On the classification of quantum Poincaré groups

P. Podleśs ${ }^{1 * \dagger}$ and S. L. Woronowicz ${ }^{2 \ddagger}$
${ }^{1}$ Department of Mathematics, University of California Berkeley CA 94720, USA
${ }^{2}$ Department of Mathematical Methods in Physics Faculty of Physics, University of Warsaw
Hoża 74, 00-682 Warszawa, Poland

March 1995

Abstract

Using the general theory of [10], quantum Poincaré groups (without dilatations) are described and investigated. The description contains a set of numerical parameters which satisfy certain polynomial equations. For most cases we solve them and give the classification of quantum Poincaré groups. Each of them corresponds to exactly one quantum Minkowski space. The Poincaré series of these objects are the same as in the classical case. We also classify possible R-matrices for the fundamental representation of the group.

[^0]
0 Introduction

The Minkowski space with the Poincaré group acting on it is the area of the quantum field theory. However, it is not known yet what is the area of a more deep theory, which would involve also the gravitational effects. It was suggested by many authors that it would be a quantum space. It means that instead of functions on spacetime we would have elements of some noncommutative algebra, called "the algebra of functions on the quantum space". On the other hand, such a quantum space should be in some sense similar to the ordinary Minkowski space. The simplest models of such a situation can be obtained by choosing some properties of Minkowski space endowed with the action of Poincaré group and classifying all quantum groups and spaces which satisfy those properties. There are many examples of quantum Poincaré groups, the corresponding Minkowski spaces and R-matrices (cf e.g. [4], [2], [11], [6], [5], [1], [15] and remarks in [10] concerning these papers) but such classification still doesn't exist. Our aim is to provide it. In Section 1 we define a quantum Poincaré group as a quantum group which is built from any quantum Lorentz group [14] and translations and satisfies some natural properties. The corresponding commutation relations are inhomogeneous and contain a set of parameters $H_{A B C D}, T_{A B C D}$. Our scheme contains the examples provided in [4], [1], but doesn't contain the examples of [2], [11], [5] (see however Remark S3.9 of [10]) because we consider quantum Poincaré groups without dilatations. Also the example [6] (formulated in the language of universal enveloping algebras) has no corresponding object in our scheme (for $q \neq \pm 1$).

It turns out that there are many quantum Lorentz groups which can be used in our construction. However all of them correspond to $q= \pm 1$. For each such quantum Lorentz group (except the classical one and one more for $q=-1$ which are considered in Remark 1.8) we classify all quantum Poincaré groups. We also provide the corresponding quantum Minkowski spaces and R-matrices for the fundamental representation of the quantum Poincaré group (for one family of considered quantum Poincaré groups there is no nontrivial R-matrix). The Poincaré series of the corresponding objects are the same as in the classical case. The proofs of our results (using [10]) are contained in Section 2. In particular, the question of finding all quantum Poincaré groups is reduced to a set of polynomial equations for $H_{A B C D}$, $T_{A B C D}$ which we solve (in the indicated cases) using the computer MATHE-

MATICA program. Some results of the present paper were presented in [9]. In [16] a similar classification is provided in the case of Poisson manifolds and Poisson-Lie groups.

We use the terminology and results of [10]. Letter S means that we make a reference to [10], e.g. Theorem S3.1 denotes Theorem 3.1 of [10], (S1.2) denotes equation (1.2) of [10]. The small Latin indices a, b, c, d, \ldots, belong to $\mathcal{I}=\{0,1,2,3\}$ and the capital Latin indices A, B, C, D, \ldots, belong to $\{1,2\}$. We sum over repeated indices which are not taken in brackets (Einstein's convention). The number of elements in a set B is $\# B$ or $|B|$. Unit matrix with dimension N is denoted by $\mathbf{1}_{N}, \mathbf{1}=\mathbf{1}_{2}$. The Pauli matrices are given by

$$
\sigma_{0}=\mathbf{1}_{2}, \quad \sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

If V, W are vector spaces then $\tau_{V W}: V \otimes W \longrightarrow W \otimes V$ is given by $\tau_{V W}(x \otimes$ $y)=y \otimes x, x \in V, y \in W$. We often write τ instead of $\tau_{V W}$. We denote $\mathbf{C}_{*}=\mathbf{C} \backslash\{0\}, \mathbf{R}_{*}=\mathbf{R} \backslash\{0\}$.

1 Quantum Poincaré groups

In this Section we define and (in almost all cases) classify quantum Poincaré groups as objects having the properties of usual (spinorial) Poincaré group. The proofs of the results are shifted to Section 2.

The (connected component of) vectorial Poincaré group

$$
\tilde{P}=S O_{0}(1,3) \bowtie \mathbf{R}^{4}=\left\{(M, a): M \in S O_{0}(1,3), a \in \mathbf{R}^{4}\right\}
$$

has the multiplication $(M, a) \cdot\left(M^{\prime}, a^{\prime}\right)=\left(M M^{\prime}, a+M a^{\prime}\right)$. By the Poincaré group we mean spinorial Poincaré group (which is more important in quantum field theory then \tilde{P})

$$
P=S L(2, \mathbf{C}) \bowtie \mathbf{R}^{4}=\left\{(g, a): g \in S L(2, \mathbf{C}), a \in \mathbf{R}^{4}\right\}
$$

with multiplication $(g, a) \cdot\left(g^{\prime}, a^{\prime}\right)=\left(g g^{\prime}, a+\lambda_{g}\left(a^{\prime}\right)\right)$ where the double covering $S L(2, \mathbf{C}) \ni g \longrightarrow \lambda_{g} \in S O_{0}(1,3)$ is given by $\lambda_{g}(x)_{i} \sigma_{i}=g\left(x_{j} \sigma_{j}\right) g^{+}, g \underset{\tilde{P}}{\in}$ $S L(2, \mathbf{C}), x \in \mathbf{R}^{4}$. The group homomorphism $\pi: P \ni(g, a) \longrightarrow\left(\lambda_{g}, a\right) \in \tilde{P}$ is also a double covering. In particular, $\left(-\mathbf{1}_{2}, 0\right) \in P$ can be treated as
rotation about 2π which is trivial in \tilde{P} but nontrivial in P (it changes the sign of wave functions for fermions). Both P and \tilde{P} act on Minkowski space $M=\mathbf{R}^{4}$ as follows $(g, a) x=\left(\lambda_{g}, a\right) x=\lambda_{g} x+a, g \in S L(2, \mathbf{C}), a, x \in \mathbf{R}^{4}$, and give affine maps preserving the scalar product in M (in more abstract setting we would treat M as an affine space without distinguished 0). Let us consider continuous functions $w_{A B}, p_{i}$ on P defined by

$$
w_{A B}(g, a)=g_{A B}, \quad p_{i}(g, a)=a_{i} .
$$

We introduce Hopf *-algebra $\operatorname{Poly}(P)=(\mathcal{B}, \Delta)$ of polynomials on the Poincaré group P as the *-algebra \mathcal{B} with identity I generated by $w_{A B}$ and $p_{i}, A, B=1,2, i \in \mathcal{I}$ (according to Introduction, $\mathcal{I}=\{0,1,2,3\}$ in this Section) endowed with the comultiplication Δ given by $(\Delta f)(x, y)=f(x \cdot y)$, $f \in \mathcal{B}, x, y \in P\left(f^{*}(x)=\overline{f(x)}\right)$. In particular,

$$
\begin{equation*}
\Delta w_{C D}=w_{C F} \otimes w_{F D}, \quad \Delta p_{i}=p_{i} \otimes I+\Lambda_{i j} \otimes p_{j} \tag{1.1}
\end{equation*}
$$

$p_{i}^{*}=p_{i}$, where

$$
\Lambda=V^{-1}(w \oplus \bar{w}) V, \quad V=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \tag{1.2}\\
0 & 1 & -i & 0 \\
0 & 1 & i & 0 \\
1 & 0 & 0 & -1
\end{array}\right)
$$

In order to prove (1.1) we notice that

$$
\begin{gathered}
\left(\Delta w_{C D}\right)\left((g, a),\left(g^{\prime}, a^{\prime}\right)\right)=w_{C D}\left(g g^{\prime}, a+\lambda_{g}\left(a^{\prime}\right)\right)=\left(g g^{\prime}\right)_{C D}= \\
g_{C F} g_{F D}^{\prime}=w_{C F}(g, a) w_{F D}\left(g^{\prime}, a^{\prime}\right)=\left(w_{C F} \otimes w_{F D}\right)\left((g, a),\left(g^{\prime}, a^{\prime}\right)\right), \\
\left(\Delta p_{i}\right)\left((g, a),\left(g^{\prime}, a^{\prime}\right)\right)=p_{i}\left(g g^{\prime}, a+\lambda_{g}\left(a^{\prime}\right)\right)=a_{i}+\lambda_{g}\left(a^{\prime}\right)_{i}= \\
a_{i}+\left(\lambda_{g}\right)_{i j} a_{j}^{\prime}=p_{i}(g, a)+\Lambda_{i j}(g, a) p_{j}\left(g^{\prime}, a^{\prime}\right)=\left(p_{i} \otimes I+\Lambda_{i j} \otimes p_{j}\right)\left((g, a),\left(g^{\prime}, a^{\prime}\right)\right),
\end{gathered}
$$

where we used the formulae $\left(\sigma_{i}\right)_{C D}=V_{C D, i}$ and

$$
\begin{gathered}
V_{C D, i}\left(\lambda_{g}\right)_{i j}=\left(\lambda_{g}\right)_{i j}\left(\sigma_{i}\right)_{C D}=\left(g \sigma_{j} g^{+}\right)_{C D}= \\
g_{C E}\left(\sigma_{j}\right)_{E F}\left(g^{+}\right)_{F D}=w_{C E}(g, a) V_{E F, j} w_{D F}^{*}(g, a)= \\
\left(w_{C E} \bar{w}_{D F} V_{E F, j}\right)(g, a)=V_{C D, i} \Lambda_{i j}(g, a) .
\end{gathered}
$$

Since $\tau_{C D, E F}=\delta_{C F} \delta_{D E}$, we get

$$
\begin{equation*}
\bar{V}=\tau V \tag{1.3}
\end{equation*}
$$

and $\bar{\Lambda}=\Lambda$. We put $p=\left(p_{i}\right)_{i \in \mathcal{I}}$. One can treat $w_{C D}$ as continuous functions on the Lorentz group $L=S L(2, \mathbf{C})\left(w_{C D}(g)=g_{C D}, g \in L\right)$. We define Hopf *-algebra $\operatorname{Poly}(L)=(\mathcal{A}, \Delta)$ of polynomials on L as *-algebra with I generated by all $w_{C D}$ endowed with Δ obtained by restriction of Δ for \mathcal{B} to \mathcal{A}. Clearly w and Λ are representations of L. It is easy to check that

1. \mathcal{B} is generated as algebra by \mathcal{A} and the elements $p_{i}, i \in \mathcal{I}$.
2. \mathcal{A} is a Hopf ${ }^{*}$-subalgebra of \mathcal{B}.
3. $\mathcal{P}=\left(\begin{array}{cc}\Lambda & p \\ 0 & I\end{array}\right)$ is a representation of \mathcal{B} where Λ is given by (1.2).
4. There exists $i \in \mathcal{I}$ such that $p_{i} \notin \mathcal{A}$.
5. $\Gamma \mathcal{A} \subset \Gamma$ where $\Gamma=\mathcal{A} X+\mathcal{A}, X=\operatorname{span}\left\{p_{i}: i \in \mathcal{I}\right\}$.
6. The left \mathcal{A}-module $\mathcal{A} \cdot \operatorname{span}\left\{p_{i} p_{j}, p_{i}, I: i, j \in \mathcal{I}\right\}$ has a free basis consisting of $10+4+1$ elements.
(5. and 6. follow from the relations $p_{i} a=a p_{i}, p_{i} p_{j}=p_{j} p_{i}, a \in \mathcal{A}$, and elementary computations, a free basis is given by $\left.\left\{p_{i} p_{j}, p_{i}, I: i \leq j, i, j \in \mathcal{I}\right\}\right)$. According to [14], Poly (L) satisfies:
i. (\mathcal{A}, Δ) is a Hopf ${ }^{*}$-algebra such that \mathcal{A} is generated (as *-algebra) by matrix elements of a two-dimensional representation w
ii. $w \oplus w \simeq I \oplus w^{1}$ where w^{1} is a representation
iii. the representation $w \oplus \bar{w} \simeq \bar{w} \oplus w$ is irreducible
iv. if $\mathcal{A}^{\prime}, \Delta^{\prime}, w^{\prime}$ satisfy i.-iii. and there exists Hopf ${ }^{*}$-algebra epimorphism $\rho: \mathcal{A}^{\prime} \longrightarrow \mathcal{A}$ such that $\rho\left(w^{\prime}\right)=w$ then ρ is an isomorphism (the universality condition)

We say [14] that H is a quantum Lorentz group if $\operatorname{Poly}(H)=(\mathcal{A}, \Delta)$ satisfies i.-iv..

Definition 1.1 We say that G is a quantum Poincaré group if Hopf*-algebra $\operatorname{Poly}(G)=(\mathcal{B}, \Delta)$ satisfies the conditions 1.-6. for some quantum Lorentz group H with $\operatorname{Poly}(H)=(\mathcal{A}, \Delta)$ and a representation w of H.

Remark 1.2 The condition 5. follows from $\mathcal{P} \oplus w \simeq w \odot \mathcal{P}, \mathcal{P} \oplus \bar{w} \simeq \bar{w} \subseteq \mathcal{P}$, while 6 . is suggested by the requirement $W(\mathcal{P} \subseteq \mathcal{P})=(\mathcal{P} \subseteq \mathcal{P}) W$ for a " τ-like" matrix W (cf Theorem 1.13). Moreover, the condition 4. is superfluous (it follows from the condition 6. and Proposition S0.1).

Remark 1.3 Different choices of (H, w) can give $*$-isomorphic \mathcal{B}.
Theorem 1.4 Let G be a quantum Poincaré group, $\operatorname{Poly}(G)=(\mathcal{B}, \Delta)$. Then \mathcal{A} is linearly generated by matrix elements of irreducible representations of G, so \mathcal{A} is uniquely determined. Moreover, we can choose w in such a way that \mathcal{A} is the universal ${ }^{*}$-algebra generated by $w_{A B}, A, B=1,2$, satisfying

$$
\begin{gather*}
(w \oplus w) E=E, \tag{1.4}\\
E^{\prime}(w \oplus w)=E^{\prime}, \tag{1.5}\\
X(w \oplus \bar{w})=(\bar{w} \oplus w) X, \tag{1.6}
\end{gather*}
$$

where $X=\tau Q^{\prime}$ and

1) $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}, E^{\prime}=-e^{1} \otimes e^{2}+e^{2} \otimes e^{1}$,

$$
Q^{\prime}=\left[\begin{array}{cccc}
t^{-1} & 0 & 0 & 0 \\
0 & t & 0 & 0 \\
0 & 0 & t & 0 \\
0 & 0 & 0 & t^{-1}
\end{array}\right], \quad 0<t \leq 1, \quad o r
$$

2)

$$
E, E^{\prime} \text { as above, } \quad Q^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \text { or }
$$

3) $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}+e_{1} \otimes e_{1}, E^{\prime}=-e^{1} \otimes e^{2}+e^{2} \otimes e^{1}+e^{2} \otimes e^{2}$,

$$
Q^{\prime}=\left[\begin{array}{llll}
1 & 0 & 0 & r \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad r \geq 0, \quad \text { or }
$$

4)

$$
\text { E, } E^{\prime} \text { as above, } \quad Q^{\prime}=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \text { or }
$$

5) $E=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}, E^{\prime}=e^{1} \otimes e^{2}+e^{2} \otimes e^{1}$,

$$
Q^{\prime}=i\left[\begin{array}{cccc}
t^{-1} & 0 & 0 & 0 \\
0 & -t & 0 & 0 \\
0 & 0 & -t & 0 \\
0 & 0 & 0 & t^{-1}
\end{array}\right], \quad 0<t \leq 1, \quad \text { or }
$$

6)

$$
E, E^{\prime} \text { as above }, Q^{\prime}=i\left[\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \text { or }
$$

7)

$$
\begin{gathered}
E, E^{\prime} \text { as above, } Q^{\prime}=i\left[\begin{array}{cccc}
r & 0 & 0 & s \\
0 & -r & s & 0 \\
0 & s & -r & 0 \\
s & 0 & 0 & r
\end{array}\right], \\
r=\left(t+t^{-1}\right) / 2, \quad s=\left(t-t^{-1}\right) / 2, \quad 0<t<1, \\
e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}, e^{1}=\left(\begin{array}{ll}
1 & 0
\end{array}\right), e^{2}=\left(\begin{array}{ll}
0 & 1
\end{array}\right) . \quad \text { Moreover, all }
\end{gathered}
$$

the above triples $\left(E, E^{\prime}, Q^{\prime}\right)$ give nonisomorphic (\mathcal{A}, Δ). We can (and will) choose p_{i} in such a way that $p_{i}^{*}=p_{i}$.

In the following we assume that G is a quantum Poincaré group, $\operatorname{Poly}(G)=$ (\mathcal{B}, Δ) and w, p are as in Theorem 1.4. We set $q=q^{1 / 2}=1$ in the cases 1$)-$ 4), $q=-1, q^{1 / 2}=i$ in the cases 5) -7$), s= \pm 1, L=s q^{1 / 2}\left(\mathbf{1}^{\otimes 2}+q^{-1} E E^{\prime}\right)$, $\tilde{L}=q \tau L \tau, G=\left(V^{-1} \otimes \mathbf{1}\right)(\mathbf{1} \otimes X)(L \otimes \mathbf{1})(\mathbf{1} \otimes V), \tilde{G}=\left(V^{-1} \otimes \mathbf{1}\right)(\mathbf{1} \otimes \tilde{L})\left(X^{-1} \otimes\right.$ $1)(\mathbf{1} \otimes V), R=\left(V^{-1} \otimes V^{-1}\right)(\mathbf{1} \otimes X \otimes \mathbf{1})(L \otimes \tilde{L})\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(V \otimes V)$.

Theorem $1.5 \mathcal{B}$ is the universal ${ }^{*}$-algebra with I generated by $w_{A B}$ and p_{i} satisfying (1.4), (1.5), (1.6) and

$$
\begin{gather*}
p_{i} a=\left(a * f_{i j}\right) p_{j}+a * \eta_{i}-\Lambda_{i j}\left(\eta_{j} * a\right), \quad a \in \mathcal{A}, \tag{1.7}\\
\left(R-\mathbf{1}^{\otimes 2}\right)_{k l, i j}\left(p_{i} p_{j}-\eta_{i}\left(\Lambda_{j s}\right) p_{s}+T_{i j}-\Lambda_{i m} \Lambda_{j n} T_{m n}\right)=0, \tag{1.8}\\
p_{i}^{*}=p_{i}, \tag{1.9}
\end{gather*}
$$

where $f=\left(f_{i j}\right)_{i, j \in \mathcal{I}}, \eta=\left(\eta_{i}\right)_{i \in \mathcal{I}}$ and $T=\left(T_{i j}\right)_{i, j \in \mathcal{I}}$ are uniquely determined by $s= \pm 1, H_{E F C D}, T_{E F C D} \in \mathbf{C}$ and the following properties:
a) $\mathcal{A} \ni a \longrightarrow \rho(a)=\left(\begin{array}{cc}f(a) & \eta(a) \\ 0 & \epsilon(a)\end{array}\right) \in M_{5}(\mathbf{C})$ is a unital homomorphism
b) $\rho\left(a^{*}\right)=\overline{\rho(S(a))}, \quad a \in \mathcal{A}$,
c) $f_{i j}\left(w_{C D}\right)=G_{i C, D j}, \quad \eta_{i}\left(w_{C D}\right)=V_{i, E F}^{-1} H_{E F C D}, \quad T_{i j}=\left(V^{-1} \otimes V^{-1}\right)_{i j, E F C D} T_{E F C D}$.

The *-Hopf structure in $\operatorname{Poly}(G)$ is determined by:

$$
\begin{array}{cl}
\Delta w=w \oplus w, \quad \Delta \bar{w}=\bar{w} \oplus \bar{w}, \quad \Delta p=p \oplus I+\Lambda \oplus p, \\
\epsilon(w)=\mathbf{1}, \quad \epsilon(\bar{w})=\mathbf{1}, \quad, \epsilon(p)=0, \\
S(w)=w^{-1}, \quad S(\bar{w})=\bar{w}^{-1}, \quad S(p)=-\Lambda^{-1} p .
\end{array}
$$

Quantum Poincaré groups corresponding to different s are nonisomorphic.
Theorem 1.6 For each case in Theorem 1.4 and each s (except the case 1), $s=1, t=1$ and the case 5), $s= \pm 1, t=1$) we list H and T giving (via formulae in Theorem 1.5) all nonisomorphic quantum Poincaré groups G : 1), $s=-1, t=1$:

$$
\left.\begin{array}{rl}
H_{E F C D} & =0 \tag{1.10}\\
T_{E F C D} & =V_{E F, i} V_{C D, j} T_{i j},
\end{array}\right\}
$$

where
a) $T_{03}=-T_{30}=i a, T_{12}=-T_{21}=i b$, other $T_{i j}$ equal $0, a=\cos \phi$, $b=\sin \phi$ (one parameter family for $0 \leq \phi \leq \pi / 2$) or
b) $T_{02}=T_{12}=i, T_{20}=T_{21}=-i$, other $T_{i j}$ equal 0 , or
c) all $T_{i j}$ equal 0 .
1), $s= \pm 1,0<t<1$:

$$
\left.\begin{array}{c}
T_{1122}=i a, \quad T_{1221}=b, \tag{1.11}\\
T_{2112}=-b, \quad T_{2211}=-i a, \\
F C D \text { and other } T_{E F C D} \text { equal } 0 \text { and }
\end{array}\right\}
$$

a) $a=\cos \phi, b=\sin \phi$ (one parameter family for $0 \leq \phi<\pi$) or
b) $a=b=0$.
2), $s=1$:
the first case:

$$
\left.\begin{array}{c}
H_{1111}=-(a+b i), \quad H_{1122}=a+b i, \quad H_{2112}=-2 b i, \\
T_{2111}=c-d i, \quad T_{1211}=-c-d i \tag{1.12}\\
T_{1121}=-c+d i, \quad T_{1112}=c+d i, \\
\text { other } H_{E F C D} \text { and } T_{E F C D} \text { equal } 0 \text { and }
\end{array}\right\}
$$

a) $a=1, c=d=0$ (one parameter family for $b \in \mathbf{R}$) or
b) $a=0, b=1, d=0$ (one parameter family for $c \geq 0$);
the second case:

$$
\begin{gather*}
H_{1212}=a+b i, \quad T_{2112}=\left(a^{2}+b^{2}\right) / 2, \quad T_{2111}=c-d i, \\
T_{1221}=-\left(a^{2}+b^{2}\right) / 2, \quad T_{1211}=-c-d i, \quad T_{1121}=-c+d i, \\
T_{1112}=c+d i, \quad T_{1111}=-\left(a^{2}+b^{2}\right) / 2, \tag{1.13}\\
\text { other } H_{E F C D} \text { and } T_{E F C D} \text { equal } 0 \text { and }
\end{gather*}
$$

a) $a=1, b=0, c=r \cos \phi, d=r \sin \phi$ (two parameter family for $r>0$, $0 \leq \phi<\pi / 2$ or $r=\phi=0$) or
b) $a=b=0, c=1, d=0$, or
c) $a=b=c=d=0$.
2), $s=-1$, (1.12) and
a) $a=b=0, c=1, d=0$, or
b) $a=b=c=d=0$.
3), $s= \pm 1, r \geq 0$, all $H_{E F C D}$ and $T_{E F C D}$ equal 0 .
4), $s=1$,

$$
\begin{gather*}
H_{2212}=-2 b i, \quad H_{2122}=-b i, \quad H_{2112}=a-b i, \\
H_{2111}=b i, \quad H_{1222}=b i, \quad H_{1212}=a, \quad H_{1211}=-b i, \\
H_{1121}=-2 b i, \quad H_{1112}=3 b i / 4, \quad H_{1111}=-4 b i, \\
T_{1112}=9 b^{2} / 8+3 a b i / 2, \quad T_{1121}=-9 b^{2} / 8+3 a b i / 2, \tag{1.14}\\
T_{1211}=-9 b^{2} / 8-3 a b i / 2, \quad T_{1221}=3 b^{2} / 2, \\
T_{2111}=9 b^{2} / 8-3 a b i / 2, \quad T_{2112}=-3 b^{2} / 2, \\
\text { other } H_{E F C D} \text { and } T_{E F C D} \text { equal } 0 \text { and }
\end{gather*}
$$

a) $a=\cos \phi, b=\sin \phi$ (one parameter family for $0 \leq \phi<\pi$) or b) $a=b=0$.
4), $s=-1$, all $H_{E F C D}$ and $T_{E F C D}$ equal 0 .
5), $s= \pm 1,0<t<1$,

$$
\left.\begin{array}{c}
T_{1122}=i a, \quad T_{1221}=b, \quad T_{2112}=-b, \quad T_{2211}=-i a, \tag{1.15}\\
\text { all } H_{E F C D} \text { and other } T_{E F C D} \text { equal } 0 \text { and }
\end{array}\right\}
$$

a) $a=\cos \phi, b=\sin \phi$ (one parameter family for $0 \leq \phi<\pi$) or b) $a=b=0$.
6), $s=1$, all $H_{E F C D}$ and $T_{E F C D}$ equal 0.
6), $s=-1$:
the first case:

$$
\left.\begin{array}{c}
H_{1111}=-(a+b i), \quad H_{1122}=a+b i, \quad H_{2112}=-2 b i \tag{1.16}\\
\text { other } H_{E F C D} \text { and all } T_{E F C D} \quad \text { equal } 0 \text { and }
\end{array}\right\}
$$

a) $a=\cos \phi, b=\sin \phi$ (one parameter family for $0 \leq \phi<\pi$) or
b) $a=b=0$;
the second case:

$$
\begin{gather*}
H_{1212}=a+b i, \quad T_{1111}=-\frac{1}{2}\left(a^{2}+b^{2}\right), \\
T_{1221}=-\left(a^{2}+b^{2}\right) / 2, \quad T_{2112}=\left(a^{2}+b^{2}\right) / 2 \tag{1.17}
\end{gather*}
$$

$a=1, b=0$.
7), $s= \pm 1,0<t<1$, all $H_{E F C D}$ and $T_{E F C D}$ equal 0 .

Remark 1.7 The classical Poincaré group is obtained in the case 1), $s=1$, $t=1, H=0, T=0$. The quantum Poincaré group of [4] corresponds (in spinorial setting) to 1), $s=1, t=1$,

$$
H_{1111}=-H_{1122}=\frac{1}{2} H_{1221}=\frac{1}{2} H_{2112}=-H_{2211}=H_{2222}=i h / 2, \quad h \in \mathbf{R}
$$

other $H_{E F C D}$ and all $T_{E F C D}$ equal 0. The quantum Poincaré group of [1] corresponds to 1), $s=1, t>0, H=0, T=0$ (t is denoted by q there). The so called soft deformations correspond to 1), $s= \pm 1, t=1, H=0$, $T_{a b}=-T_{b a} \in i \mathbf{R}$.

Remark 1.8 In the remaining cases 1), $s=1, t=1$ and 5), $s= \pm 1, t=1$, one can consider $T_{m n}$ defined as in Theorem 1.5 and

$$
Z_{i j, k}=\eta_{i}\left(\Lambda_{j k}\right)=V_{i, A B}^{-1} V_{j, C D}^{-1}\left(H_{A B C E} \delta_{D F}-\overline{H_{B A D F}} \delta_{C E}\right) V_{E F, k}
$$

(then $\left.H_{A B C E}=\frac{1}{2} V_{A B, i} V_{C D, j} Z_{i j, k} V_{k, E D}^{-1}\right)$. In the case 1), $s=1, t=1$ a pair (Z, T) corresponds to a quantum Poincaré group if and only if

$$
\begin{equation*}
T_{m n}=-T_{n m} \in i \mathbf{R}, \quad Z_{i j, s} g_{s k}=-Z_{i k, s} g_{s j} \in i \mathbf{R}, \tag{1.18}
\end{equation*}
$$

$$
\left.\begin{array}{c}
\left\{\left[\left(\tau-\mathbf{1}^{\otimes 2}\right) \otimes \mathbf{1}\right][(\mathbf{1} \otimes Z) Z-(Z \otimes \mathbf{1}) Z]\right\}_{i j m, n}= \tag{1.19}\\
-\frac{1}{4} t_{0}\left(\delta_{i n} g_{j m}-\delta_{j n} g_{i m}\right), \quad t_{0} \in \mathbf{R}, \\
A_{3}(Z \otimes \mathbf{1}) T=0
\end{array}\right\}
$$

where $g_{00}=1, g_{11}=g_{22}=g_{33}=-1$, other $g_{i j}=0$,

$$
\begin{gathered}
A_{3}=1 \otimes 1 \otimes \mathbf{1}-\tau \otimes \mathbf{1}-\mathbf{1} \otimes \tau+(\tau \otimes \mathbf{1})(\mathbf{1} \otimes \tau)+ \\
(\mathbf{1} \otimes \tau)(\tau \otimes \mathbf{1})-(\tau \otimes \mathbf{1})(\mathbf{1} \otimes \tau)(\tau \otimes \mathbf{1})
\end{gathered}
$$

is the classical (not normalized) antisymmetrizer. In the case 5), $s= \pm 1$, $t=1$ in addition to these conditions we assume

$$
\begin{gathered}
T_{i_{1} i_{2}}=0 \text { for } \#\left\{k: i_{k} \in\{1,2\}\right\}=1, \\
Z_{i_{1} i_{2}, i_{3}}=0 \text { for }(-1)^{\#\left\{k: i_{k} \in\{1,2\}\right\}}=s
\end{gathered}
$$

and get in that way all quantum Poincaré groups (up to isomorphism but not necessarily nonisomorphic).

Let us set $\eta=g, a=-i T_{m n} e_{m} \wedge e_{n}, b=-i Z_{i j, s} g_{s k} e_{i} \wedge \Omega_{j, k}$ and $c=0$ (see [16]). Then (1.19) (using (1.18)) is equivalent to (3)-(4) of [16] where t_{0} is identified with t of (3)-(4) of [16]. Thus the table in [16] gives many examples of quantum Poincaré groups (cf also the remarks at the end of [16]). The proofs of these statements involve the above formulae and the results obtained in the proof of Theorem 1.6 (with $\lambda=-\frac{1}{2} t_{0}$ in the case 1), $s=1, t=1$ and $\lambda=-\frac{1}{2} i t_{0}$ in the case 5), $s= \pm 1, t=1$).

We denote by d_{n} the number of monomials of nth degree in 4 variables,

$$
d_{n}=\#\left\{(a, b, c, d) \in \mathbf{N}^{\otimes 4}: \quad a+b+c+d=n\right\} .
$$

Theorem 1.9 Let \mathcal{B} correspond to a quantum Poincaré group G and \mathcal{A}, w, p be as in Theorem 1.4. We set

$$
\mathcal{B}^{N}=\mathcal{A} \cdot \operatorname{span}\left\{p_{i_{1}} \cdot \ldots \cdot p_{i_{n}}: i_{1}, \ldots, i_{n} \in \mathcal{I}, \quad n=0,1, \ldots, N\right\} .
$$

Then \mathcal{B}^{N} is a free left \mathcal{A}-module and $\operatorname{dim}_{\mathcal{A}} \mathcal{B}^{N}=\sum_{n=0}^{N} d_{n}$.
We denote by $l: P \times M \longrightarrow M$ the action of Poincaré group on Minkowski space, $\mathcal{C}=\operatorname{Poly}(M)$ denotes the unital algebra generated by coordinates x_{i} $(i \in \mathcal{I})$ of the Minkowski space $M=\mathbf{R}^{4}$. The only relations in \mathcal{C} are
$x_{i} x_{j}=x_{j} x_{i}$. The coaction $\Psi: \mathcal{C} \longrightarrow \mathcal{A} \otimes \mathcal{C}$ and $*$ in \mathcal{C} are given by $(\Psi f)(x, y)=f(l(x, y)), f^{*}(y)=\overline{f(y)}, x \in P, y \in M$.

Let $x=(g, a) \in P, y \in M, f \in \mathcal{C}$. One has

$$
\begin{gather*}
\left(\Psi x_{i}\right)((g, a), y)=x_{i}\left(\lambda_{g} y+a\right)=\left(\lambda_{g} y\right)_{i}+a_{i}=\left(\lambda_{g}\right)_{i j} y_{j}+a_{i}= \\
\Lambda_{i j}(g, a) x_{j}(y)+p_{i}(g, a)=\left(\Lambda_{i j} \otimes x_{j}+p_{i} \otimes I\right)((g, a), y), \text { hence } \\
\Psi x_{i}=\Lambda_{i j} \otimes x_{j}+p_{i} \otimes I . \tag{1.20}
\end{gather*}
$$

One gets
6) \mathcal{C} is a unital ${ }^{*}$-algebra generated by $x_{i}, i \in \mathcal{I}$, and $\Psi: \mathcal{C} \longrightarrow \mathcal{B} \otimes \mathcal{C}$ is a unital *-homomorphism such that $(\epsilon \otimes \mathrm{id}) \Psi=\mathrm{id},(\mathrm{id} \otimes \Psi) \Psi=(\Delta \otimes \mathrm{id}) \Psi$, $x_{i}^{*}=x_{i}$ and (1.20) holds.

Let $\Psi W \subset \mathcal{A} \otimes W$ for a linear subspace $W \subset \mathcal{C}, f \in W, y, a \in \mathbf{R}^{4}$. Then $f(y+a)=f(l((e, a), y))=(\Psi f)((e, a), y)=(\Psi f)((e, 0), y)=f(l((e, 0), y))=f(y)$ $(k(e, a)=k(e, 0)$ for $k \in \mathcal{A}), f=f(0) I \in \mathbf{C} I$ (in fact we have used the translation homogeneity of M). Therefore
7) if $\Psi W \subset \mathcal{A} \otimes W$ for a linear subspace $W \subset \mathcal{C}$ then $W \subset \mathbf{C} I$.

Let us consider $\left(\mathcal{C}^{\prime}, \Psi^{\prime}\right)$ which also satisfies 6$\left.)-7\right)$ for some $x_{i}{ }^{\prime} \in \mathcal{C}^{\prime}$. Then

$$
\Psi\left(x_{i}{ }^{\prime} x_{l}{ }^{\prime}-x_{l}{ }^{\prime} x_{i}{ }^{\prime}\right)=\Lambda_{i j} \Lambda_{l m} \otimes\left(x_{j}{ }^{\prime} x_{m}{ }^{\prime}-x_{m}{ }^{\prime} x_{j}{ }^{\prime}\right) .
$$

Setting $W=\operatorname{span}\left\{x_{i}{ }^{\prime} x_{l}{ }^{\prime}-x_{l}{ }^{\prime} x_{i}{ }^{\prime}: i, l \in \mathcal{I}\right\}$ and using 7), one gets $x_{i}{ }^{\prime} x_{l}{ }^{\prime}-$ $x_{l}{ }^{\prime} x_{i}{ }^{\prime}=a_{i l} I, a_{i l} \in \mathbf{C}$. Thus $a=\left(a_{i l}\right)_{i, l \in \mathcal{I}}$ is an invariant vector of $\Lambda \oplus \Lambda$, i.e. $a=c \cdot g$ where $c \in \mathbf{C}, g_{00}=1, g_{11}=g_{22}=g_{33}=-1, g_{i j}=0$ for $i \neq j$. But $a_{i l}=-a_{l i}$, hence $c=0, x_{i}{ }^{\prime} x_{l}{ }^{\prime}=x_{l}{ }^{\prime} x_{i}{ }^{\prime}$ and we fix the proper choice of (\mathcal{C}, Ψ) by means of
8) if $\left(\mathcal{C}^{\prime}, \Psi^{\prime}\right)$ also satisfies 6)-7) for some $x_{i}{ }^{\prime} \in \mathcal{C}^{\prime}$ then there exists a unital ${ }^{*}$-homomorphism $\rho: \mathcal{C} \longrightarrow \mathcal{C}^{\prime}$ such that $\rho\left(x_{i}\right)=x_{i}{ }^{\prime}$ and $(\mathrm{id} \otimes \rho) \Psi=\Psi^{\prime} \rho$ (universality of (\mathcal{C}, Ψ)).

Definition 1.10 We say that (\mathcal{C}, Ψ) describes a quantum Minkowski space associated with a quantum Poincaré group $G, \operatorname{Poly}(G)=(\mathcal{B}, \Delta)$, if 6)-8) are satisfied.

Remark 1.11 This definition doesn't depend on the choice of Λ (see Proposition S5.7).

Theorem 1.12 Let G be a quantum Poincaré group with w, p as in Theorem 1.4. Then there exists a unique (up to a^{*}-isomorphism) pair (\mathcal{C}, Ψ) describing associated Minkowski space:
\mathcal{C} is the universal unital ${ }^{*}$-algebra generated by $x_{i}, i=0,1,2,3$, satisfying $x_{i}{ }^{*}=x_{i}$ and

$$
\begin{equation*}
\left(R-\mathbf{1}^{\otimes 2}\right)_{i j, k l}\left(x_{k} x_{l}-\eta_{k}\left(\Lambda_{l m}\right) x_{m}+T_{k l}\right)=0, \tag{1.21}
\end{equation*}
$$

and Ψ is given by (1.20). Moreover,

$$
\begin{equation*}
\operatorname{dim} \mathcal{C}^{N}=\sum_{n=0}^{N} d_{n}, \tag{1.22}
\end{equation*}
$$

where $\mathcal{C}^{N}=\operatorname{span}\left\{x_{i_{1}} \cdot \ldots \cdot x_{i_{n}}: \quad i_{1}, \ldots, i_{n} \in \mathcal{I}, \quad n=0,1, \ldots, N\right\}$.
We set $m=\left(V^{-1} \otimes V^{-1}\right)(\mathbf{1} \otimes X \otimes \mathbf{1})(E \otimes \tau E), Z_{i j, k}=\eta_{i}\left(\Lambda_{j k}\right)$,

$$
R_{P}=\left(\begin{array}{cccc}
R & Z & -R \cdot Z & \left(R-\mathbf{1}^{\otimes 2}\right) T \tag{1.23}\\
0 & 0 & \mathbf{1} & 0 \\
0 & \mathbf{1} & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), m_{P}=\left(\begin{array}{cccc}
0 & 0 & 0 & m \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

Theorem 1.13 Let G be a quantum Poincaré group with w, p as in Theorem 1.4. Then

1) $\operatorname{Mor}(\mathcal{P} \oplus \mathcal{P}, \mathcal{P} \oplus \mathcal{P})=\mathbf{C i d} \oplus \mathbf{C} R_{P} \oplus \mathbf{C} m_{P}$.
2) Let us consider the cases listed in Theorem 1.6. Then $W \in \operatorname{Mor}(\mathcal{P} \subseteq \mathcal{P}, \mathcal{P}(\mathcal{P})$ and

$$
\begin{equation*}
(W \otimes \mathbf{1})(\mathbf{1} \otimes W)(W \otimes \mathbf{1})=(\mathbf{1} \otimes W)(W \otimes \mathbf{1})(\mathbf{1} \otimes W) \tag{1.24}
\end{equation*}
$$

if and only if
a) $W=x \cdot \operatorname{id}\left(x \in \mathbf{C}_{*}\right)$ or
b) $W=y \cdot R_{P}+z \cdot m_{P}(y, z \in \mathbf{C}$, for 4$), s=1, b \neq 0$ one must have $y=0$).

Those W are invertible if and only if we have the case a) or b) with $y \neq 0$.

2 Proof of the classification

In this Section we prove the Theorems of Section 1.
Let H be a quantum Lorentz group, i.e. $\operatorname{Poly}(H)=(\mathcal{A}, \Delta)$ satisfies the conditions i.-iv. of Section 1. According to [14], we can choose w in such a way that \mathcal{A} is the universal ${ }^{*}$-algebra generated by $w_{A B}, A, B=1,2$, satisfying (1.4)-(1.6), where $X=\tau Q^{\prime}, Q^{\prime}=\alpha Q$ and

1) $E=e_{1} \otimes e_{2}-q e_{2} \otimes e_{1}, E^{\prime}=-q^{-1} e^{1} \otimes e^{2}+e^{2} \otimes e^{1}, Q$ is given by (13)-(19) of $[14], q \in \mathbf{C} \backslash\{0, i,-i\}$, or
2) $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}+e_{1} \otimes e_{1}, E^{\prime}=-e^{1} \otimes e^{2}+e^{2} \otimes e^{1}+e^{2} \otimes e^{2}, Q$ is given by (20)-(21) of [14], we set $q=1$ in that case,
$e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}, e^{1}=(1,0), e^{2}=(0,1)$ (due to remarks before formula (1) in [14], $E^{\prime} E \neq 0$ which means $q \neq \pm i$). In all these cases X is invertible, Δ is given by $\Delta w_{i j}=w_{i k} \otimes w_{k j}$ and (\mathcal{A}, Δ) corresponds to a quantum Lorentz group. The numbers $\alpha \neq 0$ are not essential now and are chosen in such a way that

$$
\begin{equation*}
(X \otimes \mathbf{1})(\mathbf{1} \otimes X)(E \otimes \mathbf{1})=1 \otimes E \tag{2.1}
\end{equation*}
$$

(see (5) of [14]). Then (we use (6) of [14] and direct computations)

$$
\begin{equation*}
\tau \bar{X} \tau=\beta^{-1} X \tag{2.2}
\end{equation*}
$$

for some $\beta \in\{1,-1, i,-i\}$. We set $\tilde{E}=\tau \bar{E} \in \operatorname{Mor}\left(I, \bar{w}(\bar{w}), \tilde{E}^{\prime}=\overline{E^{\prime}} \tau \in\right.$ $\operatorname{Mor}(\bar{w} \oplus \bar{w}, I)$, where $e_{i} \otimes e_{j}, e^{j} \otimes e^{i}, i, j=1,2$, are treated as reals. Using (2.1),(2.2) and

$$
\left(E^{\prime} \otimes 1\right)(1 \otimes E)=1, \quad\left(\mathbf{1} \otimes E^{\prime}\right)(E \otimes \mathbf{1})=\mathbf{1}
$$

(see (3) of [14]; matrices of E^{\prime} and E are inverse one to another), one obtains (using e.g. diagram notation)

$$
\begin{gather*}
\left(\mathbf{1} \otimes X^{-1}\right)\left(X^{-1} \otimes \mathbf{1}\right)(\mathbf{1} \otimes E)=E \otimes \mathbf{1}, \tag{2.3}\\
\beta^{-2}(\mathbf{1} \otimes X)(X \otimes \mathbf{1})(\mathbf{1} \otimes \tilde{E})=\tilde{E} \otimes \mathbf{1} \tag{2.4}\\
\beta^{2}\left(X^{-1} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes X^{-1}\right)(\tilde{E} \otimes \mathbf{1})=\mathbf{1} \otimes \tilde{E}, \tag{2.5}
\end{gather*}
$$

$$
\begin{gather*}
\left(\mathbf{1} \otimes E^{\prime}\right)(X \otimes \mathbf{1})(\mathbf{1} \otimes X)=E^{\prime} \otimes \mathbf{1} \tag{2.6}\\
\left(E^{\prime} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes X^{-1}\right)\left(X^{-1} \otimes \mathbf{1}\right)=\mathbf{1} \otimes E^{\prime}, \tag{2.7}\\
\beta^{-2}\left(\tilde{E}^{\prime} \otimes \mathbf{1}\right)(\mathbf{1} \otimes X)(X \otimes \mathbf{1})=\mathbf{1} \otimes \tilde{E}^{\prime} \tag{2.8}\\
\beta^{2}\left(\mathbf{1} \otimes \tilde{E}^{\prime}\right)\left(X^{-1} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes X^{-1}\right)=\tilde{E}^{\prime} \otimes \mathbf{1} \tag{2.9}
\end{gather*}
$$

Proposition 2.1 (cf Theorem 6.3 of [8], Remark 2 on page 229 of [14]) Let $q \in \mathbf{C} \backslash\{0$, roots of unity $\}$ (we treat $q= \pm 1$ as not a root of unity). Then

1) there exist representations $w^{s}(s \in \mathbf{N} / 2)$ of H such that $w^{0}=I, w^{1 / 2}=w$, $\operatorname{dim} w^{s}=2 s+1$ and

$$
w^{s} \oplus w^{s^{\prime}} \simeq w^{\left|s-s^{\prime}\right|} \oplus w^{\left|s-s^{\prime}\right|+1} \oplus \ldots \oplus w^{s+s^{\prime}} \quad\left(s, s^{\prime} \in \mathbf{N} / 2\right)
$$

2) $w^{s} \overparen{T} \overline{w^{s^{\prime}}}\left(s, s^{\prime} \in \mathbf{N} / 2\right)$ are all unequivalent irreducible representations of H
3) $w^{s}\left(\overline{w^{s^{\prime}}} \simeq \overline{w^{s^{\prime}}}\left(1 w^{s}\left(s, s^{\prime} \in \mathbf{N} / 2\right)\right.\right.$
4) each representation of H is completely reducible

Proof. Let $\mathcal{A}_{\text {hol }}$ be the subalgebra of \mathcal{A} generated by matrix elements of w. Then $\operatorname{Poly}\left(H_{\text {hol }}\right)=\left(\mathcal{A}_{\text {hol }}, \Delta_{\mid \mathcal{A}_{h o l}}\right)$ is a Hopf subalgebra of $\operatorname{Poly}(H)=(\mathcal{A}, \Delta)$. According to Proposition 4.1.1 of [14], $\mathcal{A}_{\text {hol }}$ is the universal algebra generated by matrix elements of w satisfying the reletions (1.4) and (1.5). Due to Theorem 4.2 of [13] and the facts given in cases I,III of Introduction to [13] (cf (1.9), (1.30) and Theorem 1.15 of [3]), 1) holds and matrix elements of $w^{s}(s \in \mathbf{N} / 2)$ form a linear basis of $\mathcal{A}_{\text {hol }}$. Using Proposition 4.1.2-3 of [14], matrix elements of $w^{s} \oplus \overline{w^{s^{\prime}}}\left(s, s^{\prime} \in \mathbf{N} / 2\right)$ form a linear basis of \mathcal{A}. Now Proposition 4.1 of [13] (see also Proposition A. 2 of [7]) gives 2) and 4). The condition iii. of Section 1 implies $(\operatorname{Tr} w)(\operatorname{Tr} \bar{w})=(\operatorname{Tr} \bar{w})(\operatorname{Tr} w)$. That and 1) give that $\operatorname{Tr} v(v \in \operatorname{Irr} H)$ commute among themselves. In virtue of Proposition B. 4 of [3] (cf also Proposition 5.11 of [12]), one obtains 3).

Proof of Theorem 1.4. We have Hopf *-algebra \mathcal{B}, its Hopf *-subalgebra \mathcal{A} and two-dimensional representation w of \mathcal{A} which satisfy the conditions i.iv.,(1.2) and 1.-6. of Section 1. We shall use the results of Section 1 of [10] with Λ replaced by $\mathcal{L}=w \odot \bar{w}, \mathcal{L}_{A B, C D}=w_{A C} w_{B D}{ }^{*}$. Hence we deal with
$p_{A B}=V_{A B, i} p_{i}$ instead of p_{i}. In virtue of (S1.3), it suffices to check (S1.5) for the generators: $a=w_{A B}$ or $a=w_{A B}{ }^{*}$. Inserting such a into (S1.5), we get
$G_{\mathcal{L}} \in \operatorname{Mor}\left(w \subseteq w \subseteq \bar{w}, w \subseteq \bar{w}(\mathbb{D} w), \quad \tilde{G}_{\mathcal{L}} \in \operatorname{Mor}(\bar{w} \subseteq w \subseteq \bar{w}, w \subseteq \bar{w} \oplus \bar{w})\right.$, where

$$
\begin{equation*}
\left(G_{\mathcal{L}}\right)_{A B C, D E F}=f_{A B, E F}\left(w_{C D}\right), \quad\left(\tilde{G}_{\mathcal{L}}\right)_{A B C, D E F}=f_{A B, E F}\left(w_{C D}{ }^{*}\right) \tag{2.10}
\end{equation*}
$$

Thus $G_{\mathcal{L}}=(\mathbf{1} \otimes X) A, \tilde{G}_{\mathcal{L}}=B\left(X^{-1} \otimes \mathbf{1}\right)$, where A is an intertwiner of $w \oplus w \odot \bar{w} \simeq w^{1} \oplus \bar{w} \oplus \bar{w}, B$ is an intertwiner of $w \oplus \bar{w} \oplus \bar{w} \simeq w \oplus \overline{w^{1}} \oplus w$. But $w^{1} \oplus \bar{w}, \bar{w}, w \oplus \overline{w^{1}}, w$ are irreducible (we use Propositions 4.1 and 4.2 of [14]), hence

$$
\begin{aligned}
& \operatorname{Mor}(w \oplus w \subseteq \bar{w}, w \oplus w \oplus \bar{w})=\mathbf{C} E E^{\prime} \otimes \mathbf{1} \oplus \mathbf{C} 1^{\otimes 3} \\
& \operatorname{Mor}(w \oplus \bar{w} \oplus \bar{w}, w \oplus \bar{w} \subseteq \bar{w})=\mathbf{C} 1 \otimes \tilde{E} \tilde{E}^{\prime} \oplus \mathbf{C 1}^{\otimes 3} .
\end{aligned}
$$

Therefore $A=L \otimes 1, B=\mathbf{1} \otimes \tilde{L}$, where

$$
\begin{equation*}
L=a \mathbf{1}^{\otimes 2}+b E E^{\prime}, \quad \tilde{L}=\tilde{a} \mathbf{1}^{\otimes 2}+\tilde{b} \tilde{E} \tilde{E}^{\prime}, \quad a, \tilde{a}, b, \tilde{b} \in \mathbf{C} . \tag{2.11}
\end{equation*}
$$

According to (S1.3), $f: \mathcal{A} \longrightarrow M_{4}(\mathbf{C})$ should be a unital homomorphism. It means that f should preserve the relations (1.4), (1.4)*, (1.5), (1.5)*, (1.6) ((1.4)* denotes the relation conjugated to (1.4) etc.), i.e.

$$
\begin{gather*}
\left(G_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes G_{\mathcal{L}}\right)\left(E \otimes \mathbf{1}^{\otimes 2}\right)=\mathbf{1}^{\otimes 2} \otimes E, \tag{2.12}\\
\left(\tilde{G}_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes \tilde{G}_{\mathcal{L}}\right)\left(\tilde{E} \otimes \mathbf{1}^{\otimes 2}\right)=\mathbf{1}^{\otimes 2} \otimes \tilde{E}, \tag{2.13}\\
\left(\mathbf{1}^{\otimes 2} \otimes E^{\prime}\right)\left(G_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes G_{\mathcal{L}}\right)=E^{\prime} \otimes \mathbf{1}^{\otimes 2}, \tag{2.14}\\
\left(\mathbf{1}^{\otimes 2} \otimes \tilde{E}^{\prime}\right)\left(\tilde{G}_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes \tilde{G}_{\mathcal{L}}\right)=\tilde{E}^{\prime} \otimes \mathbf{1}^{\otimes 2}, \tag{2.15}\\
\left(\tilde{G}_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes G_{\mathcal{L}}\right)\left(X \otimes \mathbf{1}^{\otimes 2}\right)=\left(\mathbf{1}^{\otimes 2} \otimes X\right)\left(G_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes \tilde{G}_{\mathcal{L}}\right) . \tag{2.16}
\end{gather*}
$$

Using (2.3), (2.5), (2.6) and (2.8), the equations (2.12)-(2.15) are equivalent to

$$
\begin{gather*}
(L \otimes \mathbf{1})(\mathbf{1} \otimes L)(E \otimes \mathbf{1})=\mathbf{1} \otimes E \tag{2.17}\\
\beta^{-2}(\tilde{L} \otimes \mathbf{1})(\mathbf{1} \otimes \tilde{L})(\tilde{E} \otimes \mathbf{1})=\mathbf{1} \otimes \tilde{E} \tag{2.18}\\
\left(\mathbf{1} \otimes E^{\prime}\right)(L \otimes \mathbf{1})(\mathbf{1} \otimes L)=E^{\prime} \otimes \mathbf{1} \tag{2.19}\\
\beta^{-2}\left(\mathbf{1} \otimes \tilde{E}^{\prime}\right)(\tilde{L} \otimes \mathbf{1})(\mathbf{1} \otimes \tilde{L})=\tilde{E}^{\prime} \otimes \mathbf{1} \tag{2.20}
\end{gather*}
$$

Using (2.11), computing $a, b, \tilde{a}, \tilde{b}$, and inserting them into (2.11), one gets that the solutions of $(2.17)-(2.20)$ are

$$
\begin{equation*}
L=L_{i}, \quad \tilde{L}=\beta \tau \overline{L_{j}^{-1}} \tau, \quad i, j=1,2,3,4, \tag{2.21}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{i}=q_{i}\left(\mathbf{1}^{\otimes 2}+q_{i}^{-2} E E^{\prime}\right), \tag{2.22}
\end{equation*}
$$

$q_{1,2}= \pm q^{\frac{1}{2}}, q_{3,4}= \pm q^{-\frac{1}{2}}$. Using these relations, (2.1), (2.4), (2.6) and (2.8), we get that (2.16) is satisfied. Therefore, the solutions of (S1.3),(S1.5) are given by (2.10), where

$$
\begin{equation*}
G_{\mathcal{L}}=(\mathbf{1} \otimes X)(L \otimes \mathbf{1}), \quad \tilde{G}_{\mathcal{L}}=(\mathbf{1} \otimes \tilde{L})\left(X^{-1} \otimes \mathbf{1}\right) \tag{2.23}
\end{equation*}
$$

L, \tilde{L} are given by (2.21)-(2.22) (in general 16 solutions). Moreover,

$$
\begin{gather*}
\left(R_{\mathcal{L}}\right)_{A B C D, E F G H}=f_{A B, G H}\left(\mathcal{L}_{C D, E F}\right)= \\
f_{A B, M N}\left(w_{C E}\right) f_{M N, G H}\left(w_{D F}{ }^{*}\right)=\left(G_{\mathcal{L}}\right)_{A B C, E M N}\left(\tilde{G}_{\mathcal{L}}\right)_{M N D, F G H}, \\
R_{\mathcal{L}}=\left(G_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes \tilde{G}_{\mathcal{L}}\right)=(\mathbf{1} \otimes X \otimes \mathbf{1})(L \otimes \tilde{L})\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right) \tag{2.24}
\end{gather*}
$$

We know that $\dot{p}_{A B} \otimes \dot{p}_{C D}$ form a basis of $\left(\dot{\Gamma}_{2}\right)_{i n v}$ which transforms under $\Delta_{2 L}$ according to $\mathcal{L} \oplus \mathcal{L}$. It is easy to check that the decomposition into irreducible unequivalent components

$$
\mathcal{L} \oplus \mathcal{L} \simeq w \subseteq w \subseteq \bar{w} \oplus \bar{w} \simeq w^{1} \oplus \overline{w^{1}} \oplus w^{1} \oplus \overline{w^{1}} \oplus I
$$

corresponds to

$$
\begin{equation*}
\left(\dot{\Gamma}_{2}\right)_{i n v}=W_{1 \overline{1}} \oplus W_{1} \oplus W_{\overline{1}} \oplus W_{0} \tag{2.25}
\end{equation*}
$$

where

$$
\begin{gathered}
W_{1 \overline{1}}=\operatorname{span}\left\{(\phi \otimes \psi)\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(\dot{p} \otimes \dot{p}): \phi, \psi \in\left(\mathbf{C}^{2} \otimes \mathbf{C}^{2}\right)^{\prime}, \quad \phi E=0, \quad \psi \tilde{E}=0\right\}, \\
W_{1}=\left\{\left(\phi \otimes \tilde{E}^{\prime}\right)\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(\dot{p} \otimes \dot{p}): \phi \in\left(\mathbf{C}^{2} \otimes \mathbf{C}^{2}\right)^{\prime}, \quad \phi E=0\right\}, \\
W_{\overline{1}}=\left\{\left(E^{\prime} \otimes \psi\right)\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(\dot{p} \otimes \dot{p}): \psi \in\left(\mathbf{C}^{2} \otimes \mathbf{C}^{2}\right)^{\prime}, \quad \psi \tilde{E}=0\right\}, \\
W_{0}=\mathbf{C}\left(E^{\prime} \otimes \tilde{E}^{\prime}\right)\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(\dot{p} \otimes \dot{p})
\end{gathered}
$$

(indices as in matrix multiplication rule have been omitted). But $R_{\mathcal{L}}^{T}$ is the matrix of ρ in the basis $\dot{p}_{A B} \otimes \dot{p}_{C D}$ (see remark after (S1.13)). Using (2.24), we get that (2.25) corresponds to

$$
\rho=\beta q_{i}{\overline{q_{j}}}^{-1} \oplus-\beta q_{i}{\overline{q_{j}}}^{3} \oplus-\beta q_{i}^{-3}{\overline{q_{j}}}^{-1} \oplus \beta q_{i}^{-3}{\overline{q_{j}}}^{3}
$$

Comparing the condition 6. with Proposition S1.6, we get $\operatorname{dim} K=6$. Therefore $K_{\text {inv }}=W_{1} \oplus W_{\overline{1}}$. But Proposition S1.4 implies $K \subset \operatorname{ker}(\rho+\mathrm{id})$, hence $\beta q_{i}{\overline{q_{j}}}^{3}=\beta q_{i}^{-3}{\overline{q_{j}}}^{-1}=1$. Remembering that $\beta \in\{1,-1, i,-i\}, q \neq \pm i$, we get $q= \pm 1$. Thus we can (and will) omit L_{3}, L_{4}. We obtain $\beta=q$, $i=j$ or $\beta=-q, i \neq j(q \in\{1,-1\}, i, j \in\{1,2\})$. In all these cases $\rho=1 \oplus-1 \oplus-1 \oplus 1$, hence $K=\operatorname{ker}(\rho+\mathrm{id})$. Moreover, $\rho^{2}=\mathrm{id}, R^{2}=\mathbf{1}^{\otimes 4}$. In virtue of Proposition 2.1 the conditions a)-c) of Section 2 of [10] are satisfied and we can use the results of Sections 1-4 of [10]. In particular, Corollary S4.2 implies the first statement of the Theorem.

Let us pass from \mathcal{L} to $\Lambda=V^{-1} \mathcal{L} V$ (see (1.2)). Since $\bar{V}=\tau V, \bar{\Lambda}=\Lambda$. We replace $p_{A B}, A, B=1,2$, corresponding to \mathcal{L} by $p_{i}=V_{i, A B}^{-1} p_{A B}, f_{A B, C D}$ by $f_{i j}=V_{i, A B}^{-1} f_{A B, C D} V_{C D, j}(\mathrm{cf}(\mathrm{S} 1.2)), R_{\mathcal{L}}, G_{\mathcal{L}}$ and $\tilde{G}_{\mathcal{L}}$ by $R=\left(V^{-1} \otimes\right.$ $\left.V^{-1}\right) R_{\mathcal{L}}(V \otimes V), G=\left(V^{-1} \otimes \mathbf{1}\right) G_{\mathcal{L}}(\mathbf{1} \otimes V), \tilde{G}=\left(V^{-1} \otimes \mathbf{1}\right) \tilde{G}_{\mathcal{L}}(\mathbf{1} \otimes V)$. Then (2.10) gives

$$
\begin{equation*}
f_{i j}\left(w_{C D}\right)=G_{i C, D j}, \quad f_{i j}\left(w_{C D}^{*}\right)=\tilde{G}_{i C, D j} . \tag{2.26}
\end{equation*}
$$

Now we pass to a new p_{i} such that $p_{i}^{*}=p_{i}$ without change of $\tilde{\mathcal{B}}^{N}, \dot{\Gamma}_{2}, \xi$, $\rho, K, f_{i j}, R, G$ and \tilde{G} (see Proposition S4.5.1 and (S1.2)). We redefine $p_{A B}$ accordingly. In virtue of Proposition S4.5.2, (S4.10) holds. Setting $a=w_{E F}{ }^{*}$ and passing back to \mathcal{L} one has $f_{B A, D C}\left(w_{E F}^{-1}\right)=\overline{f_{A B, C D}\left(w_{E F}{ }^{*}\right)}$. It means

$$
\begin{equation*}
\left(G_{\mathcal{L}}^{-1}\right)_{E B A, D C F}=\overline{\left(\tilde{G}_{\mathcal{L}}\right)_{A B E, F C D}} \tag{2.27}
\end{equation*}
$$

i.e. $\left(L_{i}^{-1} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes X^{-1}\right)=\left(L_{j}^{-1} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes X^{-1}\right)($ we used $(2.23),(2.21),(2.2))$. Thus $L_{i}=L_{j}, i=j$. Consequently, $\beta=q= \pm 1$ and $i=j=1,2$. Conversely, this condition gives (S4.10) for $a=w_{E F}{ }^{*}$ and (using $S \circ *=* \circ S^{-1}$) $a=w_{E F}^{-1}$, hence for all $a \in \mathcal{A}$. The list of X such that $\beta=q= \pm 1$ is provided in the formulation of Theorem 1.4 (they contain factor α which is computed in such a way that (2.1) is satisfied, we also restricted the range of parameters according to remarks on page 220 of [14]). For E, E^{\prime}, X as in Theorem 1.4 and $f_{i j}$ computed above (S1.3), (S1.5) and (S4.10) (for Λ) are satisfied.

According to Proposition 2.1, the only 2-dimensional irreducible representations of H are $U w U^{-1}, U \bar{w} U^{-1}, U \in G L(2, \mathbf{C})$. Thus if $\phi: \mathcal{A}_{1} \longrightarrow \mathcal{A}_{2}$ is an isomorphism of Hopf ${ }^{*}$-algebras $\mathcal{A}_{1}, \mathcal{A}_{2}$ included in our list, then

$$
\text { (1) } \phi(w)=U w U^{-1} \text { or (2) } \phi(w)=U \bar{w} U^{-1} \text {. }
$$

Let us consider the case (1). We denote E, E^{\prime}, X for $A_{i}, i=1,2$, by $E_{i}, E_{i}{ }^{\prime}, X_{i}$. Applying ϕ to (1.4)-(1.6) for \mathcal{A}_{1}, one gets

$$
\begin{gather*}
\left(U^{-1} \otimes U^{-1}\right) E_{1}=k^{-1} E_{2}, \tag{2.28}\\
E_{1}^{\prime}(U \otimes U)=k^{\prime} E_{2}^{\prime}, \tag{2.29}\\
\left(\bar{U}^{-1} \otimes U^{-1}\right) X_{1}(U \otimes \bar{U})=l X_{2} \tag{2.30}
\end{gather*}
$$

for some $k, k^{\prime}, l \in \mathbf{C}_{*}$. Considering (2.28)-(2.29), one gets $E_{1}=E_{2}=E$ and

$$
\begin{gathered}
U \in G L(2, \mathbf{C}), k=k^{\prime}=\operatorname{det} U \text { for } E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}, \\
U \in\left\{\left(\begin{array}{cc}
m & x \\
0 & m
\end{array}\right): m \in \mathbf{C}_{*}, \quad x \in \mathbf{C}\right\}, \quad k=k^{\prime}=m^{2}
\end{gathered}
$$

for $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}+e_{1} \otimes e_{1}$,

$$
U \in\left\{\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right),\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right): x, y \in \mathbf{C}_{*}\right\}, \quad k=k^{\prime}=x y
$$

for $E=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$.
Inserting such U in (2.30), one gets (for $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}$ see Section 5.1 of [14]) $X_{1}=X_{2}=X, l=1$, so

$$
\begin{equation*}
\left(\bar{U}^{-1} \otimes U^{-1}\right) X(U \otimes \bar{U})=X \tag{2.31}
\end{equation*}
$$

and in particular cases:

1) $t=1: U \in G L(2, \mathbf{C})$
$0<t<1: U \in\left\{\left(\begin{array}{cc}x & 0 \\ 0 & y\end{array}\right),\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right): x, y \in \mathbf{C}_{*}\right\}$
2) $U=m\left(\begin{array}{cc}e^{i \phi} & x \\ 0 & e^{-i \phi}\end{array}\right), m \in \mathbf{C}_{*}, x \in \mathbf{C}, \phi \in \mathbf{R}$
3) $U=m\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right), m \in \mathbf{C}_{*}, x \in \mathbf{C}$
4) $U=m\left(\begin{array}{cc}1 & i x \\ 0 & 1\end{array}\right), m \in \mathbf{C}_{*}, x \in \mathbf{R}$
5) $U \in\left\{\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right),\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right): x, y \in \mathbf{C}_{*}\right\}$
6) $U \in\left\{m\left(\begin{array}{cc}e^{i \phi} & 0 \\ 0 & e^{-i \phi}\end{array}\right), \quad m \in \mathbf{C}_{*}, \quad \phi \in \mathbf{R}\right\}$
7) $U \in\left\{m\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad m\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad m\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad m\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right): m \in\right.$ $\left.\mathrm{C}_{*}\right\}$.

Next, let us consider the case (2). Then

$$
\begin{gather*}
\left(\overline{U^{-1}} \otimes \overline{U^{-1}}\right) \tilde{E}_{1}=\bar{k}^{-1} E_{2}, \tag{2.32}\\
\tilde{E}_{1}^{\prime}(\bar{U} \otimes \bar{U})=\bar{k}^{\prime} E_{2}^{\prime}, \tag{2.33}\\
\left(\bar{U}^{-1} \otimes U^{-1}\right) X_{1}(U \otimes \bar{U})=l^{-1} X_{2}^{-1} \tag{2.34}
\end{gather*}
$$

for some $k, k^{\prime}, l \in \mathbf{C}_{*}$. Considering (2.32)-(2.33), one gets $E_{1}=E_{2}=E$,

$$
\begin{gathered}
U \in G L(2, \mathbf{C}), k=k^{\prime}=-\operatorname{det} U \text { for } E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}, \\
U \in\left\{\left(\begin{array}{cc}
m & x \\
0 & -m
\end{array}\right): m \in \mathbf{C}_{*}, \quad x \in \mathbf{C}\right\}, k=k^{\prime}=m^{2},
\end{gathered}
$$

for $E=e_{1} \otimes e_{2}-e_{2} \otimes e_{1}+e_{1} \otimes e_{1}$,

$$
U \in\left\{\left(\begin{array}{cc}
x & 0 \\
0 & y
\end{array}\right), \quad\left(\begin{array}{cc}
0 & x \\
y & 0
\end{array}\right): x, y \in \mathbf{C}_{*}\right\}, k=k^{\prime}=x y
$$

for $E=e_{1} \otimes e_{2}+e_{2} \otimes e_{1}$.
Inserting such U in (2.34), it is possible only for $X_{1}=X_{2}=X$ in the following cases:

1) $t=1: U \in G L(2, \mathbf{C}), l=1$
2) $r=0: U=m\left(\begin{array}{ll}1 & x \\ 0 & 1\end{array}\right), m \in \mathbf{C}_{*}, x \in \mathbf{C}, l=1$
3) $U=m\left(\begin{array}{cc}1 & \frac{1}{2} \\ 0 & -1\end{array}\right) \cdot\left(\begin{array}{cc}1 & i x \\ 0 & 1\end{array}\right), m \in \mathbf{C}_{*}, x \in \mathbf{R}, l=1$
4) $t=1: U \in\left\{\left(\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right), \quad\left(\begin{array}{ll}0 & x \\ y & 0\end{array}\right): x, y \in \mathbf{C}_{*}\right\}, l=-1$
(l is computed for normalization of X as in Theorem 1.4, which includes α). In particular, all considered (\mathcal{A}, Δ) are nonisomorphic.

Remark 2.2 Using (2.17)-(2.21) for $i=j=1,2, \beta=q= \pm 1$, one also gets

$$
\begin{align*}
& (\mathbf{1} \otimes L)(L \otimes \mathbf{1})(\mathbf{1} \otimes E)=E \otimes \mathbf{1} \tag{2.35}\\
& (\mathbf{1} \otimes \tilde{L})(\tilde{L} \otimes \mathbf{1})(\mathbf{1} \otimes \tilde{E})=\tilde{E} \otimes \mathbf{1} \tag{2.36}\\
& \left(E^{\prime} \otimes \mathbf{1}\right)(\mathbf{1} \otimes L)(L \otimes \mathbf{1})=\mathbf{1} \otimes E^{\prime} \tag{2.37}\\
& \left(\tilde{E}^{\prime} \otimes \mathbf{1}\right)(\mathbf{1} \otimes \tilde{L})(\tilde{L} \otimes \mathbf{1})=\mathbf{1} \otimes \tilde{E}^{\prime} \tag{2.38}
\end{align*}
$$

Let us repeat that $K=\operatorname{ker}(\rho+\mathrm{id}), \rho^{2}=\mathrm{id}$, the conditions a)-c) of Section 2 of [10] are satisfied and we can use the results of Sections 1-4 of [10]. We notice that $L, \tilde{L}, G, \tilde{G}$ and R given before Theorem 1.5 and in the proof of Theorem 1.4 coincide $(i=j=1$ corresponds to $s=1$, while $i=j=2$ to $s=-1)$. They correspond to Λ as in (1.2), $\bar{\Lambda}=\Lambda$.

Proof of Theorem 1.5. Using Theorem 1.4 and Corollary S3.8.a, \mathcal{B} is the universal ${ }^{*}$-algebra with I generated by $w_{A B}$ and p_{i} satisfying (1.4)-(1.9). Next, (S2.6) coincides with a), (S4.10)-(S4.11) imply b), (2.26) gives the first formula of c). The next two formulae in c) can be treated as definitions of $H_{E F C D}$ and $T_{E F C D}$. Since w, \bar{w} and \mathcal{P} are representations, formulae concerning Hopf structure follow. Uniqueness of f, η, T and $*$-Hopf structure is obvious.

Let $\mathcal{B}, \hat{\mathcal{B}}$ describe two quantum Poincaré groups and $\mathcal{A}, \Delta, \Lambda, p, f, \eta, T$, $\hat{\mathcal{A}}, \hat{\Delta}, \hat{\Lambda}, \hat{p}, \hat{f}, \hat{\eta}, \hat{T}$ be the corresponding objects as in Theorems 1.4 and 1.5. Assume that $\phi: \mathcal{B} \longrightarrow \hat{\mathcal{B}}$ is an isomorphism of Hopf ${ }^{*}$-algebras. According to Proposition S4.4, one has $\phi(\mathcal{A})=\hat{\mathcal{A}}$ and we put $\phi_{\mathcal{A}}=\phi_{\left.\right|_{\mathcal{A}}}: \mathcal{A} \longrightarrow \hat{\mathcal{A}}$. Due to the proof of Theorem 1.5, one has

$$
\text { (1) } \phi(w)=U \hat{w} U^{-1} \text { or (2) } \phi(w)=U \overline{\hat{w}} U^{-1} \text {. }
$$

Using (1.2), one gets $\phi(\Lambda)=M \hat{\Lambda} M^{-1}$ where

$$
\left.\begin{array}{c}
M=V^{-1}(U \otimes \bar{U}) V \text { in the case (1) } \tag{2.39}\\
M=q^{1 / 2} V^{-1}(U \otimes \bar{U}) X V \text { in the case }(2) .
\end{array}\right\}
$$

Using (1.3) and (2.2), one gets $\bar{M}=M\left(\overline{q^{1 / 2}}=\beta q^{1 / 2}\right.$ since $\left.\beta=q= \pm 1\right)$.
In virtue of (S4.2), one has

$$
\begin{aligned}
& \hat{f}_{i j}\left(\hat{w}_{C D}\right)=U_{C A}^{-1}\left(M^{-1}\right)_{i l} f_{l m}\left(w_{A B}\right) M_{m j} U_{B D} \text { in the case (1), } \\
& \hat{f}_{i j}\left(\hat{w}_{C D}\right)=\bar{U}_{C A}^{-1}\left(M^{-1}\right)_{i l} f_{l m}\left(w_{A B}{ }^{*}\right) M_{m j} \bar{U}_{B D} \text { in the case (2). }
\end{aligned}
$$

Using (2.28)-(2.30) or (2.32)-(2.34), we get $\hat{L}=L$ in all cases. Thus there are no isomorphisms between quantum Poincaré groups with different s.

Using the computer MATHEMATICA program, we made several computations performed in

Proof of Theorem 1.6. Let $\mathcal{B}, \mathcal{A}, \Delta, \Lambda, p, f, \eta, T$ describe a quantum Poincaré group. According to Propositions S4.4 and S4.5.3, it is always possible to replace η by $\hat{\eta}=\eta+f h-\epsilon h$ where $h_{i} \in \mathbf{R}$. We put $\mathcal{A}=\hat{\mathcal{A}}, w=\hat{w}, c=1$, $M=\mathbf{1}_{4}, \phi_{\mathcal{A}}=$ id, and f doesn't change. Thus we substitute $H_{E F C D}$ by

$$
\hat{H}_{E F C D}=V_{E F, i} \hat{\eta}_{i}\left(\hat{w}_{C D}\right)=H_{E F C D}+f_{E F, A B}\left(w_{C D}\right) h_{A B}-\delta_{C D} h_{E F},
$$

where $f_{E F, A B}\left(w_{C D}\right)$ are given by (2.10) and (2.23), $h_{E F}=V_{E F, i} h_{i}$ (i.e. $h_{11}, h_{22} \in \mathbf{R}, \overline{h_{12}}=h_{21} \in \mathbf{C}$). In each equivalence class obtained by such substitutions we restrict ourselves to exactly one H singled out by the following constraints:
no constraints for 1), $s=1, t=1$,
$H_{1111} \in i \mathbf{R}, H_{2222} \in i \mathbf{R}, H_{1222}=0$ for 1$), s=1, t \neq 1$,
$H_{1112}=0, H_{2112} \in i \mathbf{R}$ for 2$), s=1$,
$H_{1111}=0, H_{1112} \in i \mathbf{R}, H_{1211} \in i \mathbf{R}$ for 3$), s=1$,
$H_{2111} \in i \mathbf{R}, H_{1122} \in \mathbf{R}, H_{1112} \in i \mathbf{R}$ for 4$), s=1$,
$H_{1111} \in i \mathbf{R}, H_{2111}=0, H_{2222} \in i \mathbf{R}$ for 5$), s=1, t \neq 1$,
$H_{1111} \in i \mathbf{R}, H_{2222} \in i \mathbf{R}$ for 5$), s=1, t=1$,

$$
\begin{aligned}
& \left.H_{1122} \in i \mathbf{R}, H_{1112}=0, H_{2211} \in i \mathbf{R} \text { for } 6\right), s=1 \\
& \left.H_{1122} \in i \mathbf{R}, H_{2222} \in i \mathbf{R}, H_{1222}=0 \text { for } 7\right), s=1 \\
& \left.H_{1111} \in i \mathbf{R}, H_{1222}=0, H_{2222} \in i \mathbf{R} \text { for } 1\right), s=-1 \\
& \left.H_{1122} \in i \mathbf{R}, H_{1211}=0, H_{2211} \in i \mathbf{R} \text { for } 2\right), s=-1 \\
& \left.H_{2111}=0, H_{1111} \in i \mathbf{R}, H_{2211} \in i \mathbf{R} \text { for } 3\right), s=-1 \\
& \left.H_{2211} \in i \mathbf{R}, H_{1222}=0, H_{1111} \in i \mathbf{R} \text { for } 4\right), s=-1 \\
& \left.H_{1222}=0, H_{1111} \in i \mathbf{R}, H_{2222} \in i \mathbf{R} \text { for } 5\right), s=-1, t \neq 1, \\
& \left.H_{1222}=0 \text { for } 5\right), s=-1, t=1, \\
& \left.H_{1211}=0, H_{2112} \in i \mathbf{R} \text { for } 6\right), s=-1, \\
& \left.H_{1122} \in i \mathbf{R}, H_{1222}=0, H_{2222} \in i \mathbf{R} \text { for } 7\right), s=-1
\end{aligned}
$$

We also may and will assume (S3.50).
In virtue of the theory presented in Sections 1-4 of [10] (see e.g. Theorem S3.1 and Proposition S4.5) $H_{E F C D}$ and $T_{E F C D}$ give a quantum Poincaré group if and only if (S1.5), (S2.6), (S2.14), (S3.1), (S3.2), (S4.10), (S4.11) and (S4.12) are satisfied (cf the proof of Theorem 1.4). We shall investigate subsequent conditions and dealing with next ones we assume that previously investigated conditions are satisfied. We already know that f is a unital homomorphism satisfying (2.26), (S1.5) and (S4.10). Thus (S2.6) means that applying η_{i} to the relations (1.4), (1.4)*, (1.5), (1.5)* and (1.6) (* means that we conjugate the relation) and using (S2.5), one gets relations on $H_{i A, B}^{w}=$ $\eta_{i}\left(w_{A B}\right)$ and $H_{i A, B}^{\bar{w}}=\eta_{i}\left(w_{A B}{ }^{*}\right)$, which should be satisfied. They read as follows:

$$
\left.\begin{array}{c}
\left\{(G \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{w}\right)+\left(H^{w} \otimes \mathbf{1}\right)\right\} E=0, \\
\left\{(\tilde{G} \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{\bar{w}}\right)+\left(H^{\bar{w}} \otimes \mathbf{1}\right)\right\} \tilde{E}=0, \\
\left(\mathbf{1} \otimes E^{\prime}\right)\left\{\left(H^{w} \otimes \mathbf{1}\right)+(G \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{w}\right)\right\}=0, \\
\left(\mathbf{1} \otimes \tilde{E}^{\prime}\right)\left\{\left(H^{\bar{w}} \otimes \mathbf{1}\right)+(\tilde{G} \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{\bar{w}}\right)\right\}=0, \\
\left(\mathbf{1}^{\otimes 2} \otimes X\right)\left\{\left(H^{w} \otimes \mathbf{1}\right)+(G \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{\bar{w}}\right)\right\}= \tag{2.44}\\
\left\{\left(H^{\bar{w}} \otimes \mathbf{1}\right)+(\tilde{G} \otimes \mathbf{1})\left(\mathbf{1} \otimes H^{w}\right)\right\} X .
\end{array}\right\}
$$

Setting $a=w_{E F}{ }^{*}$ in (S4.11), one gets

$$
\begin{equation*}
\left(H^{\bar{w}}\right)_{i E, F}=\overline{\eta_{i}\left(w_{E F}^{-1}\right)}=-\overline{f_{i j}\left(w_{E L}^{-1}\right)} \cdot \overline{\eta_{j}\left(w_{L F}\right)}=-\overline{G^{-1}}{ }_{E i, j L} \cdot \overline{H_{j L, F}^{w}} \tag{2.45}
\end{equation*}
$$

(we used (S2.5), (S1.4) and (2.26)). Conversely, (2.45) gives (S4.11) for $a=w_{E F}{ }^{*}$ and (using $S \circ * \circ S \circ *=\mathrm{id}$) $a=w_{E F}^{-1}$, hence for all $a \in \mathcal{A}$ (it suffices to check the conditions (S4.10)-(S4.11) on generators of \mathcal{A} as algebra: they are equivalent to Theorem 1.5.b for a^{*}).

Using the 16 relations (2.1), (2.3)-(2.9), (2.17)-(2.20) and (2.35)-(2.38), one gets that (2.40) is equivalent to (2.42), (2.41) is equivalent to (2.43). Moreover, (2.40) is equivalent to (2.41) (one conjugates (2.41) and uses (2.27), (2.45)). Thus (2.41)-(2.43) are superfluous. The remaining equations: (2.44) (with inserted (2.45)) and (2.40) give a set of \mathbf{R}-linear equations on $H_{E F C D}=$ $V_{E F, i} H_{i C, D}^{w}$.

Next, (S3.50) gives a set of linear equations on $T_{E F C D}=V_{E F, i} V_{C D, j} T_{i j}$. By virtue of (S3.50) and (S4.14), one obtains (\tilde{T} was defined after (S4.12)) $R \tilde{T}=-\tilde{T}, R D=-D$, where $D=\tilde{T}-T$. Therefore D corresponds to a subrepresentation of $\Lambda \oplus \Lambda$ equivalent to $w^{1} \oplus \overline{w^{1}}$. But (S4.12) means that D is an invariant vector of $\Lambda \oplus \Lambda$, hence $D=0, \tilde{T}=T$ (conversely, this implies (S4.12)). This gives a set of \mathbf{R}-linear conditions on $T_{E F C D}$.

According to Proposition S3.13 and Corollary S4.9, we may replace (S2.14) by (S3.55) for $b=w_{A B}$. But this is equivalent to $M \in \operatorname{Mor}(w, \Lambda \oplus \Lambda(1)$), where $M_{i j C, B}=\tau^{i j}\left(w_{C B}\right)$. Using $\left[\left(R+\mathbf{1}_{4}^{\otimes 2}\right) \otimes \mathbf{1}\right] M=0($ see (S3.54)), one gets $M=\left[\left(V^{-1} \otimes V^{-1}\right)(\mathbf{1} \otimes X \otimes \mathbf{1}) \otimes \mathbf{1}\right] N$, where $N \in \operatorname{Mor}(w, w \subseteq w(\bar{T} \bar{w}(\bar{w}(1) w)$, $\left(L_{1} \otimes \widetilde{L}_{1} \otimes \mathbf{1}\right) N=-N(L \otimes \tilde{L}$ doesn't depend on s, one can put $s=1)$. Thus $N_{A B C D F, G}=P_{A B F, G} \tilde{E}_{C D}$ with $P \in \operatorname{Mor}(w, w \oplus(\backsim) w),\left(L_{1} \otimes 1\right) P=q^{1 / 2} P$. It means $P=\lambda \mathbf{1} \otimes E+\mu E \otimes \mathbf{1},\left(E E^{\prime} \otimes \mathbf{1}\right) P=0$. Hence $\mu=\frac{1}{2} q \lambda$, $P=\lambda\left(\mathbf{1} \otimes E+\frac{1}{2} q E \otimes \mathbf{1}\right)$. On the other hand,

$$
\begin{gathered}
\tau^{i j}\left(w_{C B}\right)=\left(R-\mathbf{1}^{\otimes 2}\right)_{i j, k l}\left(\eta_{l}\left(w_{C A}\right) \eta_{k}\left(w_{A B}\right)-\right. \\
\left.\eta_{k}\left(\Lambda_{l s}\right) \eta_{s}\left(w_{C B}\right)+T_{k l} \delta_{C B}-f_{l n}\left(w_{C A}\right) f_{k m}\left(w_{A B}\right) T_{m n}\right) .
\end{gathered}
$$

Using (1.2), (S2.5), (2.45) and (2.26), one gets a set of equations containing terms bilinear in $\operatorname{Re} H_{A B C D}$, $\operatorname{Im} H_{A B C D}$, terms linear in $\operatorname{Re} T_{A B C D}$, $\operatorname{Im} T_{A B C D}$ and terms linear in $\operatorname{Re} \lambda, \operatorname{Im} \lambda$.

We shall prove that (S3.1) is equivalent to $\lambda \in q^{1 / 2} \mathbf{R}$. One has (see (1.2)) $\tilde{F}=\left(V^{-1} \otimes V^{-1} \otimes V^{-1}\right) J V$ where $\tilde{F}=\left(\left(R-\mathbf{1}_{4}^{\otimes 2}\right) \otimes \mathbf{1}\right) F$ and

$$
J_{Q R T V A B, C D}=V_{Q R, i} V_{T V, j} \tau^{i j}\left(w_{A C} w_{B D}{ }^{*}\right)
$$

Using Proposition S3.13,

$$
\tau^{i j}\left(w_{A C} w_{B D}{ }^{*}\right)=\tau^{i j}\left(w_{A C}\right) \delta_{B D}+G_{j A, E s} G_{i E, C m} \tau^{m s}\left(w_{B D}{ }^{*}\right)
$$

But in virtue of Proposition S4.8

$$
\tau^{m s}\left(w_{B D}{ }^{*}\right)=\overline{\tau^{s m}\left(w_{B D}^{-1}\right)} .
$$

Using once again Proposition S3.13 for $a=w_{L S}, b=w_{S D}^{-1}$, multiplying both sides by $G_{B s, i P}^{-1} G_{P m, j L}^{-1}$ and conjugating both sides, one gets

$$
\overline{\tau^{s m}\left(w_{B D}^{-1}\right)}=-\tilde{G}_{s B, P i} \tilde{G}_{m P, L j} \overline{\tau^{i j}\left(w_{L D}\right)}
$$

(see (2.27)). Inserting all these data, after some calculations (using the 16 relations), one obtains

$$
J=\bar{\lambda} q A+\lambda B+\frac{1}{2}(\bar{\lambda}+\lambda q) C
$$

where $\quad A=(\mathbf{1} \otimes X \otimes X \otimes \mathbf{1})(E \otimes X \otimes \tilde{E})$,

$$
B=\mathbf{1} \otimes\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)(\tilde{E} \otimes E) \otimes \mathbf{1}, \quad C=(\mathbf{1} \otimes X \otimes \mathbf{1})(E \otimes \tilde{E}) \otimes \mathbf{1} \otimes \mathbf{1} .
$$

We shall also use $D=\mathbf{1} \otimes \mathbf{1} \otimes(\mathbf{1} \otimes X \otimes \mathbf{1})(E \otimes \tilde{E})$. Using (2.24) and the 16 relations, one has

$$
\begin{aligned}
& \left(R_{\mathcal{L}} \otimes \mathbf{1}\right) A=-A-q C, \quad\left(R_{\mathcal{L}} \otimes \mathbf{1}\right) B=-B-q C \\
& \left(R_{\mathcal{L}} \otimes \mathbf{1}\right) C=C, \quad\left(R_{\mathcal{L}} \otimes \mathbf{1}\right) D=D+q A+q B+C, \\
& \left(\mathbf{1} \otimes R_{\mathcal{L}}\right) A=-A-q D, \quad\left(\mathbf{1} \otimes R_{\mathcal{L}}\right) B=-B-q D \\
& \left(\mathbf{1} \otimes R_{\mathcal{L}}\right) C=C+q A+q B+D, \quad\left(\mathbf{1} \otimes R_{\mathcal{L}}\right) D=D .
\end{aligned}
$$

In particular, $\left(R_{\mathcal{L}} \otimes \mathbf{1}\right) J=-J$ (it also follows from (S3.54)). Thus we can compute

$$
\begin{gathered}
-2(V \otimes V \otimes V) A_{3} F V^{-1}=(V \otimes V \otimes V) A_{3} \tilde{F} V^{-1}= \\
{\left[\mathbf{1} \otimes \mathbf{1} \otimes \mathbf{1}-\mathbf{1} \otimes R_{\mathcal{L}}-R_{\mathcal{L}} \otimes \mathbf{1}+\left(\mathbf{1} \otimes R_{\mathcal{L}}\right)\left(R_{\mathcal{L}} \otimes \mathbf{1}\right)+\right.} \\
\left.\left(R_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes R_{\mathcal{L}}\right)-\left(R_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes R_{\mathcal{L}}\right)\left(R_{\mathcal{L}} \otimes \mathbf{1}\right)\right] J= \\
2\left[J-\left(\mathbf{1} \otimes R_{\mathcal{L}}\right) J+\left(R_{\mathcal{L}} \otimes \mathbf{1}\right)\left(\mathbf{1} \otimes R_{\mathcal{L}}\right) J\right]=3(\bar{\lambda} q-\lambda)(A-B) .
\end{gathered}
$$

But $A \neq B\left(\operatorname{im}\left[\left(\mathbf{1} \otimes X^{-1} \otimes X^{-1} \otimes \mathbf{1}\right) A\right]=\operatorname{im} E \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \operatorname{im} \tilde{E}\right.$ while $\operatorname{im}\left[\left(\mathbf{1} \otimes X^{-1} \otimes X^{-1} \otimes \mathbf{1}\right) B\right]=\mathbf{C}^{2} \otimes W_{0} \otimes \mathbf{C}^{2}$, where $\operatorname{dim} \operatorname{im} E=\operatorname{dim} \operatorname{im} \tilde{E}=$ $\operatorname{dim} W_{0}=1$), hence $A_{3} F=0$ if and only if $\bar{\lambda}=q \lambda$, i.e. $\lambda \in q^{1 / 2} \mathbf{R}$.

We notice that

$$
\Lambda \oplus \Lambda \oplus \Lambda \simeq w \oplus w \oplus w \oplus \bar{w} \oplus \bar{w} \oplus \bar{w} \simeq\left(w \oplus w \oplus w^{3 / 2}\right) \oplus\left(\bar{w} \oplus \bar{w} \oplus \overline{w^{3 / 2}}\right),
$$

hence

$$
\begin{equation*}
\operatorname{Mor}(I, \Lambda \oplus \Lambda \oplus \Lambda)=\{0\} . \tag{2.46}
\end{equation*}
$$

Therefore (S3.2) is equivalent to $A_{3}\left(Z \otimes \mathbf{1}_{4}-\mathbf{1}_{4} \otimes Z\right) T=0$. This gives a set of equations, which are \mathbf{R}-linear in $\operatorname{Re} H_{A B C D} \cdot \operatorname{Re} T_{E F G H}, \operatorname{Im} H_{A B C D} \cdot \operatorname{Re} T_{E F G H}$, $\operatorname{Re} H_{A B C D} \cdot \operatorname{Im} T_{E F G H}$ and $\operatorname{Im} H_{A B C D} \cdot \operatorname{Im} T_{E F G H}$. Our strategy is as follows: we set constraints for $H_{A B C D}$ as before, solve \mathbf{R}-linear equations, insert these data into \mathbf{R}-bilinear equations and finally use the condition for λ and the last set of equations. In the cases 1), $t=1, s=1$ and 5), $t=1, s= \pm 1$, we haven't solved the \mathbf{R}-bilinear equations (but see Remark 1.8). In other cases one gets the following solutions (with the parameters being real numbers):
(1.10) with $T_{a b}=-T_{b a} \in i \mathbf{R}$ for 1), $s=-1, t=1$,
(1.11) for 1), $s= \pm 1,0<t<1$,
(1.12) or (1.13) for 2$), s=1$,
(1.12) with $a=b=0$ for 2), $s=-1$,
(1.14) for 4$), s=1$,
(1.15) for 5$), s= \pm 1,0<t<1$,
(1.16) or (1.17) for 6$), s=-1$,
in the remaining cases all $H_{E F C D}$ and $T_{E F C D}$ must equal 0 . Moreover, $\lambda=$ $8 b^{2}$ in the case 4), $s=1$ and $\lambda=0$ in other solved cases.

Let us remark that for fixed $w_{A B}$ and $p_{i}: \phi_{i}, \eta_{i}$ and $H_{E F C D}$ are uniquely determined (cf (S1.6)). Moreover, $T_{E F C D}$ satisfying (S3.50) are also uniquely determined: if T^{\prime} would also satisfy (S3.46) and (S3.50), then for $L=T-T^{\prime}$ we would have
$0=\left(R-\mathbf{1}_{4}^{\otimes 2}\right)(L-(\Lambda \oplus \Lambda) L)=\left(R-\mathbf{1}_{4}^{\otimes 2}\right) L-(\Lambda \oplus \Lambda)\left(R-\mathbf{1}_{4}^{\otimes 2}\right) L=-2(L-(\Lambda \oplus \Lambda) L)$,
$L \in \operatorname{Mor}(I, \Lambda \oplus \Lambda)$, but $R L=-L$ gives that L corresponds to the subrepresentation $w^{1} \oplus \overline{w^{1}}$ of $\Lambda \oplus \Lambda, L=0, T=T^{\prime}$.

It remains to check which pairs (H, T) as above give isomorphic objects. In virtue of Propositions S4.4 and S4.5 and above remarks it would mean
that (\hat{H}, \hat{T}) is obtained from (H, T) via formulae (S4.3)-(S4.4) with $c, h_{i} \in \mathbf{R}$, $c \neq 0, M$ as in (2.39). After some calculations one can choose one pair (H, T) in each equivalence class (for each considered case). The results are presented in the formulation of the Theorem.

Proof of Theorem 1.9. In virtue of Corollary S3.6 it suffices to prove $\operatorname{dim} S_{n}=d_{n}$. Taking $\Lambda=\mathcal{L}=w\left(\bar{w}\right.$, one has the projection $S_{n}=$ $\frac{1}{n!} \sum_{\pi \in \Pi_{n}} R_{\pi}$, where $R_{\pi}=\left(R_{\mathcal{L}}\right)_{i_{1}} \cdot \ldots \cdot\left(R_{\mathcal{L}}\right)_{i_{k}}$ for a minimal decomposition $\pi=t_{i_{1}} \cdots \cdot t_{i_{k}}, R_{\mathcal{L}}=(\mathbf{1} \otimes X \otimes \mathbf{1})(L \otimes \tilde{L})\left(\mathbf{1} \otimes X^{-1} \otimes \mathbf{1}\right)$. Putting

$$
K_{X}=\left(\mathbf{1}^{\otimes n-1} \otimes X \otimes \mathbf{1}^{\otimes n-1}\right)\left(\mathbf{1}^{\otimes n-2} \otimes X \otimes X \otimes \mathbf{1}^{\otimes n-2}\right) \cdot \ldots
$$

$$
(1 \otimes X \otimes \ldots \otimes X \otimes 1)(X \otimes \ldots \otimes X)
$$

and K_{τ} defined similarly with X replaced by τ, one can define $S_{n}{ }^{\prime}=K_{X} S_{n} K_{X}^{-1}$ and $S_{n}{ }^{\prime \prime}=K_{\tau}^{-1} S_{n}{ }^{\prime} K_{\tau}$. Therefore $\operatorname{dim} S_{n}=\operatorname{tr} S_{n}=\operatorname{tr} S_{n}{ }^{\prime}=\operatorname{tr} S_{n}{ }^{\prime \prime}$. One gets the formula for $S_{n}{ }^{\prime \prime}$ as for S_{n} but with $R_{\mathcal{L}}$ replaced by $R_{\mathcal{L}}{ }^{\prime \prime}=$ $(\mathbf{1} \otimes \tau \otimes \mathbf{1})(L \otimes \tilde{L})\left(\mathbf{1} \otimes \tau^{-1} \otimes \mathbf{1}\right)$ (we use the 16 relations).

Moreover, $L \otimes \tilde{L}=L_{0} \otimes \tau L_{0} \tau$ where $L_{0}=\mathbf{1}^{\otimes 2}+q^{-1} E E^{\prime}, E=e_{1} \otimes e_{2}-$ $q e_{2} \otimes e_{1}+t_{0} e_{1} \otimes e_{1}, E^{\prime}=-q e^{1} \otimes e^{2}+e^{2} \otimes e^{1}+t_{0} e^{2} \otimes e^{2}, q= \pm 1, t_{0}=0,1$ (for $q=-1$ one has $t_{0}=0$). Replacing e_{1} by $c e_{1}, c \neq 0$, one has to replace e^{1} by $c^{-1} e^{1}, L_{0}$ by L_{0} with t_{0} replaced by $c \cdot t_{0}$. Thus (for $q=1$) $\operatorname{tr} S_{n}{ }^{\prime \prime}$ doesn't depend on $t_{0} \in \mathbf{C}$ (for $t_{0} \neq 0$ and also for $t_{0}=0$ in limit). So we may put $t_{0}=0$. Then $L_{0} e_{1} \otimes e_{1}=e_{1} \otimes e_{1}, L_{0} e_{2} \otimes e_{2}=e_{2} \otimes e_{2}, L_{0} e_{1} \otimes e_{2}=q e_{2} \otimes e_{1}$, $L_{0} e_{2} \otimes e_{1}=q e_{1} \otimes e_{2}$. Setting $A_{\alpha \beta}=e_{\alpha} \otimes e_{\beta}$, one has

$$
R_{\mathcal{L}}{ }^{\prime \prime} A_{\alpha \beta} \otimes A_{\gamma \delta}=q^{\alpha+\beta+\gamma+\delta} A_{\gamma \delta} \otimes A_{\alpha \beta}
$$

It is easy to show that $S_{n}{ }^{\prime \prime}\left(R_{\mathcal{L}}{ }^{\prime \prime}\right)_{k}=\left(R_{\mathcal{L}}{ }^{\prime \prime}\right)_{k} S_{n}{ }^{\prime \prime}=S_{n}{ }^{\prime \prime}, S_{n}{ }^{\prime \prime}$ is a projection,

$$
S_{n}{ }^{\prime \prime}\left(A_{11}^{\otimes a} \otimes A_{12}^{\otimes b} \otimes A_{21}^{\otimes c} \otimes A_{22}^{\otimes d}\right), \quad a+b+c+d=n,
$$

form a basis of im $S_{n}{ }^{\prime \prime}$. We get

$$
\begin{gathered}
\operatorname{dim} S_{n}=\operatorname{tr} S_{n}{ }^{\prime \prime}=\operatorname{dim} \operatorname{im} S_{n}{ }^{\prime \prime}= \\
\#\left\{(a, b, c, d) \in \mathbf{N}^{\otimes 4}: a+b+c+d=n\right\}=d_{n} .
\end{gathered}
$$

Proof of Theorem 1.12. We know that $\Lambda \oplus \Lambda \simeq I \oplus w^{1} \oplus \overline{w^{1}} \oplus w^{1} \oplus \overline{w^{1}}$, where $\operatorname{ker}\left(R+\mathbf{1}_{4}^{\otimes 2}\right)$ corresponds to $w^{1} \oplus \overline{w^{1}}$. Therefore (S 5.2) holds. Moreover, (2.46) coincides with (S5.4). Using Theorem S5.6, we get the first statement. The second statement follows from Proposition S5.3, Proposition S5.5 and $\operatorname{dim} S_{n}=d_{n}$ (see the proof of Theorem 1.9).

Proof of Theorem 1.13. We know that (S3.59) holds (see (S3.2) and (2.46)) and $R \neq \pm \mathbf{1}_{4}^{\otimes 2}$ (see the proof of Theorem 1.4). Moreover, $(\Lambda \oplus \Lambda) m^{\prime}=$ m^{\prime} means that m^{\prime} is proportional to m. According to the proof of Theorem 1.6, $\tilde{F}=0$ if and only if $\lambda=0$ (otherwise, using $\bar{\lambda}=q \lambda, A+B+q C=0$, acting $1 \otimes R_{\mathcal{L}}, C=D, V_{0} \otimes \mathbf{C}^{4}=\operatorname{im} C=\operatorname{im} D=\mathbf{C}^{4} \otimes V_{0}$ where $V_{0}=\operatorname{im}[(\mathbf{1} \otimes X \otimes \mathbf{1})(E \otimes \tilde{E})]$, $\operatorname{dim} V_{0}=1$, contradiction), which means $b=0$ in the case 4), $s=1$ and no condition in other cases listed in Theorem 1.6. Then we use Proposition S3.14.

Remark 2.3 According to Corollary S3.8.b, \mathcal{B} is the universal unital algebra generated by \mathcal{A} and $p_{i}(i \in \mathcal{I})$ satisfying $I_{\mathcal{B}}=I_{\mathcal{A}}$, (S3.48) and (S3.47) for w and \bar{w} (cf Remark S3.10).

Acknowledgements

The first author is grateful to Prof. W. Arveson and other faculty members for their kind hospitality in UC Berkeley. The authors are thankful to Dr S. Zakrzewski for fruitful discussions.

References

[1] Chaichian, M. and Demichev, A.P., Quantum Poincaré group, Phys. Lett. B304 (1993), 220-224. Cf also Schirrmacher, A., "Varieties on quantized spacetime" in: "Symmetry methods in physics", A.N. Sissakin et al. (eds.), vol. 2, 463-470, Dubna 1994.
[2] Dobrev, V.K., Canonical q-deformations of noncompact Lie (super-) algebras, J.Phys.A: Math. Gen. 26(1993), 1317-1334.
[3] Kondratowicz, P. and Podleś, P., Irreducible representations of quantum $S L_{q}(2)$ groups at roots of unity, hep-th 9405079.
[4] Lukierski, J., Nowicki, A. and Ruegg, H., New quantum Poincaré algebra and κ-deformed field theory, Phys. Lett. B293 (1992), 344-352; Zakrzewski, S., Quantum Poincaré group related to the κ-Poincaré algebra, J. Phys. A: Math. Gen. 27 (1994), 2075-2082. Cf also Lukierski,J., Nowicki, A., Ruegg, H. and Tolstoy, V.N., q-deformation of Poincaré algebra Phys. Lett. B264 (1991), 331-338.
[5] Majid, S., Braided momentum in the q-Poincaré group, J. Math. Phys. 34 (1993), 2045-2058.
[6] Ogievetsky, O., Schmidke, W.B., Wess, J. and Zumino, B., q-Deformed Poincaré algebra, Commun. Math. Phys. 150 (1992), 495-518.
[7] Podleś, P., Complex quantum groups and their real representations, Publ. RIMS, Kyoto University 28 (1992), 709-745.
[8] Podleś, P. and Woronowicz, S.L., Quantum deformation of Lorentz group, Commun. Math. Phys. 130 (1990), 381-431.
[9] Podleś, P. and Woronowicz, S.L., Inhomogeneous quantum groups, submitted to Proceedings of First Caribbean School of Mathematics and Theoretical Physics in Guadeloupe, 1993.
[10] Podleś, P. and Woronowicz, S.L., On the structure of inhomogeneous quantum groups, hep-th 9412058 , UC Berkeley preprint.
[11] Schlieker, M., Weich, W. and Weixler, R., Inhomogeneous quantum groups, Z. Phys. C. - Particles and Fields 53 (1992), 79-82; Inhomogeneous quantum groups and their universal enveloping algebras, Lett. Math. Phys. 27 (1993), 217-222.
[12] Woronowicz, S.L., Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987), 613-665.
[13] Woronowicz, S.L., New quantum deformation of $S L(2, \mathbf{C})$. Hopf algebra level, Rep. Math. Phys. 30(2) (1991), 259-269.
[14] Woronowicz, S.L. and Zakrzewski, S., Quantum deformations of the Lorentz group. The Hopf *-algebra level, Comp. Math. 90 (1994), 211243.
[15] Zakrzewski, S., Geometric quantization of Poisson groups - diagonal and soft deformations, Contemp. Math., vol. 179 (1994), 271-285.
[16] Zakrzewski, S., Poisson Poincaré groups, submitted to Proceedings of Winter School of Theoretical Physics, Karpacz 1994, hep-th 9412099; Cf also Poisson homogeneous spaces, submitted to Proceedings of Winter School of Theoretical Physics, Karpacz 1994, hep-th 9412101; Poisson structures on the Poincaré group, in preparation.

[^0]: *On leave from Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland
 ${ }^{\dagger}$ This research was supported in part by NSF grant DMS92-43893 and in part by Polish KBN grant No 2 P301 02007
 \ddagger This research was supported by Polish KBN grant No 2 P301 02007

