial.

In this case we have relations (36)–(43), which can also be written in the following equivalent
form (cf. [12]):

[α, β] = I − α2 (45)

[α, γ] = γ2 [β, γ] = γα + δγ (46)

[α, δ] = (δ − α)γ [β, δ] = δ2 − I [γ, δ] = −γ2 (47)

Now follow two cases of commutation rules (44) (corresponding to (20), (21)).

3.3.1 Gr
spec ; r real.

αα∗ + rγγ∗ = α∗α
αβ∗ + rγδ∗ = β∗α ββ∗ + rδδ∗ = β∗β + rα∗α

αγ∗ = γ∗α βγ∗ = γ∗β γγ∗ = γ∗γ
αδ∗ = δ∗α βδ∗ = δ∗β + rγ∗α γδ∗ = δ∗γ δδ∗ = δ∗δ + rγ∗γ.

3.3.2 Gspec

[α, β∗] = α∗α− αδ∗ − γβ∗

[α, γ∗] = γ∗γ [β, γ∗] = γ∗α + δγ∗

[α, δ∗] = γ∗α + γδ∗ [β, δ∗] = δδ∗ − δ∗α− γ∗β [γ, δ∗] = γ∗γ

and

[α, α∗] = −αγ∗ − γα∗

[β, β∗] = −α∗β − β∗α− βδ∗ − δβ∗

[γ, γ∗] = 0

[δ, δ∗] = −δ∗γ − γ∗δ.
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Remark: Relations in Section 3.3 do not contain an explicit deformation parameter (cf.
remark in 3.1.3). We can introduce it passing to a new basis f1 = τ−1e1, f2 = e2, where τ
is an arbitrary non-zero complex number. This is equivalent to replacing β by β/τ and γ
by γτ in the commutation relations. If we do this, equations (45)–(47) have again the same
form with the commutator [·, ·] replaced by 1/τ [·, ·]. In 3.3.1 the only change consists in
replacing r by r|τ |2. In 3.3.2, if we use (78) with r = −1 instead of (21) and τ = −h ∈ iR,
the corresponding quantum Lorentz group contains SLh(2,R) of [12] as a subgroup (and
seems to coincide with its real complexification [9]).

4 Proof of Theorem 1.2

Theorem 1.2 follows from two following propositions.

Proposition 4.1 Let A be the ∗-algebra introduced in Theorem 1.1 and Ahol be the subal-
gebra of A generated by matrix elements of u. Assume that E, E ′ and X satisfy relations
(3), (5) and (6). Then

1. Ahol is the universal algebra generated by matrix elements of u satisfying the relations
(1) and (2).

2. Any element a ∈ A is of the form

a =
∑

arbr
∗, (48)

where ar, br ∈ Ahol (r runs over a finite set).
3. The decomposition (48) is unique in the sense that the sum∑

ar ⊗ br
∗

is determined by a.

Proof: Since K is finite-dimensional, it follows from (3) that

(idK ⊗ E ′)(E ⊗ idK) = idK (49)

(identifying elements of V ⊗W with linear maps from W ∗ to V , formula (3) means that
E ′ ∈ K∗ ⊗K∗ is the inverse of E ∈ K ⊗K). By (5),

(X ⊗ idK)(idK ⊗X)(E ⊗ idK) = c(idK ⊗ E) (50)

for some number c. Tensoring both sides (from the right) by idK and composing with
(idK ⊗ idK ⊗ E ′) (from the left), we get

X(idK ⊗ idK ⊗ E ′)(idK ⊗X ⊗ idK)(E ⊗ idK ⊗ idK) = c(idK ⊗ idK),

hence also

(idK ⊗ idK ⊗ E ′)(idK ⊗X ⊗ idK)(E ⊗ idK ⊗ idK)X = c(idK ⊗ idK).
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Tensoring by idK (from the left) and composing with (E ′ ⊗ idK) (also from the left) we
obtain

(idK ⊗ E ′)(X ⊗ idK)(idK ⊗X) = c(E ′ ⊗ idK). (51)

Let Ã be the free ∗-algebra generated by matrix elements of u, J be the ∗-ideal of Ã
generated by the relations (1), (2) and (4). Then

A = Ã/J .

Let Ãhol ⊂ Ã be the (free) subalgebra generated by matrix elements of u, Jhol be the
ideal in Ãhol generated by relations (1) and (2) and J 2 be the ideal of Ã generated by
relations (4). It is sufficient to show that

Ã = ÃholÃhol
∗ ⊕ J 2 (52)

J = JholÃhol
∗
+ ÃholJhol

∗ + J 2 (53)

J ∩ Ãhol = Jhol. (54)

Indeed, Statement 1 is equivalent to (54), Statement 2 follows from (52) and Statement 3
is implied by (53).

Let

u =

[
α β
γ δ

]
=

[
u11 u12

u21 u22

]
.

Remembering that X is invertible one may rewrite relations (4) in the following form:

u∗aub =
∑
a′b′

Y b′a′
abub′u

∗
a′ ,

where a, b, a′, b′ ∈ {11, 12, 21, 22} and Y b′a′
ab are complex numbers depending on matrix

elements of X.
By definition, elements of Ã are linear combinations of linearly independent words

composed of characters α, β, γ, δ, α∗, β∗, γ∗a and δ∗. Let ts (s = 0, 1, 2, ...) be the linear
operator acting on Ã in the following way:

If a word w ∈ Ã is of the form

w = w′ua
∗ubw

′′, (55)

where w′, w′′ are words and the lenght of w′ is s then

tsw =
∑
a′b′

Y b′a′
abw

′ub′u
∗
a′w

′′.

Otherwise (w is not of the form (55)) tsw = w. One can easily verify that

ts
2 = ts (56)

tsts+1ts = ts+1tsts+1

tsts′ = ts′ts (for |s− s′| > 1)

}
(57)
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x− tsx ∈ J 2 (58)

for any x ∈ Ã. Moreover, if x ∈ J 2 then

x =
∑
s

xs, (59)

where xs ∈ ker ts. (Elements of J2 are linear combinations of elements of the form

x = y(Xab
cduc

ku
d
l − ua

cu
b
dX

cd
kl )z,

where y, z are monomials in matrix elements of u, u. Clearly, tsx = 0 where s is the lenght
of y.) Let s < r be nonnegative integers. Using the braid relations (57) we get

(t0t1 . . . tr)ts = t0t1 . . . tsts+1tsts+2 . . . tr

= t0t1 . . . ts+1tsts+1ts+2 . . . tr

= ts+1(t0t1 . . . tr).

By virtue of (56), (t0t1 . . . tr)tr = t0t1 . . . tr. Therefore setting Tr = (t0t1 . . . tr)
r+1 we get

Trts = Tr (60)

for s = 0, 1, 2, . . . , r. Using (58) we obtain

x− Trx ∈ J 2 (61)

for any x ∈ Ã. If r is larger than the lenght of any word entering x then clearly Trx ∈
ÃholÃhol

∗
and (61) shows that

Ã ⊂ ÃholÃhol
∗
+ J 2. (62)

Assume that x ∈ J 2. Then x is of the form (59) and choosing r larger that all s in (59)
and using (60) we get

Trx =
∑
s

Trxs =
∑
s

Trtsxs = 0.

On the other hand if x ∈ ÃholÃhol
∗

then tsx = x for all s and Trx = x. This way we showed
that ÃholÃhol

∗ ∩ J 2 = {0} and (52) follows.
Let “ ≡” denote the equality in Ã mod J 2. Using (50) one can easily show that

cu©> [(u©> u− I
B(K⊗K)⊗Ã)(E ⊗ I)]

≡ (X ⊗ idK ⊗ I)(idK ⊗X ⊗ I){[(u©> u− I
B(K⊗K)⊗Ã)(E ⊗ I)]©> u}.

Similarly using (51) one may verify that

cu©> [(E ′ ⊗ I)(u©> u− I
B(K⊗K)⊗Ã)]

≡ {[(E ′ ⊗ I)(u©> u− I
B(K⊗K)⊗Ã)]©> u}(idK ⊗X−1)(X−1 ⊗ idK).

By virtue of (62) these relations show that

ÃJhol ⊂ JholÃhol
∗
+ J 2.
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Therefore denoting by J ′ the right hand side of (53) and using once more (62) we see that
ÃJ ′ ⊂ J ′. It means that J ′ is a left ideal in Ã. On the other hand J 2 is ∗-invariant (see
remark following relation (6)), so is J ′. It shows that J ′ is a ∗-ideal in A. Remembering
that J is the smallest ∗-ideal in A containing Jhol and J 2 we obtain (53). Relation (54)
follows immediately from (52) and (53).

Q.E.D.
Clearly, the algebra Ahol introduced in Theorem 1.2 depends only on E and can be

identified as the algebra generated by four elements α, β, γ, δ satisfying relations (29)–(35)
or (36)–(43).

Proposition 4.2 Let AN
hol be the subspace in A of all polynomials (of α, β, γ and δ) of

degree ≤ N . Then

dimAN
hol =

N+1∑
k=1

k2. (63)

Proof: Indeed, for the case of relations (36)–(43) see [11]. For relations (29)–(35): using
the representation

αeijk = ei−1,j,k

βeijk = qiei,j+1,k

γeijk = qiei,j,k+1

δeijk = ei+1,j,k + q2i+1ei+1,j+1,k 1

it is easy to show that {αkβ
mγn}k∈Z,m,n≥0 (where αk = αk for k ≥ 0 and αk = δ−k for

k < 0) is a linearly independent set. It is therefore a basis and (63) follows easily (cf. the
last paragraph of Section 3 in [11]).

Q.E.D.
Using the above propositions one can make the following remarks on representation

theory of the quantum group introduced in Theorem 1.1 under assumptions of Theorem
1.2.
Remark 1: Let V be a finite-dimensional vector space and let v1 ∈ B(V ) ⊗ Ahol, v2 ∈
B(V ) ⊗ Ahol

∗ be corepresentations of Ahol and Ahol
∗ (respectively), such that the matrix

elements of v1 commute with the matrix elements of v2. Then v = v1v2 ∈ B(V ) ⊗ A is a
corepresentation of A . Each corepresentation of A is of this form (cf. Prop. 6.2 of [1]).

Remark 2: Except cases when E = Eq = e1 ⊗ e2 − qe2 ⊗ e1 with q being a root of unity,
an analogue of Theorem 6.3 of [1] holds.

5 The proof of Theorem 2.2

The most important observation used in the proof is that equations

Q13Q23E12 = E12 and E ′
12Q13Q23 = E ′

12 (64)

(i.e. (50) and (51); we can consider equalities in (64) instead of the ∼ signs by the scaling
argument) are equivalent to equations (29)–(35) (if E is given by (8)) or (36)–(43) (if E is
given by (9)) with α, β, γ, δ replaced by 2× 2-matrices a, b, c, d (see formula (12)).

15



Using explicitly the matrix elements of the blocks in (12): a =

[
a1

1 a1
2

a2
1 a2

2

]
, etc., we

can write (11) as follows:
ā1

1 b̄1
1 ā1

2 b̄1
2

c̄1
1 d̄1

1 c̄1
2 d̄1

2

ā2
1 b̄2

1 ā2
2 b̄2

2

c̄2
1 d̄2

1 c̄2
2 d̄2

2

 = τ


a1

1 a1
2 b1

1 b1
2

a2
1 a2

2 b2
1 b2

2

c1
1 c1

2 d1
1 d1

2

c2
1 c2

2 d2
1 d2

2

 , (65)

where τ is a complex number of modulus 1 (because Q 7→ σQσ−1 is an anti-linear involu-
tion).

Now we pass to considering specific cases. In each case we start with a basis e1, e2, in
which E has its canonical form (8) or (9). The matrix Qe of Q has the form (12). We solve
conditions (64), (65) for a, b, c, d. We sometimes change then the original basis e1, e2 to a
‘better’ basis f1, f2, in which E has also a canonical form. The final basis f1, f2 has then
to be taken as e1, e2 appearing in the Theorem.

5.1 E = Eq, q = 1.

In this case a, b, c, d generate a commutative subalgebra in End (C2). Such a subalgebra
is generated either by a projection, or by a nilpotent. We have two cases:

Q = A⊗ P + B ⊗ (I − P ), where P is a projection, P 6= 0 (66)

Q = A⊗ I + B ⊗N, where N2 = 0, N 6= 0. (67)

In the first case, σQσ−1 = P ⊗ A + (I − P )⊗ B, hence from (11) it follows that A, B are

functions of P . Using the canonical basis f1, f2 for P (the matrix of P being

[
1 0
0 0

]
), we

obtain

Qf ∼


1 0 0 0
0 t 0 0
0 0 s 0
0 0 0 r


and from ad = I we have s = tr, hence

Qf ∼


1 0 0 0
0 t 0 0
0 0 tr 0
0 0 0 r

 . (68)

From (65) we obtain 0 6= r ∈ R and |r| = 1, hence r = ±1. This gives (13) and (14).
In the second case, A, B are functions of N (the same reason as before). Let f1, f2 be

the canonical basis for N (the matrix of N being

[
0 1
0 0

]
). We obtain

Qf ∼


1 r s t
0 1 0 s
0 0 1 r
0 0 0 1
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and it follows from ad = I that r = 0. From (65) we obtain s = 0, t ∈ R, hence

Qf ∼


1 0 0 t
0 1 0 0
0 0 1 0
0 0 0 1

 = I + tf1
2 ⊗ f̄ 2

1 .

We may assume that t 6= 0. Passing to a rescaled basis, g1 = kf1, g2 = k−1f2, where
k4 = |t|, we obtain f1

2 = k−2g1
2, hence tf1

2⊗ f̄ 2
1 = tk−4g1

2⊗ ḡ 2
1 = ±g1

2⊗ ḡ 2
1 . This is (15)

for q = 1.

5.2 E = Eq, q = −1.

We consider several cases.

5.2.1 The abelian case: a, b, c, d form a commuting set

First assume that Q is of the form (66). From (64) we have

Q13Q23 = (A⊗I⊗P+B⊗I⊗(I−P ))(I⊗A⊗P+I⊗B⊗(I−P )) = A⊗A⊗P+B⊗B⊗(I−P ),

hence
Q13Q23E12 = (A⊗ A)E ⊗ P + (B ⊗B)E ⊗ (I − P ),

which, according to (64), has to be E12 = E⊗P +E⊗ (I−P ). It follows that (A⊗A)E =
E = (B ⊗B)E. There are two possibilities. In the basis e1, e2,

(i) A, B are diagonal,
(ii) A diagonal, B anti-diagonal

(the case when both are anti-diagonal is excluded because I is a combination of A and B,
by (11)).

Considering (i) we see that P is also diagonal and

Qe ∼


1 0 0 0
0 t 0 0
0 0 s 0
0 0 0 r

 =


1 0 0 0
0 t 0 0
0 0 tr 0
0 0 0 r


as in (68). From (65) we obtain (13) and (14).

If we assume (ii), we obtain A = I and the matrix of B is of theform

[
0 k

k−1 0

]
. It

follows that B is an involution and P = 1
2
(I ±B). The minus sign is however excluded by

(11). Changing the basis, f1 =
√

ke1, f2 = 1√
k
e2, we obtain

[
0 1
1 0

]
as the matrix of B,

hence (19).
Now let us assume that Q is of the form (67). From (A ⊗ A)E = E it follows that A

is either diagonal or anti-diagonal (in the basis e1, e2). Since A is non-degenerate and a
combination of I and N , we have tr A 6= 0. This shows that A is diagonal, hence A = I.
Now, B = rI + sN gives Q = I⊗ I + rI⊗N + sN ⊗N . This and (11) imply r = 0. Solving
(A⊗ B + B ⊗ A)E = 0 explicitly in components, we obtain also s = 0. This excludes the
nilpotent case.
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5.2.2 The case a = 0

By (65), in this case b, c and d have to be of the form[
0 ∗
∗ ∗

]
,

where ∗ denotes entries not determined yet. It follows from bc ∼ I that b and c are
anti-diagonal. From (65) we have

Qe ∼


0 0 0 ∗
0 0 ∗ 0
0 ∗ 0 0
∗ 0 0 r

 ,

with some number r. Since bd = −db, we obtain r = 0, hence d = 0, and we return to the
abelian case, considered previously.

5.2.3 The case d = 0

This case leads to the abelian case, by similar reasons as above.

5.2.4 The case c = 0

By (65), in this case a, b and d have to be of the form[
∗ ∗
0 ∗

]

(as before, ∗ are not determined entries). The commutation rule ab = −ba implies that b
is of the form

b =

[
0 t
0 0

]
.

It follows from (65) that a, d are diagonal. If t = 0, then we have an abelian case. If t 6= 0,

then ab = −ba, db = −bd imply tr a = 0 = tr d. One can assume that a =

[
1 0
0 −1

]
. From

(65) we obtain

Qe ∼


1 0 0 t
0 −1 0 0
0 0 −1 0
0 0 0 1

 = (e1
1 − e2

2)⊗ (ē 1
1 − ē 2

2 ) + te1
2 ⊗ ē 2

1 ,

where t is a real number. Substituting e1 = xf1, e2 = x−1f2, we obtain

Qf ∼ (f1
1 − f2

2)⊗ (f̄ 1
1 − f̄ 2

2 ) + |x|4tf1
2 ⊗ f̄ 2

1 .

For an appropriate x we obtain (15).
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5.2.5 The case b = 0

Similarly as in the preceding paragraph, we obtain

Qe ∼


1 0 0 0
0 −1 0 0
0 0 −1 0
t 0 0 1

 .

The substitution e1 = f2, e2 = f1 leads exactly to the previous case.

5.2.6 Remaining cases

We assume that a, b, c, d do not form a commuting set and all are non-zero.
It follows that a2, b2, c2, d2 commute with the elements of a non-commutative subalgebra

in End (C2), hence they are multiples of I. There exist u, v, u′, v′ ∈ End (C2) and numbers
p, r, s, t such that

a = pu b = rv

d = tu′ c = sv′

u2 = v2 = u′2 = v′2 = I.

By the anti-commutativity, none of operators u, v, u′, v′ is a multiple of I. From uu′ = u′u
we obtain u′ = ±u. Similarly, v′ = ±v. We can assume that u′ = u, v′ = v, hence

Qe =

[
pu rv
sv tu

]
=

[
p 0
0 t

]
⊗ u +

[
0 r
s 0

]
⊗ v,

where
u2 = I = v2, uv + vu = 0 (69)

and pt + rs 6= 0 (since ad + bc 6= 0).

From (11) it follows that tr

[
p 0
0 t

]
= tr (a combination of ū and v̄) = 0, hence

t = −p, p2 6= rs. We can write Qe in a form

Qe = p

[
1 0
0 −1

]
⊗ u + h

[
0 k

k−1 0

]
⊗ v,

with p2 6= h2. Passing to the basis f1 =
√

ke1, f2 = 1√
k
e2, we obtain Qf ∼ u0⊗ ũ + gv0⊗ ṽ,

where g 6= ±1, g 6= 0,

u0 =

[
1 0
0 −1

]
, v0 =

[
0 1
1 0

]
and ũ and ṽ satsify the same algebraic relations as u and v in (69). It follows from (11)
that ũ and ṽ are linear combinations of ū0 and v̄0:

ũ = xū0 + yv̄0, ṽ = zū0 + tv̄0.
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It is easy to check that conditons (69) for ũ and ṽ are fulfilled if and only if x2 + y2 = 1 =
z2 + t2 and xz + yt = 0, or, equivalently, if t = ±x, z = ∓y and x2 + y2 = 1. We have
therefore

Qf ∼ xu0 ⊗ ū0 + yu0 ⊗ v̄0 + g(yv0 ⊗ ū0 − xv0 ⊗ v̄0)

(± sign absorbed in g), where x2+y2 = 1 and g 6= ±1, g 6= 0. Now, from (11) it follows that
there exists a complex number s of modulus one, such that x̄ = sx, ȳ = sgy and ḡx̄ = sgx.
We have the following implications

x 6= 0 =⇒ g ∈ R, y 6= 0 =⇒ |g| = 1.

We have then either x = 0 or y = 0.
If x = 0 and y 6= 0 then |g| = 1 and

Qf ∼ u0 ⊗ v̄0 + gv0 ⊗ ū0,

hence (17).
If y = 0 and x 6= 0 then g ∈ R and

Qf ∼ u0 ⊗ ū0 + gxv0 ⊗ v̄0,

hence (18).

5.3 E = Eq, q 6= ±1.

Lemma 5.1 a and d are invertible.

Proof: We have ad 6= 0, because if not, then bc = −q−1I and da = (1− q−2)I is invertible.
Similarly we have da 6= 0.
Assume now that rank (ad) = 1, then also rank (da) = 1. Then (I + qbc), (I + q−1bc)

are of rank 1, hence bc can be diagonalized in a basis v1, v2:

bcv1 = −q−1v1, bcv2 = −qv2.

We have bc(av2) = q−2a(bcv2) = −q−1av2, hence av2 = kv1 for some number k. We have
also bc(av1) = q−2a(bcv1) = −q−3av1, hence av1 = 0 (because q−1 6= q−3 6= q). Since a 6= 0,
we have k 6= 0 and

dv1 = k−1dav2 = k−1(I + q−1bc)v2 = 0.

On the other hand, bc(dv2) = q2d(bcv2) = −q3dv2, hence dv2 = 0. We have obtained d = 0
in contradiction with ad 6= 0.

Q.E.D.

Lemma 5.2 b2 = 0 = c2.

Proof: From aba−1 = qb it follows that det b = 0 and tr b = 0.
Q.E.D.

Lemma 5.3 Either b = 0, or c = 0.
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Proof: Let us assume that b 6= 0 6= c. In view of Lemma 5.2, matrices commuting with b
are of the form t1I + t2b. It follows that c = tb for some number t. Since ab and ba are also
nilpotents commuting with b, we have

ba = sb and ab = qsb.

It follows that qs, s are eigenvalues of a, hence a is diagonalizable: there exists a one-
dimensional projection P ∈ End (C2) such that

a = qsP + s(I − P ).

We have Pb = b and bP = 0.
Now we shall use the following fact

(qk
l ⊗ ql

m)F = zδk
mF, (70)

where F = E, qk
l are matrix components of Q: Q = ek

l ⊗ qk
l and z is a number. To prove

formula (70) it is sufficient to insert Q ∼ σQσ−1 = q̄k
l ⊗ ē l

k into Q13Q23E12 ∼ E12.
Using (70), we obtain

(a⊗ a + b⊗ c)Fe = zFe = (c⊗ b + d⊗ d)Fe,

(a⊗ b + b⊗ d)Fe = 0 = (c⊗ a + d⊗ c)Fe,

where Fe =

[
1
0

]
⊗
[

0
1

]
− q

[
0
1

]
⊗
[

1
0

]
∈ C2 ⊗C2. In particular,

0 = (b⊗ b)(a⊗ b + b⊗ d)Fe = (ba⊗ b)Fe,

hence (b ⊗ b)Fe = 0. We can choose a basis f1, f2 such that Pf1 = f1, Pf2 = 0, bf1 = 0,
bf2 = f1 and then F 22 = 0 (Fe = F klfk ⊗ fl).

We have also

0 = (P ⊗ P )(a⊗ b + b⊗ d)Fe = (sqP ⊗ b + (sq)−1b⊗ P )Fe,

0 = (P ⊗ P )(c⊗ a + d⊗ c)Fe = (tsqb⊗ P + t(sq)−1P ⊗ b)Fe

and this means that {
sqF 12 + (sq)−1F 21 = 0
t(sq)−1F 12 + csqF 21 = 0.

Since F 12 and F 21 cannot vanish simultaneously (rank Esym = 2), the determinant of this
system of equations is zero, hence

(sq)4 = 1. (71)

On the other hand, we have

qs2[(I − P )⊗ P ]Fe = [(I − P )⊗ P ](a⊗ a + b⊗ c)Fe

= [(I − P )⊗ P ](c⊗ b + d⊗ d)Fe = (qs2)−2[(I − P )⊗ P ]Fe,

qs2[P ⊗ (I − P )]Fe = [P ⊗ (I − P )](a⊗ a + b⊗ c)Fe

= [P ⊗ (I − P )](c⊗ b + d⊗ d)Fe = (qs2)−2[P ⊗ (I − P )]Fe.

Since F 12 and F 21 cannot vanish simultaneously, we have (qs2)2 = 1, and, by (71), we have
q2 = 1.

Q.E.D.
In view of the above Lemma, we consider now two cases.
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5.3.1 c = 0

By (65), in this case a, b and d have to be of the form[
∗ ∗
0 ∗

]
,

and from Lemma 5.2, b =

[
0 ∗
0 0

]
. Again by (65), it follows that a and d are diagonal.

From ad ∼ I we obtain

Qe ∼


1 0 0 s
0 t 0 0
0 0 tr 0
0 0 0 r

 . (72)

From (65) we obtain 0 6= r ∈ R and |r| = 1, hence r = ±1, and

Qe ∼


1 0 0 s
0 t 0 0
0 0 ±t 0
0 0 0 ±1

 . (73)

For s = 0 we obtain (13) and (14).
If s 6= 0, then ab = qba implies t = q−1 and we obtain (15) and (16) (one can rescale s

to be ±1 by passing to a new basis of the form f1 = xe1, f2 = e2).

5.3.2 b = 0

Repeating the method of the preceding paragraph we obtain

Qe ∼


1 0 0 0
0 t 0 0
0 0 ±t 0
s 0 0 ±1

 . (74)

We can limit ourselves to the case s 6= 0. In this case t = q. Passing to the basis f1 = e2,
f2 = e1, we return to the case of the preceding paragraph (with q replaced by q−1).

5.4 E = Especial.

Lemma 5.4 c = 0.

Proof: It is easy to see that c is not invertible, because otherwise from (40) we would have

c−1a− ac−1 = I,

which is impossible for 2× 2 matrices. From (40) we have tr c2 = 0. Since also det c2 = 0,
c2 is a nilpotent, hence also c is a nilpotent.
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Now, let us assume that c 6= 0. It follows from [a, c] = 0 and [d, c] = 0 that a = ξ1I +η1c
and d = ξ2I + η2c for some numbers ξ1, ξ2, η1, η2. We have therefore [a, d] = 0 and
(ξ1 − ξ2)c = c(d − a) = [a, d] = 0. It follows that ξ1 = ξ2 = ξ for some ξ. We have
2 = tr I = tr a2 = ξ2 tr I, hence ξ = ±1. From bc = ac + ad− I and cb = −ca + da− I we
have

[b, c] = 2ξc. (75)

Since ad = I + ξ(η1 + η2)c and ac ∼ c, we have also

bc ∼ c. (76)

From tr c = 0 and det c = 0 we have the following form of the matrix of c:

c =

[
x y
z −x

]
, x2 + yz = 0.

If z = 0, then x = 0, hence c =

[
0 y
0 0

]
, y 6= 0, therefore (76) implies b =

[
∗ ∗
0 ∗

]
. It

follows then from (65) then c = 0.
Assume that z 6= 0. The following change of basis does not change the form of E:

e1 = f1, e2 = f2 − tf1

(here t is a parameter). From

q = e1
1 ⊗ a + e1

2 ⊗ b + e2
1 ⊗ c + e2

2 ⊗ d = f1
1 ⊗ a′ + f1

2 ⊗ b′ + f2
1 ⊗ c′ + f2

2 ⊗ d′

we obtain c′ = c, and the matrix of c in the new basis equals

[c]f =

[
1 −t
0 1

]
c

[
1 t
0 1

]
=

[
x− tz y + 2tx− t2z

z −x + tz

]
.

If we set t = x/z, we obtain [c]f =

[
0 0
z 0

]
. Then, by (65), a′ and d′ are of the form[

∗ ∗
0 ∗

]
, and, as functions of c′, have to be diagonal, hence b′ =

[
0 ∗
0 0

]
. It follows from

(76) (for primed quantities), that b′ = 0 and then, by (75), c′ = 0.
Q.E.D.

Now we investigate the case c = 0. We have d = a−1 and

[a, b] = I − a2 (77)

is the only relation to be satisfied.
We have tr a2 = 2 = tr a−2 and

a =

[
x ∗
0 y

]
, d =

[
x−1 ∗
0 y−1

]

(using (65)).
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Lemma 5.5 x2 + y2 = 2 = x−2 + y−2 ⇐⇒ x = ±1, y = ±1.

Proof: The proof is elementary.
Q.E.D.

By Lemma 5.5, we have now two possible cases.

1.

a =

[
1 t
0 1

]
.

By (65), we have b =

[
t̄ r
0 −t̄

]
. It follows from (77) that t = 0 or t = 1. From t = 0

we obtain (20). If t = 1,

Qe ∼


1 1 1 r
0 1 0 −1
0 0 1 −1
0 0 0 1

 , (78)

and passing to a new basis f1 = e1, f2 = e2 − r
4
e1, we obtain (21) as the matrix of Q.

2.

a =

[
1 t
0 −1

]
, d =

[
1 t
0 −1

]
,

but this is in contradiction with (65).
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