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Abstract. ‘ax + b’ is the group of affine transformations of real line R. In quantum version

ab = q2ba, where q2 = e−i~ is a number of modulus 1. The main problem of constructing quantum
deformation of this group on the C∗-level consists in non-selfadjointness of ∆(b) = a ⊗ b + b ⊗ I.
This problem is overcome by introducing (in addition to a and b) a new generator β commuting

with a and anticommuting with b. β (or more precisely β⊗β) is used to select a suitable selfadjoint
extension of a⊗ b + b⊗ I. Furthermore we have to assume that ~ = ± π

2k+3
, where k = 0, 1, 2, . . . .

In this case q is a root of 1.
To construct the group we write an explicit formula for the Kac–Takesaki operator W . It

is shown that W is a manageable multiplicative unitary in the sense of [3, 19]. Then using the

general theory we construct a C∗-algebra A and a comultiplication ∆ ∈ Mor(A, A⊗A). A should
be interpreted as the algebra of all continuous functions vanishing at infinity on quantum ‘ax + b’
- group. The group structure of is encoded by ∆. The existence of coinverse also follows from the

general theory [19].

0. Introduction (written by SLW)

This research was proposed and originated by S. Zakrzewski at the end of 1997. Working within the
semiclassical framework (Poisson-Lie groups, simplectic leaves, Manin pairs, simplectic groupoids) he
gained a deep understanding, how certain incompletenesses on the semiclassical level are reflected in
an attempt to construct the corresponding quantum group on the C∗-level. This paper was supposed
to contain a number of Sections devoted to this framework. We planned to explain in detail, how
the semiclassical considerations lead in a natural way to a concept of reflection operator used on the
C∗-level. It was Stanis law Zakrzewski, who was supposed to write these Sections. Unfortunately
after his sudden death in April 1998, the first author was unable to reconstruct this part of the
paper.

In the construction of the quantum deformation of the ‘ax + b’ group on the Hilbert space level
one meets the following two problems. First one has to give meaning to the relation ‘ab = q2ba’,
where a, b are selfadjoint operators acting on a Hilbert space and q2 is a number of modulus 1. This
problem was considered by many authors. Assume for the moment that a and b are strictly positive.
In [10, 11] K. Schmüdgen proposed to rewrite ‘ab = q2ba’ in the Weyl form: aitbiτ = ei~tτ biτait,
where ~ is a real number such that q2 = e−i~ and t, τ are variable running over R. We shall use
this formula in the the form: aitba−it = e~tb which is meaningful for any selfadjoint b. The original
relation ‘ab = q2ba’ is recovered by analytic continuation up to the point t = −i.

The second problem is related to the formula ∆(b) = a⊗ b+ b⊗ I. Since the comultiplication ∆ is
a C∗-algebra morphism, we expect that ∆(b) has the same analytical properties as b. In particular
a⊗ b+ b⊗ I should be selfadjoint. However this is not guaranteed and we have to use the theory of
selfadjoint extension developed in [20].

We would like to make a short comment on the quantization of ~. It comes from the formula
(6.5) of [20], where the constant α = ie

iπ2
2~ enters in an implicit way. The point is that this formula

essentially simplifies, when α = α. Solving this condition we obtain ~ = π
2k+3 , where k is an integer.

The theory presented in this paper works only for these values of ~. It follows that q2 is a root of
unity: q2(2k+3) = −1.

There is another version of quantum ‘ax + b’ group for which ~ = π
2k (k - integer). It will be

described in a separate paper [8].
1
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The quantization of ~ seems to be of analytical nature. In particular the semiclassical theory
developed by the second author does not imply any limitation of this sort.

A few words about the content of the paper. In Section 1 we present the quantum ‘ax+b’ group on
the Hopf ∗-algebra level. Next we outline the passage to the Hilbert space and C∗-levels. To solve the
selfadjointness problem arising on the way we have to extend our group by adding a new generator
β called the reflection operator. The three operators a, b, β are subject to suitable commutation
relations. The Section ends with a short description of the quantum ‘ax + b’ group on the Hilbert
space and C∗-levels.

To construct ‘ax + b’ we shall use the theory of multiplicative unitaries of Baaj and Skandalis
[3, 19]. In Section 2 we consider a unitary operator W acting on the tensor square of a Hilbert space
H: W ∈ B(H ⊗ H). It is introduced by an explicit formula containing four selfadjoint operators:
a, b, β, s acting on H. The three first operators are subject to the commutation relations introduced
in Section 1. The main result of Section 2 is contained in Theorem 2.1. It states that W is a
manageable multiplicative unitary. The proof is based on the Fourier transform formula (1.41) of
[20].

Once we have a manageable multiplicative unitary W we apply the theory developed in [3, 19]
to construct a quantum group. This is done in Sections 3 and 4. In Section 3 we introduce the
C∗-algebra Acp generated by three elements a, b, β subject to the commutation relations considered
in Section 1. By definition Acp is the crossed product: Acp = B0 ×σ R, where B0 is an algebra of
continuous M2×2(C)-valued functions on R+ and σ is a natural action of R on B0. We investigate
in detail properties of Acp. In particular an interesting action φ of Z4 on Acp is described at the end
of this Section.

In Section 4 we show that the crossed product algebra Acp coincides with the Baaj-Skandalis
left-slice algebra related to the multiplicative unitary W considered in Section 2. We compute,
that the comultiplication acts on generators a, b, β in the way described in Section 1. This way the
construction of the quantum ‘ax + b’ group on the C∗-algebra level is completed. At the end of
Section 4 we show that the action φ preserves the group structure of quantum ‘ax+ b’ .

Section 5 is devoted to the dual of the quantum ‘ax+ b’ group. By the definition the regular dual
is the quantum group related to the multiplicative unitary Ŵ = ΣW ∗Σ. We show that the regular
dual of the quantum ‘ax+ b’ group is isomorphic to the same group, provided we reverse the order
of the group rule. The same result holds for the universal (Pontryagin) dual. It is shown in [9] that
in this case the regular dual and universal dual coincide.

This paper heavily depends on the results of [20]. In particular we shall use the quantum expo-
nential function

(0.1) F~(r, %) =


Vθ(log r) for r > 0 and % = 0[

1 + i%|r|π~
]
Vθ

(
log |r| − πi

)
for r < 0 and % = ±1.

where θ = 2π
~ and Vθ is a meromorphic function on C such that

(0.2) Vθ(x) = exp
{

1
2πi

∫ ∞

0

log(1 + a−θ)
da

a+ e−x

}
for all x ∈ C such that |=x| < π.

We shall also use the theory of selfadjoint operators on Hilbert spaces [1, 6], in particular the theory
of selfadjoint extensions and functional calculus of many strongly commuting selfadjoint operators.
Throughout the paper the symbol χ(R) denotes the logical evaluation of sentence R: χ(R) = 1 for
true R and χ(R) = 0 for R. The sentence R may depend on a selfadjoint operator (or a pair of
strongly commuting selfadjoint operators). Then χ(R) is the corresponding spectral projection. The
range of χ(R) will be denoted by H(R), where H stands for the Hilbert space, where the operator
acts (for details, see the last part of Section 0 of [20]).

We refer to [2, 7] for the theory of C∗-algebras. We shall freely use such notions as: multiplier al-
gebra M(A) of a C∗-algebra A, unbounded elements affiliated with a C∗-algebra A, the set Mor(A,B)
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of all morphisms from A into B, a C∗-algebra generated by a set of affiliated elements and so on.
All these notions are presented in [16, 18, 17].

In this paper we use the physicists’ conventions concerning Hilbert spaces. In particular the scalar
product (x y) is by definition linear with respect to y. We shall also use the triple product (x a y)
to denote (x ay). When vectors x, y and operator a are themselves complicated expressions, then
(x a y) is more readable then (x ay). Formula (2.26) is a good example of this situation.

We would like to point out the further development of the subject. In what follows, G denotes
the quantum ‘ax + b’-group constructed in this paper. A. Van Daele [15] has found left and right
invariant Haar weights on G. He has shown that G is a locally compact quantum group in the sense
of Kustermans and Vaes [4]. It turned out that the Haar weights are scaled by the scaling group
in a non-trivial way. This is one of the first examples of this phenomenon. It was foreseen by the
theory of Kustermans and Vaes, however some of the experts believed that in the proper theory the
Haar weights should be invariant with respect to the scaling group. Using the nontrivial scaling of
the Haar weights, S. Vaes and L. Vainerman have shown [14] that G is essentially different from the
quantum deformation of classical ‘ax + b’ proposed by Baaj and Skandalis [13]. In [9], M. Rowicka
has shown that all unitary representations of G acting on a Hilbert space K are described by the
formula (2.6).

The quantum group ‘ax + b’ described in the present paper will be used as a building block
in future constructions of higher dimensional quantum groups. We refer to [22], where quantum
deformations of SL(2,R) are presented.

For a long time quantum groups at roots of unity seemed to be inaccessible for the C∗-approach.
The present paper is one of the first successful attempts to include these groups into the theory of
locally compact quantum groups. Another example of this kind is given in [21].
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1. First encounter with ‘ax+ b’ -group.

The group ‘ax + b’ considered in this paper is the group of affine transformations of real line R
preserving the orientation (in the transformation formula x′ = ax + b the coefficient a is strictly
positive). The group will be denoted by G. The ∗-algebra A of polynomial functions on G is
generated by three hermitian commuting elements a, a−1, b subject to the one relation: a−1a = I.
The comultiplication ∆ encoding the group structure is the ∗-algebra homomorphism from A into
A⊗A such that

(1.1)
∆(a) = a⊗ a,

∆(b) = a⊗ b+ b⊗ I.
One can easily verify that (A,∆) is a Hopf ∗-algebra. In particular counit e and coinverse κ are
given by the formulae:

(1.2)
e(a) = 1, κ(a) = a−1,

e(b) = 0, κ(b) = −a−1b.

Now we perform quantum deformation of G. The quantum ‘ax + b’ -group on the level of Hopf
∗-algebra is an object with no problems. The deformation parameter q is a complex number of
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modulus 1. We shall assume that q2 6= −1. Then

(1.3) q2 = e−i~,

where ~ is a real number such that |~| < π. The change of sign of ~ is equivalent to the passage to
the opposite algebra. Therefore we shall assume that ~ > 0.

The Hopf ∗-algebra A of polynomial functions on quantum ‘ax+b’ is generated by three hermitian
elements a, a−1, b subject to the following relations:

(1.4)
a−1a = aa−1 = I,

ab = q2ba

The comultiplication ∆ : A → A ⊗ A is the ∗-algebra homomorphism acting on generators in
the way described in (1.1). One can easily verify that the object (A,∆) described above is a Hopf
∗-algebra. The counit e and coinverse κ are given by the same formulae (1.2) as in the classical case.
Moreover the matrix

u =
(
a , b
0 , I

)
is a corepresentation of (A,∆). In other words, u is a two dimensional representation of the quantum
‘ax+ b’ - group.

On the Hilbert space level generators a, a−1 and b should be treated as unbounded1 selfadjoint
operators acting on a Hilbert space. Since for unbounded operators the algebraic operations are often
ill defined, one has to give a more precise meaning to the formulae (1.4). In the operator setting
equation a−1a = aa−1 = I simply means that a−1 is the inverse of a. Furthermore we shall assume
that a is positive. This condition is obviously related to the fact that the corresponding classical
group consists of transformations preserving the orientation of R. Let ~ be the number related to
deformation parameter q via formula (1.3). To give the precise meaning to the second relation of
(1.4), we shall use the following definition:

Definition 1.1. Let a and b be selfadjoint operators acting on a Hilbert space H. Assume that a is
strictly positive. We write a−o b if

(1.5) aitb a−it = e~tb

for any t ∈ R.

More general definition of the relation a−o b is given in [20]. It does not require any additional
assumption on a. Inserting t = −i in (1.5) and using (1.3) we obtain the second relation of (1.4). The
reader should notice that the condition (1.4) is much weaker then the relation a−o b. For example
(1.4) remains unchanged, when ~ is replaced by ~ + 2π, whereas (1.5) is very sensitive to the choice
of ~ solving the equation (1.3). Recall that we chose ~ such that |~| < π.

Let H be a Hilbert space and a, b be operators acting on H. We say that (a, b) is a G-pair if

(1.6)
a, b are selfadjoint operators on H,

a is strictly positive, a−o b

}
We shall use the terminology introduced in [18]. By the procedure described in Section 7 of [18],
relations (1.6) give rise to a C∗-algebra A. This C∗-algebra is generated by two unbounded elements
log a , b affiliated with it and

(1.7) π ←→
(
π(a), π(b)

)
defines continuous one to one correspondence between the set Rep (A,H) of all representation of A
acting on a Hilbert space H and the set of all G-pairs acting on H.

Assume now, that A is equipped with a comultiplication ∆ ∈ Mor(A,A⊗A) such that (1.1) holds.
Then for any π1 ∈ Rep (A,H1) and π2 ∈ Rep (A,H2) one may consider the tensor product:

π1©> π2 = (π1 ⊗ π2)o∆.

1one can easily check that relations (1.4) cannot be satisfied by bounded operators a and b 6= 0.
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Clearly π1©> π2 ∈ Rep (A,H1 ⊗H2). Using the one to one correspondence (1.7) we may define the
tensor product for G-pairs. If (a1, b1) is a G-pair acting on a Hilbert space H1 and (a2, b2) is a G-pair
acting on a Hilbert space H2, then by virtue of (1.1):

(a1, b1)©> (a2, b2) = (ã, b̃),

where

(1.8)
ã = a1 ⊗ a2,

b̃ = a1 ⊗ b2 + b1 ⊗ I.

One expects that (ã, b̃) is a G-pair acting on H1 ⊗ H2. Unfortunately this is not always the case.
It turns out that the operator b̃ is symmetric but not selfadjoint in general (cf [20, Theorem 5.4]).
This is a serious obstacle in constructing the quantum ‘ax+ b’ -group on C∗-level.

One may try to overcome this problem by extending b̃ to a larger domain. Let R = a1 ⊗ b2 and
S = b1 ⊗ I. Then R−oS and b̃ = R + S. By the theory developed in [20], selfadjoint extensions of
R + S are determined by reflection operators τ such that τ∗ = τ , τ anticommutes with R and S
and τ2 = χ(ei~/2RS < 0). Selfadjoint extension of R + S corresponding to a reflection operator τ
will be denoted by

[
R+ S

]
τ
. By definition

[
R+ S

]
τ

is the restriction of (R + S)∗ to the domain

D(R+ S) +
{
x ∈ D

(
(R+ S)∗

)
: τx = x

}
.

For given R and S, the existence of a reflection operator is not guaranteed (R + S may have no
selfadjoint extensions). To assure the existence of τ in our setting we have to extend our scheme.
Instead of G-pairs we have to consider G-triples. Let a, b, β be operators acting on a Hilbert space
H. We say that (a, b, β) is a G-triple if

(1.9)
a, b, β are selfadjoint operators on H,

a is strictly positive, a−o b,
β2 = χ(b 6= 0), βa = aβ and βb = −bβ.


The set of all G-triples acting on a Hilbert space H will be denoted by GH . Passing from G-pairs to
G-triples means that we extended our group by adding a new element β to the set of generators of
the algebra of functions on G. The extended group is in a sense two times bigger then the original
one. In what follows, the term ”quantum ‘ax+ b’ -group” will refer to the extended group (we shall
skip the word ‘extended’ as we did in the title of this paper).

Let H1 and H2 be Hilbert spaces. We would like to introduce the ‘©> ’ product of G-triples: for
any (a1, b1, β1) ∈ GH1 and (a2, b2, β2) ∈ GH2 ,

(1.10) (a1, b1, β1)©> (a2, b2, β2) = (ã, b̃, β̃) ∈ GH1⊗H2 .

The first formula of (1.8) may be kept unchanged. To modify the second formula we chose α = ±1.
Then the operator τ = α(β1⊗β2)χ(b1⊗b2 < 0) is a reflection operator defining a selfadjoint extension
of a1 ⊗ b2 + b1 ⊗ I. Let

(1.11) b̃ =
[
a1 ⊗ b2 + b1 ⊗ I

]
τ
.

To end the definition of the ‘©> ’ product (1.10) we have to write a formula for β̃. The simplest
proposal is:

(1.12) β̃ = β1 ⊗ β2.

However this formula is not the right one. It leads to the tensor product (1.10) which is not associa-
tive, which contradicts the coassociativity of comultiplication ∆. Also the computations performed
by the second author within the theory of Poisson – Lie grupoids indicated that the correct formula
for β̃ should be rather linear than quadratic with respect to β.

To find the correct replacement for (1.12) we shall use the theory of quantum exponential function
developed in [20]. In particular the exponential equality (cf. [20, formula (6.5)]) will play an essential
role. It implicitly contains a phase factor α related to the deformation parameter ~ by the formula:

(1.13) α = i e
iπ2
2~ .
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The theory presented in this paper works only if this number coincides with the one used in the
definition of the reflection operator appearing in (1.11). Now the condition α = ±1 selects a discrete
set of admissible values of deformation parameter ~ = π

2k+3 , where k = 0, 1, 2, . . . . Clearly α = (−1)k.

The correct formula replacing (1.12) is rather complicated:

(1.14) β̃ = w
(
ei~/2b−1

1 a1 ⊗ b2
)−1 (

β1 ⊗ I
)

+
(
I ⊗ β2

)
w

(
ei~/2b1a

−1
1 ⊗ b

−1
2

)−1

,

where w is the polynomial of order (2k + 3) introduced by the formula:

(1.15) w(t) =
2k+3∏
`=1

(
1 + ei( 1

2−`)~t
)
.

This way we completed the definition of the tensor product (1.10). It will be shown that the triple
on the right hand side of (1.10) really belongs to GH1⊗H2 and that the ‘©> ’ product is associative.

We end this Section with a short description of quantum ‘ax+ b’ group on the C∗-level. The C∗-
algebra A of all ‘continuous functions vanishing at infinity on G’ is generated (in the sense explained
in [18]) by three selfadjoint affiliated elements: log a, b and iβb. Element β is not affiliated with A.
It corresponds to a ‘non-continuous function’ on the group. It becomes continuous when we remove
the manifold b = 0 out of G. More precisely β ∈ M(Ab=0), where Ab=0 is the ideal of A generated
by b. The comultiplication ∆ ∈ Mor(A,A⊗A) is associative. On generators it acts in the following
way:

∆(a) = a⊗ a,

∆(b) =
[
a⊗ b+ b⊗ I

]
α(β⊗β)χ(b⊗b<0)

,

∆(iβb) = i
{
w

(
ei~/2b−1a⊗ b

)−1
(
β ⊗ I

)
+

(
I ⊗ β

)
w

(
ei~/2ba−1 ⊗ b−1

)−1
}

∆(b).

It would be interesting to see, how the above objects and formulae behave when ~ → 0. This
subject that is not discussed in the present paper.

2. The Kac–Takesaki operator.

The theory of Baaj and Skandalis provides us with a powerful method of constructing quantum
groups on the C∗-level. Let H be a Hilbert space and W ∈ B(H ⊗H) be a unitary operator. We
shall use the leg numbering notation: Wkl is a copy of W acting on H ⊗H ⊗H, affecting only k-th
and l-th copy of H in H⊗H⊗H. According to [3], W is called a multiplicative unitary if it satisfies
the pentagon equation:

(2.1) W23W12 = W12W13W23.

Let H be the complex conjugate of H. For any x ∈ H, the corresponding element of H will be
denoted by x. Then H 3 x→ x ∈ H is an antiunitary map. We say that a multiplicative unitary W
is manageable [19] if there exist a positive selfadjoint operator Q acting on H and a unitary operator
W̃ acting on H ⊗H such that ker(Q) = {0},

(2.2) W ∗(Q⊗Q)W = Q⊗Q

and

(2.3) (x⊗ u|W |z ⊗ y) = (z ⊗Qu|W̃ |x⊗Q−1y)

for any x, z ∈ H, y ∈ D(Q−1) and u ∈ D(Q). As it is shown in [19], any manageable multiplicative
unitary gives rise to a quantum group on the C∗-level.

Throughout this Section we assume that the deformation parameter q2 = e−i~, where ~ = ± π
2k+3 ,

where k = 0, 1, 2, . . . . Then the constant

(2.4) α = i e
iπ2
2~ = (−1)k = ±1.

The main result of this Section is contained in the following
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Theorem 2.1. Let H be a Hilbert space, (a, b, β) ∈ GH and r, s be strictly positive selfadjoint
operators acting on H. Assume that ker b = {0}, r and s strongly commute with a, b and β and
r−o s. Then the operator

(2.5) W = F~

(
ei~/2b−1a⊗ b, α(β ⊗ β)χ(b⊗ b < 0)

)∗
e

i
~ log(s|b|−1)⊗log a

is a manageable multiplicative unitary.

The pentagon equation for (2.5) will follow from

Proposition 2.2. Let H and K be Hilbert spaces, (a, b, β) ∈ GH , (â, b̂, β̂) ∈ GK and s be a strictly
positive selfadjoint operators acting on H. Assume that ker b = {0} and s strongly commutes with
a, b and β. Then the operators (2.5) and

(2.6) V = F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
e

i
~ log â⊗log a

satisfy the pentagon equation:

(2.7) W23V12 = V12V13W23.

Proof: We shall consider the following selfadjoint operators acting on K ⊗H ⊗H:

R = b̂⊗ a⊗ b, ρ = α(β̂ ⊗ I ⊗ β)χ(b̂⊗ I ⊗ b < 0),

S = b̂⊗ b⊗ I, σ = α(β̂ ⊗ β ⊗ I)χ(b̂⊗ b⊗ I < 0),

T = I ⊗ ei~/2b−1a⊗ b, τ = α(I ⊗ β ⊗ β)χ(I ⊗ b⊗ b < 0).

One can easily verify that these operators satisfy the assumptions of Theorem 6.1 of [20]. Therefore

F~(R, ρ)F~(S, σ) = F~(T, τ)∗F~(S, σ)F~(T, τ).

Rearranging this formula we obtain:

(2.8) F~(T, τ)∗F~(S, σ)∗ = F~(S, σ)∗F~(R, ρ)∗F~(T, τ)∗.

Using the leg numbering notation we get:

(2.9) X23Y12 = Y12Ỹ X23,

where
X = F~

(
ei~/2b−1a⊗ b, α(β ⊗ β)χ(b⊗ b < 0)

)∗
,

Y = F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
,

Ỹ = F~

(
b̂⊗ a⊗ b, α(β̂ ⊗ I ⊗ β)χ(b̂⊗ I ⊗ b < 0)

)∗
.

The reader should notice that replacing a by I in the right hand side of the third formula we obtain
Y13. With this small modification, (2.9) coincides with the pentagon equation of Baaj and Skandalis.

The operators X,Y are the first factors appearing on the right hand side of definitions (2.5) and
(2.6). Now we shall investigate the second factors:

U = e
i
~ log â⊗log a, Z = e

i
~ log(s|b|−1)⊗log a.

Using the relations s|b|−1−o a (which follows immediately from a−o b) and â−o b̂ one can easily verify
that

(2.10)
Z(a⊗ I)Z∗ = a⊗ a,

U(b̂⊗ I)U∗ = b̂⊗ a.

The first relation implies that

(2.11)
Z23U12Z

∗
23 = e

i
~ log â⊗log(a⊗a)

= e
i
~ log â⊗(log a⊗I+I⊗log a) = U12U13.
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The reader should notice that U12 commutes with (β̂⊗ I ⊗ β)χ(b̂⊗ I ⊗ b < 0). Therefore the second
relation of (2.10) implies that

(2.12) U12Y13U
∗
12 = Ỹ .

One can easily verify that b and β commute with s|b|−1. Therefore Y12 commutes with Z23:

(2.13) Y12Z23 = Z23Y12.

Our assumptions imply that ei~/2b−1a⊗ b, β ⊗ β and χ(b⊗ b < 0) commute with a⊗ a. Therefore
X commutes with a⊗ a. Taking into account (2.11) we obtain:

(2.14) X23U12U13 = U12U13X23.

Now the proof of (2.7) is a matter of elementary computations. Remembering that W = XZ and
V = Y U and using (2.13), (2.9), (2.11), (2.14) and (2.12) we obtain:

W23V12 = X23Z23Y12U12 = X23Y12Z23U12 = Y12Ỹ X23U12U13Z23

= Y12Ỹ U12U13X23Z23 = Y12U12Y13U13X23Z23 = V12V13W23

Q.E.D.

Let H be a Hilbert space, (a, b, β) ∈ GH and s be a strictly positive selfadjoint operator acting
on H. Assume that ker b = {0} and s strongly commutes with a, b and β. Then one can easily verify
that (s|b|−1, ei~/2b−1a, β) ∈ GH . For K = H, â = s|b|−1, b̂ = ei~/2b−1a and β̂ = β, the operator
(2.6) coincides with (2.5) and using (2.7) we obtain (2.1). It shows that the operator W introduced
by (2.5) is a multiplicative unitary.

For any Hilbert space K we denote by K the complex conjugate Hilbert space. Then we have
canonical antiunitary bijection:

(2.15) K 3 x −→ x ∈ K.

If m is a closed operator acting on K, then its transpose m> is introduced by the formula

m>x = m∗x

for any x ∈ D(m∗). Clearly m> is a closed operator acting on K with the domain D(m>) =
{x : x ∈ D(m∗)}. If x ∈ D(m∗) and z ∈ D(m), then

(2.16)
(
z m> x

)
= (x m z) .

Indeed:
(
z m>x

)
=

(
z m∗x

)
= (m∗x z) = (x mz).

One can easily verify that the transposition commutes with the adjoint operation: (m∗)> =(
m>)∗, so m> is selfadjoint for selfadjoint m. Moreover the transposition inverses the order of

multiplication: (ab)> = b>a>. Therefore a−o b implies b>−o a>. If â is a selfadjoint operator on K
and f is a bounded measurable function on Sp â then Sp â = Sp â> and f(â)> = f(â>).

Let â and a be selfadjoint operators acting on K and H respectively. Then â ⊗ I and I ⊗ a are
strongly commuting selfadjoint operators acting on K ⊗ H. Their joint spectrum coincides with
Sp â× Sp a. We have the following ‘partial transposition’ formula(

z ⊗ u f(â> ⊗ I, I ⊗ a) x⊗ y
)

= (x⊗ u f(â⊗ I, I ⊗ a) z ⊗ y) .

In this formula x, z ∈ K, u, y ∈ H and f(·, ·) is a bounded measurable function on Sp â × Sp a. By
linearity and continuity it is sufficient to prove this formula for functions of the form f = f1 ⊗ f2,
where f1 and f2 are functions of one variable. In this case the formula follows immediately from
(2.16). We shall use the following particular case of the partial transposition formula:

(2.17)
(
z ⊗ u e i

~ â>⊗a x⊗ y
)

=
(
x⊗ u e i

~ â⊗a z ⊗ y
)
.

To prove the manageability of the multiplicative unitary (2.5) we shall use the following
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Proposition 2.3. Let H and K be Hilbert spaces, (a, b, β) ∈ GH and (â, b̂, β̂) ∈ GK and let V be the
unitary operator introduced by (2.6). Moreover let Q be a strictly positive selfadjoint operator acting
on H such that Q strongly commutes with a and β and Q2−o b. We set:

(2.18) Ṽ = F~

(
−b̂> ⊗ ei~/2ba−1,−

(
β̂> ⊗ β

)
χ

(
b̂> ⊗ b > 0

))
e

i
~ log â>⊗log a.

Then Ṽ is unitary and for any x, z ∈ K, y ∈ D(Q−1), u ∈ D(Q) we have:

(2.19) (x⊗ u V z ⊗ y) =
(
z ⊗Qu Ṽ x⊗Q−1y

)
.

Remark: Formula (2.7) shows that (2.6) is an adapted operator in the sense of [19, Definition
1.3]. Comparing (2.18) with Statement 5 of Theorem 1.6 of [19] one can easily find the unitary
antipode R of our quantum group. It acts on a, b, β as follows:

aR = a−1,

bR = −ei~/2ba−1,

βR = −αβ.

Proof: To make our formulae shorter we set:

(2.20)
U = e

i
~ log â⊗log a, Ũ = e

i
~ log â>⊗log a,

B =
∣∣∣b̂⊗ b∣∣∣ , B̃ =

∣∣∣b̂> ⊗ ei~/2ba−1
∣∣∣ .

If either b̂ = 0 or b = 0, then V = U , Ṽ = Ũ and (2.19) follows immediately from (2.17) (the
reader should remember that Q commutes with a). Therefore we may assume that ker b̂ = {0} and
ker b = {0}. In this case, by the spectral theorem

K = K+ ⊕K−,

H = H+ ⊕H−,
where

K+ = K(b̂ > 0), K− = K(b̂ < 0),

H+ = H(b > 0), H− = H(b < 0).
For tensor products we have the decompositions:

(2.21) K ⊗H = K+ ⊗H+ ⊕K+ ⊗H− ⊕K− ⊗H+ ⊕K− ⊗H−

(2.22) K ⊗H = K+ ⊗H+ ⊕K+ ⊗H− ⊕K− ⊗H+ ⊕K− ⊗H−

Operators B and U respect the decomposition (2.21), whereas
(
β̂ ⊗ β

)
χ

(
b̂⊗ b < 0

)
interchanges

K+ ⊗H− with K− ⊗H+ and kills K+ ⊗H+ and K− ⊗H−. For the same reason, B̃ and Ũ respect
the decomposition (2.22), whereas

(
β̂> ⊗ β

)
χ

(
b̂> ⊗ b > 0

)
interchanges K+ ⊗H+ with K− ⊗H−

and kills K+ ⊗H− and K− ⊗H+.

We may assume that x ∈ Ksx
, u ∈ Hsu

, z ∈ Ksz
, y ∈ Hsy

, where sx, su, sz, sy = +,−. There
are 24 = 16 possible combinations of the signs. However a moment of reflection shows that for 10
combinations both sides of (2.19) vanish. The remaining combinations are:

(sx, su, sz, sy) =



(+,+,+,+)
(−,−,−,−)

}
– case 1

(+,−,+,−)
(−,+,−,+)

}
– case 2

(+,−,−,+)
(−,+,+,−)

}
– case 3
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We have divided the six possibilities into three cases. Using formula (0.1) it is not difficult to show
that equation (2.19) reduces to

(2.23) (x⊗ u Vθ(logB)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
and

(2.24) (x⊗ u Vθ(logB − πi)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃)Ũ x⊗Q−1y

)
in case 1 and 2 respectively. In case 3 we obtain a more complicated formula:

(2.25)

(
x⊗ u

[
iα

(
β̂ ⊗ β

)
B

π
~ Vθ(logB − πi)

]∗
U z ⊗ y

)
=

(
z ⊗Qu

[
−i

(
β̂> ⊗ β

)
B̃

π
~ Vθ(log B̃ − πi)

]
Ũ x⊗Q−1y

)
.

Remembering that β̂, β are selfadjoint, I ⊗β commutes with B and using formula
(
β̂>

)∗
z = β̂z we

may rewrite the above equation in the following equivalent form:

(2.26)

(
x⊗ u′ αB π

~ Vθ(logB − πi)∗U z′ ⊗ y
)

=
(
z′ ⊗Qu′ B̃ π

~ Vθ(log B̃ − πi)Ũ x⊗Q−1y
)
,

where u′ = βu and z′ = β̂z. To prove formulae (2.23), (2.24) and (2.26) we shall use the following

Proposition 2.4. Let a, b,Q be selfadjoint operators acting on a Hilbert space H and â, b̂ be selfad-
joint operators acting on a Hilbert space K. Assume that: a and Q are strictly positive, ker b = {0},
a−o b, Q strongly commutes with a and Q2−o b. Assume also that â is strictly positive, ker b̂ = {0}
and â−o b̂. Moreover, let x, z ∈ H, y ∈ D(Q−1), u ∈ D(Q) and for any k ∈ R,

(2.27)

ϕ(k) =
(
x⊗ u BikU z ⊗ y

)
,

ψ(k) =
(
z ⊗Qu B̃ikŨ x⊗Q−1y

)
,

where B, U , B̃ and Ũ are operators introduced by (2.20). Then

(2.28) ψ(k) = e~k/2e−
i~
2 k2

ϕ(k)

for any k ∈ R.

Proof: Relation a−o b implies that ei~/2|b|a−1is selfadjoint and that

(2.29)
(
ei~/2|b|a−1

)ik

= e−
i~
2 k2
|b|ika−ik

for any k ∈ R (cf [20, Formula (3.8)]).

Remembering that Q strongly commutes with a and Q2−o b, one can easily show that I ⊗ Q2

commutes with Ũ and I ⊗Q2−o B̃. Therefore (I ⊗Q)B̃ikŨ = e~k/2 B̃ikŨ(I ⊗Q) and

ψ(k) = e~k/2
(
z ⊗ u B̃ikŨ x⊗ y

)
.

Taking into account (2.29) and using in the third step (2.17) we obtain:

ψ(k) = e~k/2e−
i~
2 k2

(
z ⊗ u

(∣∣∣b̂>∣∣∣ik ⊗ |b|ika−ik

)
e

i
~ log â>⊗log a x⊗ y

)

= e~k/2e−
i~
2 k2

(
|b̂|ikz ⊗ aik|b|−iku e

i
~ log â>⊗log a x⊗ y

)
= e~k/2e−

i~
2 k2

(
x⊗ aik|b|−iku e

i
~ log â⊗log a |b̂|ikz ⊗ y

)
= e~k/2e−

i~
2 k2

(
x⊗ u

(
I ⊗ |b|ika−ik

)
e

i
~ log â⊗log a

(
|b̂|ik ⊗ I

)
z ⊗ y

)
.
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Now, to prove (2.28) it is sufficient to show that

(2.30) e
i
~ log â⊗log a

(
|b̂|ik ⊗ I

)
=

(
|b̂|ik ⊗ aik

)
e

i
~ log â⊗log a.

If a is a multiple of I: a = e~lI, then e
i
~ log â⊗log a = âil and the above formula reduces to the equality

âil|b̂|ik = ei~kl|b̂|ikâil

equivalent to the assumed relation â−o |b̂|. By spectral decomposition, (2.30) holds for any strictly
positive operator a.

Q.E.D.

We have to investigate the regularity properties of functions ϕ and ψ introduced by (2.27). If

(2.31) x ∈ D(b̂±1), u ∈ D(b±1Q±2), y ∈ D(Q±2)

for all possible combinations of signs, then the functions ϕ and ψ belong to the Schwartz space S(R).
Indeed using the relation Q2−o b one can easily show that (I ⊗Q2)−oB and

e±~k ϕ(k) =
(
x⊗Q±2u BikU z ⊗Q∓2y

)
.

By (2.31), x⊗Q±2u ∈ D
(
B±1

)
. Therefore the functions e±~k ϕ(k) admit holomorphic continuation

to functions bounded on the strip {k ∈ C : −1 < =k < 1}. It implies that ϕ ∈ S(R). Moreover using
(2.28) we see that the functions e±~k/4 ψ(k) admit holomorphic continuation to functions bounded
on the strip {k ∈ C : −1/4 < =k < 1/4}. It shows that ψ ∈ S(R).

In the following we shall use the language of distribution theory. Let f and g be measurable
bounded functions on R+. Then the functions R 3 t −→ f(et) ∈ C and R 3 t −→ g(et) ∈ C are
bounded and may be considered as a tempered distributions on R. We denote by f̂ and ĝ the inverse
Fourier transforms of these distributions. Then

(2.32)

f(t) =
∫
R

f̂(k) tikdk

g(t) =
∫
R

ĝ(k) tikdk

for almost all t ∈ R+.

Proposition 2.5. Let f, g be bounded measurable functions on R+ and f̂ and ĝ be tempered distri-
butions related to f and g via formulae (2.32). Assume that

(2.33) f̂(k) = e~k/2e
−i~
2 k2

ĝ(k).

Then, using the notation and assumptions of Proposition 2.4 we have:

(2.34) (x⊗ u f(B)U z ⊗ y) =
(
z ⊗Qu g(B̃)Ũ x⊗Q−1y

)
.

Proof: Assume for the moment that vectors x, y, z, u satisfy conditions (2.31). Then the functions
(2.27) belong to S(R). Comparing (2.32) with (2.27) we obtain:

(x⊗ u f (B)U z ⊗ y) =
∫
R

f̂(k)ϕ(k)dk,

(
z ⊗Qu g

(
B̃

)
Ũ x⊗Q−1y

)
=

∫
R

ĝ(k)ψ(k)dk,

Using now (2.33) and (2.28) we see that the right hand sides of the above formulae coincide and
(2.34) follows. To end the proof we notice that the conditions (2.31) select sufficiently large sets of
vectors: D(b̂) ∩D(b̂−1) is dense in H, D(bQ2) ∩D(bQ−2) ∩D(b−1Q2) ∩D(b−1Q−2) is a core for Q
and D(Q2) ∩D(Q−2) is a core for Q−1.

Q.E.D.
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We continue the proof of Proposition 2.3. For any t ∈ R+ we set

(2.35)

f1(t) = Vθ(log t) , g1(t) = Vθ(log(t)− πi),

f2(t) = Vθ(log(t)− πi) , g2(t) = Vθ(log t),

f3(t) = αt
π
~ Vθ(log(t)− πi) , g3(t) = t

π
~ Vθ(log(t)− πi).

Let f̂i and ĝi be the tempered distributions related to the above functions via formulae (2.32). We
already know that (2.19) resolves into (2.23), (2.24) and (2.26). By virtue of Proposition 2.5, in
order to prove this relation it is sufficient to verify that

(2.36) f̂i(k) = e~k/2e
−i~
2 k2

ĝi(k)

for i = 1, 2, 3. Let us notice that f1(t) = g2(t), f2(t) = g1(t) and f3(t) = −αg3(t). Therefore

(2.37) f̂1(k) = ĝ2(−k), f̂2(k) = ĝ1(−k), f̂3(k) = α ĝ3(−k).

To verify relations (2.36) we shall use the formulae (cf formulae (1.36) and (1.41) of [20]):

(2.38) C Vθ(x) = exp
{
ix2

2~

}
Vθ (−x) ,

(2.39)
1√
2π~

∫
R

Vθ

(
y + iε− i~

2
− iπ

)
e

iy2

2~ e
ixy

~ dy = C ′ Vθ(x).

where C = exp
{

( 2π
~ + ~

2π ) π
12 i

}
and C ′ = exp

{
i
(

π
4 + ~

24 + π2

6~

)}
are phase factors and ε is a small

positive number indicating that the integration path is rounding the pole of the integrand at the
point y = 0 from above. Inserting in (2.39), x = log t and y = ~k we obtain:

(2.40) Vθ(log t) =
~

C ′
√

2π~

∫
R

Vθ

(
~k + iε− i~

2
− iπ

)
e

i~k2
2 tik dk.

The left hand side coincides with g2(t). Therefore:

(2.41) ĝ2(k) =
~

C ′
√

2π~
Vθ

(
~k + iε− i~

2
− iπ

)
e

i~k2
2 .

Now, using (2.37) and (2.38) we obtain:

(2.42)

f̂1(k) =
~C ′√
2π~

Vθ

(
−~k + iε− i~

2
− iπ

)
e−

i~k2
2

=
~C ′

C
√

2π~
Vθ

(
~k + iε− i~

2
− iπ

)
e

i
2~ (~k+iε− i~

2 −iπ)2− i~k2
2

=
~C ′′√
2π~

Vθ

(
~k + iε− i~

2
− iπ

)
e(

~
2 +π)k,

where C ′′ =
C ′

C
e−

i
2~ ( ~

2 +π)2

=
1
C ′

.

Function g1 is related to g2 by imaginary shift: replacing ‘log t’ by ‘log t − iπ’ in the formula for
g2(t) we obtain g1(t). Using this fact one can easily show that ĝ1(k) = ĝ2(k)eπk. Taking into account
(2.41) we obtain:

(2.43) ĝ1(k) =
~

C ′
√

2π~
Vθ

(
~k + iε− i~

2
− iπ

)
eπk e

i~k2
2 .

Comparing now (2.42) with (2.43) one can easily verify formula (2.36) for i = 1.

Using (2.37) one can easily show that formulae (2.36) for i = 1 and i = 2 are equivalent. To end
the proof we have to verify (2.36) for i = 3. According to (2.35), g3(t) = g1(t)t

π
~ . Therefore ĝ3 is

related to ĝ1 by imaginary shift: ĝ3(k) = ĝ1(k + iπ
~ ). Taking into account (2.43) we get:

(2.44) ĝ3(k) =
~

C ′
√

2π~
Vθ

(
~k − i~

2

)
e

iπ2
2~ e

i~k2
2 .
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Now, using (2.37) and (2.38) we obtain:

(2.45)

f̂3(k) =
α~C ′√

2π~
Vθ

(
−~k − i~

2

)
e−

iπ2
2~ e−

i~k2
2

=
α~C ′

C
√

2π~
Vθ

(
~k − i~

2

)
e

i
2~ (~k− i~

2 )2− iπ2
2~ −

i~k2
2

=
~C ′′√
2π~

Vθ

(
~k − i~

2

)
e~k/2,

where C ′′′ =
αC ′

C
e−

i~
8 −

iπ2
2~ . Comparing now (2.45) with (2.44) one can easily verify formula (2.36)

for i = 3.

This ends the proof of formula (2.19) and of Proposition 2.3.
Q.E.D.

Now we are able to prove Theorem 2.1. Let a, b, r, s, β be selfadjoint operators acting on a Hilbert
space H, satisfying the assumptions of Theorem 2.1. Setting K = H, â = s|b|−1, b̂ = ei~/2b−1a,
β̂ = β and Q =

√
ra we satisfy all the assumptions of Propositions 2.2 and 2.3. Introducing the above

data into (2.6) and (2.18) we obtain unitary operators W ∈ B(H ⊗H) and W̃ ∈ B(H ⊗H). Clearly
W is given by (2.5). Proposition 2.2 shows that the operator W satisfies the pentagon equation
(2.7). In the present setting formula (2.19) coincides with (2.3).

To finish the proof of manageability of W we have to show that W commutes with Q⊗Q. To this
end we notice that ra−o b and ei~/2b−1a−o ra. Therefore Q2 ⊗Q2 = ra⊗ ra strongly commutes with
ei~/2b−1a⊗ b. Moreover remembering that a−o b and r−o s one can easily show that Q2 = ra strongly
commutes with s|b|−1. Clearly Q commutes with a. Therefore Q2 ⊗ Q2 strongly commutes with
log

(
s|b|−1

)
⊗ log a. Using this information we see that Q⊗Q commutes with (2.5) and manageability

of W follows. This is the end of the proof of Theorem 2.1.

Remark: Operators r, s appearing in this Section play an auxiliary role and may be removed from
the considerations. Let H be a Hilbert space and (a, b, β) ∈ GH . Assume that ker b = {0}. Setting
K = H, â = |b|−1, b̂ = ei~/2b−1a, β̂ = β, s = I and Q =

√
a we satisfy all the assumptions

of Propositions 2.2 and 2.3. Introducing the above data into (2.6) and (2.18) we obtain unitary
operators W ∈ B(H ⊗H) and W̃ ∈ B(H ⊗H). Now W is given by the simpler formula

(2.46) W = F~

(
ei~/2b−1a⊗ b, α(β ⊗ β)χ(b⊗ b < 0)

)∗
e

i
~ log(|b|−1)⊗log a.

By Proposition 2.2, the above operator satisfies the pentagon equation (2.1). As before, formula
(2.19) coincides with (2.3). However now W does not commute with Q⊗Q. It means that operator
(2.46) is not manageable in the sense of [19]. Instead of (2.2) we have:

(2.47) W (Q̂⊗Q)W ∗ = Q̂⊗Q,

where Q̂ =
√
â = |b|− 1

2 is a strictly positive selfadjoint operator.

It turns out that all the results of [19] remain valid, when (2.2) is replaced (2.47) (cf [12]).

3. Crossed product algebra

In this Section we construct the C∗-algebra related to the commutation relations (1.9). Let
C∞

(
R+

)
be the C∗-algebra of all continuous functions vanishing at infinity on the closed halfline

R+ = [0,+∞[, M2 be the algebra of all 2×2 matrices with complex entries and B = C∞
(
R+

)
⊗M2.

Elements of B are continuous mappings f : R+ −→ M2 such that limτ→∞ f(τ) = 0. Imposing an
additional condition saying that f(0) is a multiple of I we select a non-degenerate C∗-subalgebra
B0 ⊂ B. The matrix elements of any f ∈ B we be denoted by fkl ∈ C∞

(
R+

)
(k, l = 1, 2):

(3.1) f =
(
f11 , f12
f21 , f22

)
.
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Then

B0 =

{
f ∈ B :

f11(0) = f22(0),
f12(0) = f21(0) = 0

}
.

For any τ ∈ R+ we set:

(3.2) b(τ) =
(
τ , 0
0 , −τ

)
, β(τ) =

(
0 , χ(τ 6= 0)

χ(τ 6= 0) , 0

)
.

Then bβ = −βb and

(3.3) (ibβ)(τ) =
(

0 , iτ
−iτ , 0

)
.

The reader should notice that b(τ) and (ibβ)(τ) depend continuously on τ and that b(0) and (ibβ)(0)
are multiple of I ∈ M2. According to [18, formula (2.6)], b and ibβ are elements affiliated with B0.
Clearly these elements are selfadjoint. On the other hand β(τ) is not continuous with respect to τ .
Therefore β is not affiliated with B0. Instead, it belongs to the W ∗-envelope of B0.

Let t ∈ R and f ∈ B0. For any τ ∈ R we set:

(σtf)(τ) = f
(
e~tτ

)
.

Then σtf ∈ B0, σt ∈ Aut (B0) and (σt)t∈R is a pointwise continuous one parameter group of
automorphisms of B0. In other words,

(
B0, (στ )τ∈R

)
is a C∗-dynamical system. Let

(3.4) Acp = B0 ×σ R

be the corresponding C∗-crossed product algebra [5]. The canonical embedding B0 ↪→ M(Acp) is a
morphism from B0 into Acp. Therefore the elements affiliated with B0 are affiliated with Acp. In
particular b, ibβ η Acp. The similar conclusion holds for β. It belongs to W ∗-envelope of Acp. By the
definition of crossed product, M(Acp) contains a strictly continuous one parameter group of unitaries
implementing the action σ of R on B0. The infinitesimal generator of this group will be denoted by
log a. Then a is a strictly positive selfadjoint element affiliated with Acp. For any f ∈ B0 we have:

aitfa−it = σtf

One can easily verify that σtb = e~tb and σt(ibβ) = e~tibβ. Therefore aitb = e~tbait and aitibβ =
e~tibβait for any t ∈ R. It means that

a−o b and aβ = βa.

By construction, the set

(3.5)
{
fg(log a) : f ∈ B0, g ∈ C∞(R)

}linear envelope

is a dense subset of the C∗-crossed product Acp = B0 ×σ R.

Proposition 3.1. The C∗-algebra Acp is generated (in the sense explained in [18]) by the three
affiliated elements log a, b, ibβ η Acp.

Proof: We shall use Theorem 3.3 of [18]. One can easily verify that(
g1(b) + g2(b)ibβ

)
(τ) =

(
g1(τ) , iτg2(τ)

−iτg2(−τ) , g1(−τ)

)
for any g1, g2 ∈ Ccompact(R) and that the set of elements of the above form is dense in B0. Therefore
elements b and ibβ separate representations of B0. Remembering that (3.5) is dense in Acp we see
that elements log a, b and ibβ separate representations of Acp. This way we verified Assumption 1
of Theorem 3.3 of [18].

Let r1 = (I + b∗b)−1 and r2 = (I + (log a)∗(log a))−1. To end the proof it is sufficient to notice,
that

r1r2 = fg(log a),
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where f = (I + b2)−1 and g(λ) =
(
1 + λ2

)−1. Clearly f ∈ B0 and g ∈ C∞(R). Therefore r1r2
belongs to (3.5) and consequently r1r2 ∈ Acp. It shows that assumption 2 of Theorem 3.3 of [18]
holds. Now this Theorem says that Acp is generated by log a, b and ibβ.

Q.E.D.

Let H be a Hilbert space and π be a non-degenerate representation of Acp acting on H: π ∈
Rep (Acp,H). According to the general theory, π admits a natural extension to the set of affiliated
elements Aη

cp and to the W ∗-envelope of Acp. Clearly π(a), π(b) and π(β) are selfadjoint operators.
Moreover π(a) is strictly positive, π(a)−oπ(b), π(β)2 = χ(π(b) 6= 0), π(β) commutes with π(a) and
anticommutes with π(b). It means that (π(a), π(b), π(β)) is a G-triple. It turns out that any G-triple
is of this form.

Proposition 3.2. Let H be a Hilbert space and (ao, bo, βo) ∈ GH . Then there exists unique rep-
resentation π ∈ Rep (Acp,H) such that ao = π(a), bo = π(b) and βo = π(β). If A ∈ C∗(H) and
log ao, bo, iboβo η A, then π ∈ Mor(Acp, A).

Proof: For any f ∈ B0 of the form (3.1) we set:

(3.6) πo(f) =

{
f11(bo)χ(bo ≥ 0) + f12(bo)χ(bo > 0)βo

+ βof21(bo)χ(bo > 0) + βof22(bo)χ(bo ≥ 0)βo.

Elementary computations show that πo is a non-degenerate representation of B0. The action of πo

on elements affiliated with B0 is described by the same formula (3.6). In particular for elements
(3.2) we have: πo(b) = bo and πo(β) = βo. Indeed

πo(b) = boχ(bo ≥ 0)− βoboχ(bo ≥ 0)βo

= boχ(bo ≥ 0) + boχ(−bo ≥ 0)β2
o

= boχ(bo ≥ 0) + boχ(bo < 0) = bo

and similarly
πo(β) = χ(bo > 0)βo + βoχ(bo > 0)

= χ(bo > 0)βo + χ(bo < 0)βo = βo.

Now we shall use the relation ao−o bo. It means that ait
o boa

−it
o = e~tbo. We also know that ao

commutes with βo. Therefore

(3.7)
ait

o πo(f)a−it
o =

{
f11(e~tbo)χ(bo ≥ 0) + f12(e~tbo)χ(bo > 0)βo

+ βof21(e~tbo)χ(bo > 0) + βof22(e~tbo)χ(bo ≥ 0)βo

= πo(σtf).

It shows that the pair
(
πo,

(
ait

o

)
t∈R

)
is a covariant representation of the C∗-dynamical system(

B0, (σt)t∈R

)
. Let π be the corresponding representation of the crossed product algebra Acp. Then

π(ait) = ait
o and π(a) = ao. Moreover π restricted to Bo ⊂M(Acp) coincides with πo. In particular

π(b) = bo and π(β) = βo.

This way we constructed representation π ∈ Rep (Acp,H) having desired properties. The unique-
ness of π and the last Statement of the Proposition follows immediately from Proposition 3.1 (cf
Definition 3.1 and Theorem 6.2 of [18]).

Q.E.D.

We shall use the above results to show the following

Proposition 3.3. There exists unique automorphism φ of the C ∗-algebra Acp such that

(3.8)
φ(a) = a,
φ(b) = b,
φ(iβb) = β|b|.

This automorphism is of order 4: φ4 = id.
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Proof: We may assume that Acp is a non-degenerate C∗-algebra of operators acting on a Hilbert
space H. Then (a, b, β) ∈ GH . Let ao = a, bo = b and βo = −iβsign b. One can easily verify that
(ao, bo, βo) ∈ GH and that ao, bo and iβobo = β|b| are affiliated with Acp. By Proposition 3.2, there
exists unique φ ∈ Mor(Acp, Acp) satisfying relations (3.8).

Let f be a continuous function on R vanishing at 0 and at infinity. Then βf(b) ∈ Acp. The second
and third formulae of (3.8) show that φ(βf(b)) = −iβsign (b)f(b). Iterating this formula we obtain:
φ2(βf(b)) = −βf(b) and φ4(βf(b)) = βf(b). It shows that φ4 = id.

Q.E.D.

4. From multiplicative unitary to quantum group

Let G be the quantum space corresponding to the C∗-algebra Acp. In other words, elements of
Acp are interpreted as continuous functions vanishing at infinity on G. In this Section we endow G
with a group structure introducing a comultiplication ∆ ∈ Mor(Acp, Acp ⊗ Acp). It will be shown
that the quantum group G coincides with the (extended) ‘ax+ b’ -group introduced in Section 1.

From now until the end of the paper we assume that the deformation parameter

~ =
π

2k + 3
,

where k = 0, 1, 2, . . . . Then α = i exp iπ2

2~ = (−1)k.

Any C∗-algebra may be embedded in a non-degenerate way into B(H), where H is a Hilbert
space. Then affiliated elements become closed operators acting on H. Let

(4.1)  : Acp ↪→ B(H)

be a non-degenerate embedding. Then  ∈ Rep (Acp,H) and (a), (b) and (β) are selfadjoint
operators acting on H. To simplify the notation we will drop the embedding symbol ‘’ writing
a, b, β instead of (a), (b), (β). With this notation Acp ⊂ B(H).

One can check that the subspace ker b is Acp-invariant. Replacing if necessary H by (ker b)⊥ we
may assume that ker b = {0}. We may also assume that the commutant A′cp = {a′ ∈ B(H) : a′c =
ca′ for any c ∈ Acp} contains a W ∗-algebra isomorphic to B(K), where K is an infinite-dimensional
Hilbert space. If this is not the case, then we replace (4.1) by ′ : Acp ↪→ B(K ⊗H) introduced by
the formula ′(c) = IB(K) ⊗ (c) for any c ∈ Acp. Since the commutant A′cp is large enough, there
exist strictly positive selfadjoint operators r, s acting on H such that r, s strongly commute with
a, b, β and r−o s.

Let b̂ = ei~/2b−1a, β̂ = β and â = s|b|−1. Then sign b = sign b̂. Therefore χ(b⊗ b < 0) = χ(b̂⊗ b <
0) and the operator (2.5) equals

(4.2) W = F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
e

i
~ log â⊗log a.

This operator acts on H ⊗ H. By Theorem 2.1 W is a manageable multiplicative unitary. Corre-
sponding operators Q and W̃ are given by: Q =

√
ra and

(4.3) W̃ = F~

(
−b̂> ⊗ ei~/2ba−1,−

(
β̂> ⊗ β

)
χ

(
b̂> ⊗ b > 0

))
e

i
~ log â>⊗log a.

We shall use the theory developed in [3, 19]. Let B(H)∗ be the set of all normal linear functionals
defined on B(H) and

(4.4) A =
{

(ω ⊗ id)W : ω ∈ B(H)∗
}norm closure

.

According to the general theory [3, 19], A is a C∗-algebra and W ∈M(CB(H)⊗A), where CB(H)
the C∗-algebra of all compact operators acting on H. The algebra A is interpreted as the alge-
bra of all ‘continuous functions vanishing at infinity on the quantum group’. The corresponding
comultiplication ∆ is introduced by the formula:

(4.5) ∆(c) = W (c⊗ I)W ∗.



QUANTUM ‘ax + b’ GROUP. 17

It is known that ∆(c) ∈ M(A ⊗ A) for any c ∈ A and that ∆ ∈ Mor(A,A ⊗ A) . By the pentagon
equation we have

(id⊗∆)W = W12W13.

Using this formula one can easily show that ∆ is coassociative. The main result of this Section is
contained in the following

Theorem 4.1.
1. The Baaj-Skandalis algebra (4.4) coincides with the crossed product algebra Acp:

(4.6) A = Acp.

2. The comultiplication ∆ acts on distinguished elements affiliated with Acp in the following way:
• ∆(a) = a⊗ a,
• ∆(b) is the selfadjoint extension of a ⊗ b + b ⊗ I corresponding to the reflection operator
τ = α(β ⊗ β)χ(b⊗ b < 0). In short: ∆(b) = [a⊗ b+ b⊗ I]τ .

• ∆(iβb) = i
{
w

(
ei~/2b−1a⊗ b

)−1
(β ⊗ I) + (I ⊗ β)w

(
ei~/2ba−1 ⊗ b−1

)−1
}

∆(b),
where w is the polynomial introduced by (1.15).

Proof:
Ad 1. Any closed operator acting on H is affiliated with CB(H). In particular b̂, ib̂β̂, log â ∈

CB(H)η. Remembering that b, ibβ, log a ∈ Aη
cp we obtain: b̂ ⊗ b, b̂β̂ ⊗ bβ, log â ⊗ log a ∈

(CB(H)⊗Acp)η. Therefore

e
i
~ log â⊗log a ∈M (CB(H)⊗Acp) ,

F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)
∈M (CB(H)⊗Acp) .

To obtain the second relation we used [20, Theorem 8.1]). Consequently W ∈ M (CB(H)⊗Acp).
Now using (4.4) we obtain A ⊂M(Acp) and AAcp ⊂ Acp.

W is a unitary element of the multiplier algebra. Therefore W (CB(H)⊗Acp) = CB(H) ⊗ Acp

and the set

(4.7)
{
W (m⊗ c) : m ∈ CB(H), c ∈ Acp

}
is linearly dense in CB(H) ⊗ Acp. For any ω ∈ B(H)∗, m ∈ CB(H) and c ∈ Acp we have:
(ω⊗ id) (W (m⊗ c)) = ((mω ⊗ id)W ) c ∈ AAcp. Applying ω⊗ id to all elements of (4.7) we see that

(4.8) AAcp is a linearly dense subset of Acp.

We shall prove that

(4.9) log a, b, ibβ η A.

For all t ∈ R we set

(4.10) V (t) = F~

(
tb̂⊗ b, α(β̂ ⊗ β)χ(tb̂⊗ b < 0)

)∗
e

i
~ log â⊗log a.

Then V (t) ∈ B(H ⊗ H) = M
(
CB(H)⊗ CB(H)

)
. In what follows we endow multiplier algebras

with the strict topology. Using Theorem 8.1 of [20] one can easily show that
(
V (t)

)
t∈R

is a con-

tinuous family of elements of M
(
CB(H)⊗ CB(H)

)
. Tensoring by I ∈ M(A) and using the leg

numbering notation V12(t) = V (t) ⊗ I we obtain a continuous family
(
V12(t)

)
t∈R

of elements of

M
(
CB(H)⊗ CB(H)⊗A

)
.

By Proposition 2.2, operators (4.10) satisfy the pentagon equation (2.7). Therefore

(4.11) V13(t) = V12(t)∗W23V12(t)W ∗
23.
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Using this formula and remembering that W ∈M(CB(H)⊗A) we see that
(
V13(t)

)
t∈R

is a contin-

uous family of elements of M
(
CB(H)⊗ CB(H)⊗A

)
. It implies that

(
V (t)

)
t∈R

is a continuous

family of elements of M
(
CB(H)⊗A

)
.

Therefore F~

(
tb̂⊗ b, α(β̂ ⊗ β)χ(tb̂⊗ b < 0)

)
= V (0)V (t)∗ ∈ M(CB(H) ⊗ A) depends continu-

ously on t ∈ R. Now, Theorem 8.1 of [20] shows that b̂⊗b and b̂β̂⊗bβ are affiliated with CB(H)⊗A.
Taking into account (A.1) we get b, ibβ η A.

Let t ∈ R. Inserting b̂ = 0 and â = e~tI in Proposition 2.2 we see that the operator

(4.12) V (t) = I ⊗ eit log a = I ⊗ ait.

satisfies the pentagon equation (2.7). In the present case equation (4.11) takes the form

(4.13) I ⊗ ait =
(
a−it ⊗ I

)
W

(
ait ⊗ I

)
W ∗.

It shows that
(
I ⊗ ait

)
t∈R

is a continuous one parameter group of unitary elements of the multiplier

algebra M
(
CB(H)⊗A

)
. Consequently

(
ait

)
t∈R

is a continuous one parameter group of unitary

elements of M(A). Therefore the infinitesimal generator log a is affiliated with A. This way (4.9) is
shown.

Now we combine Proposition 3.1 with (4.9). By Definition 3.1 of [18], the embedding (4.1) belongs
to Mor(Acp, A). It means that AcpA is a linearly dense subset of A. Comparing this result with
(4.8) we obtain (4.6). This way we revealed the structure of the algebra of ‘continuous functions
vanishing at infinity on G’.

Ad 2. Let ∆ be the comultiplication introduced by (4.5). Clearly the action of ∆ on elements
affiliated with A is described by the same formula. We have to compute the action of ∆ on generators
a, b, ibβ of A. Formula (4.13) shows that ∆(ait) = ait ⊗ ait for any t ∈ R. Therefore

∆(a) = a⊗ a.
One can easily verify that b strongly commutes with â = s|b|−1. Therefore b⊗ I commutes with

e
i
~ log â⊗a and

∆(b) = F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
(b⊗ I)F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)
.

We know that a−o b. Therefore b−1−o a, b̂ = ei~/2b−1a−o a and b̂⊗ b−o b⊗ I. The reader should notice
that b⊗ I anticommutes with the operator τ = α(β̂ ⊗ β)χ(b̂⊗ b < 0) = α(β ⊗ β)χ(b⊗ b < 0). Using
Theorem 5.3 of [20] we see that ∆(b) is the selfadjoint extension of ei~/2b̂b⊗ b+ b⊗ I = a⊗ b+ b⊗ I
corresponding to the reflection operator τ :

∆(b) =
[
a⊗ b+ b⊗ I

]
τ
.

More explicitly ∆(b) is the restriction of (a⊗ b+ b⊗ I)∗ to the domain

D(∆(b)) = D
(
a⊗ b+ b⊗ I

)
+D

(
(a⊗ b+ b⊗ I)∗

)
∩ (H ⊗H)(τ = 1),

where (H ⊗H)(τ = 1) is the eigenspace of τ corresponding to the eigenvalue 1.

The action of ∆ on the third generator is given by the formula

∆(ibβ) = iβ̃∆(b),

where
β̃ = W (β ⊗ I)W ∗.

We have to find a formula for β̃. Remembering that β commutes with â and anticommutes with b̂

we see that β ⊗ I commutes with e
i
~ log â⊗a and anticommutes with b̂⊗ b. Therefore

β̃ = F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
(β ⊗ I)F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)
= F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
F~

(
−b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b > 0)

)
(β ⊗ I).
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Taking into account formula (B.5) of Appendix B we obtain:

β̃ =
{
w

(
b̂⊗ b

)−1

+
(
β̂ ⊗ β

)
w

(
−(b̂⊗ b)−1

)−1
}

(β ⊗ I) .

Remembering that β̂ = β anticommutes with b̂ = ei~/2b−1a we finally obtain:

(4.14) β̃ = w
(
ei~/2b−1a⊗ b

)−1

(β ⊗ I) + (I ⊗ β)w
(
ei~/2ba−1 ⊗ b−1

)−1

.

This formula proves the last point of Statement 2 of our Theorem.
Q.E.D.

Remark: Using (1.4), (1.3) and (1.15) one can verify that on the Hopf ∗-algebra level the product(
b2k+3 ⊗ I

)
w

(
ei~/2b−1a⊗ b

)
= (∆b)2k+3 =

(
a2k+3 ⊗ b2k+3

)
w

(
−ei~/2ba−1 ⊗ b−1

)
. Combining this

formula with (4.14) we get

(4.15) ∆
(
ib2k+3β

)
= ib2k+3β ⊗ I + a2k+3 ⊗ ib2k+3β.

On the Hilbert space and C∗-levels, instead of equality we have inclusion: operator on the left hand
side of (4.15) is a selfadjoint extension of the symmetric operator appearing on the right hand side.
This extension is determined by reflection operator −sign (b⊗ b):
(4.16) ∆

(
ib2k+3β

)
=

[
ib2k+3β ⊗ I + a2k+3 ⊗ ib2k+3β

]
−sign (b⊗b)

.

See [8] for details. The formula (4.16) seems to be very interesting. It encodes in a simple form the
complicated formula (4.14) describing the action of ∆ on β. Moreover it shows that in a certain
sense

u′ =
(
a2k+3 , ib2k+3β

0 , I

)
is a two-dimensional representation of quantum ‘ax+ b’ group.

Now we shall discuss the coinverse map κ. According to [19] we have the polar decomposition

(4.17) κ(c) =
(
τi/2(c)

)R
,

where τi/2 is the analytic generator of the scaling group and the map A 3 c 7→ cR is the uni-
tary antipode. The action of the scaling group is described by the formula: τt(c) = Q2itcQ−2it.
Remembering that Q2 = ra commutes with a and β and that Q2−o b we obtain:

τt(a) = a, τt(b) = e~tb and τt(β) = β.

Consequently: τi/2(a) = a, τi/2(b) = ei~/2b and τi/2(β) = β. The unitary antipode is defined by the
relation W>⊗R = W̃ ∗ (cf [19, Formula (1.14)]). Comparing (4.2) with (4.3) and remembering that
>⊗R is antimultiplicative we obtain:

aR = a−1, bR = −ei~/2ba−1 and βR = −αβ.
Now, formula (4.17) shows that:

κ(a) = a−1, κ(b) = −a−1b and κ(β) = −αβ.
It turns out that the automorphism φ introduced in Proposition 3.3 preserves the group structure

of our quantum group. We have:

Proposition 4.2. For any c ∈ A:

(4.18) ∆(φ(c)) = (φ⊗ φ)∆(c)

Proof: We recall that we use the embedding A ↪→ B(H) such that b is represented by an operator
with trivial kernel. Therefore β2 = χ(b 6= 0) = I and the operator

w = χ(b > 0) + iχ(b < 0)

is unitary. Clearly w commutes with a and b. We compute:

w∗βw =
(
χ(b > 0)− iχ(b < 0)

)
β

(
χ(b > 0) + iχ(b < 0)

)
= β

(
χ(b < 0)− iχ(b > 0)

) (
χ(b > 0) + iχ(b < 0)

)
= −iβ

(
χ(b > 0)− χ(b < 0)

)
= −iβsign b.
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Therefore w∗(iβb)w = β|b|. It shows (cf (3.8)) that w implements the action of φ:

φ(c) = w∗cw

for any c ∈ A. We claim that w ⊗ w commutes with τ . Indeed

(w ⊗ w)τ(w ⊗ w)∗ = α(wβw∗ ⊗ wβw∗)χ(wbw∗ ⊗ wbw∗ < 0)
= α

(
(−iβsign b)⊗ (−iβsign b)

)
χ(b⊗ b < 0)

= −α(β ⊗ β)(sign b⊗ sign b)χ(b⊗ b < 0)
= α(β ⊗ β)χ(b⊗ b < 0) = τ

Using this formula one can easily show that w⊗w commutes with W (cf (4.2)). Now, for any c ∈ A
we have

(φ⊗ φ)∆(c) = (w ⊗ w)∗W (c⊗ I)W ∗(w ⊗ w)
= W (w ⊗ w)∗(c⊗ I)(w ⊗ w)W ∗

= W (φ(c)⊗ I)W ∗ = ∆(φ(c)).
Q.E.D.

We end this Section with a short discussion showing that manageability is the condition distin-
guishing groups from semigroups. We recall that classical ‘ax+b’ group Gclassical consists of all affine
transformations R 3 x 7−→ ax + b ∈ R with a > 0. Assuming in addition that b > 0 we define a
subsemigroup G+

classical ⊂ Gclassical. In the quantum setting, the condition b > 0 selects a subspace
of H. Let H+ = H(b > 0) and x ∈ H+ ⊗H+. On this subspace operator b̂ ⊗ b is strictly positive

and computing F~

(
b̂⊗ b, α(β̂ ⊗ β)χ(b̂⊗ b < 0)

)∗
we have to use the first version of formula (0.1).

Therefore
Wx = Vθ

(
log

(
ei~/2b−1a⊗ b

))∗
e

i
~ log(sb−1)⊗log ax

All operators appearing in this formula leave H+ invariant. Therefore H+⊗H+ is W -invariant. The
restriction of W to this invariant subspace will be denoted by W+:

W+ = Vθ

(
log

(
ei~/2b−1

+ a+ ⊗ b+
))∗

e
i
~ log(s+b−1

+ )⊗log a+ ,

where a+, b+, s+ are restrictions of a, b, s to H+. Restricting both sides of (2.1) to the subspace H+⊗
H+⊗H+ we see that W+ is a multiplicative unitary. This multiplicative unitary is not manageable.
Indeed H+ ⊗H+ is not W̃ -invariant and the operator W̃+ = χ

(
b> ⊗ b > 0

)
W̃χ

(
b> ⊗ b > 0

)
is not

unitary. To obtain a C∗-algebra we have to replace (4.4) by the formula

(4.19) A+ =
{

(ω ⊗ id)W+ + (ω′ ⊗ id)W ∗
+ : ω, ω′ ∈ B(H+)∗

}norm closure

One can show that log a+, b+ η A+ and that A+ is generated by these two elements. Let G+ be the
quantum space corresponding to the C∗-algebra A+. The formula

∆+ (c) = W+ (c⊗ I)W ∗
+

defines coassociative comultiplication ∆+ ∈ Mor(A+, A+ ⊗A+). One can verify that

∆+(a+) = a+ ⊗ a+, ∆+(b+) = a+ ⊗ b+ + b+ ⊗ I.
In the second formula a+⊗ b+ + b+⊗ I is essentially selfadjoint and has unique selfadjoint extension.
∆+ introduces a semigroup structure on G+. Clearly G+ is a quantum deformation of G+

classical.
In this way we constructed an example of a quantum semigroup coming from a non-manageable
multiplicative unitary. This is rather surprising: Kac-Takesaki operators corresponding to semi-
subgroups of locally compact groups are non-unitary coisometries. It shows that manageability
(rather than unitarity) is the condition distinguishing groups from semigroups.

5. The dual of ‘ax+ b’ quantum group.

Let W be the multiplicative unitary introduced by (4.2). The theory of multiplicative unitaries
provide a simple method of constructing group duals. Following Baaj and Skandalis we denote by
Σ : H ⊗H −→ H ⊗H the flip operator: Σ(x⊗ y) = y ⊗ x for any x, y ∈ H. The corresponding flip
acting on operators will be denoted by σ:

σ(c⊗ c′) = Σ(c⊗ c′)Σ = c′ ⊗ c
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for any c, c′ ∈ B(H). It is well known that for any manageable multiplicative unitary W , the
operator Ŵ = ΣW ∗Σ is also a manageable multiplicative unitary. By definition the regular dual of
the quantum group related to a multiplicative unitary W is the quantum group related to Ŵ . The
algebra of ‘continuous functions vanishing at infinity’ on the dual of the group is introduced by the
formula:

Â =
{

(id⊗ ω)W ∗ : ω ∈ B(H)∗
}norm closure

The dual group structure is given by the comultiplication ∆̂ ∈ Mor(Â, Â⊗ Â) such that

(5.1) (∆̂⊗ id)W = W23W13.

The following theorem reduces the description of the dual of ‘ax+ b’ group to the original group.

Theorem 5.1. Operators â, b̂, ib̂β̂ are affiliated with Â. There exists a C∗-isomorphism ψ : A −→ Â

such that ψ(a) = â, ψ(b) = b̂ and ψ(ibβ) = ib̂β̂. This isomorphism reverses order of the group
operation:

(5.2) ∆̂(ψ(c)) = σ(ψ ⊗ ψ)∆(c)

for any c ∈ A.

We shall use the following

Proposition 5.2. Let H be a Hilbert space and (a, b, β) ∈ GH . Assume that ker b = {0}. Then
the triples (a, b, β), (a, ei~/2ab, β) and (ei~/2|b|−1a, b, β) are unitarily equivalent. In particular the
triple (a, ei~/2ab, β) ∈ GH and (ei~/2|b|−1a, b, β) ∈ GH . Moreover if s is a strictly positive selfadjoint
operator acting on H such that s commutes with a, b, β, then the triple (sa, b, β) is unitarily equivalent
to (a, b, β) ∈ GH .

Proof: Let
U1 = e

i
2~ (log a)2 , U2 = e

i
2~ (log |b|)2 and U3 = |b|− 1

~ log s.

Clearly β commutes with U1, U2, U3, a commutes with U1 and b commutes with U1, U3. Using [20,
Statement 3 of Theorem 3.3] we check that U1bU

∗
1 = ei~/2ab, U2aU

∗
2 = ei~/2|b|−1a and U3aU

∗
3 = sa.

Therefore
U1(a, b, β)U∗1 = (a, ei~/2ab, β)

U2(a, b, β)U∗2 = (ei~/2|b|−1a, b, β)

U3(a, b, β)U∗3 = (sa, b, β)
Q.E.D.

Proof of Theorem 5.1:
We set (a1, b1) = (ei~b−2a, b), (a2, b2) = (a1, e

i~/2a1b1), (a3, b3) = (ei~/2|b2|−1a, b2) and (a4, b4) =
(sa3, b3). One can easily verify that a4 = s|b|−1 = â and b4 = ei~/2b−1a = b̂. By Proposition 5.2 the
triples (a, b, β), (a1, b1, β), (a2, b2, β), (a3, b3, β) and (a4, b4, β) = (â, b̂, β̂) are unitarily equivalent.

Let Z ∈ B(H) be a unitary operator such that â = Z∗aZ, b̂ = Z∗bZ, β̂ = Z∗βZ and ψ be the
automorphism of B(H) implemented by Z:

ψ(c) = Z∗cZ

Then ψ(a) = â, ψ(b) = b̂ =, ψ(β) = β̂ and taking into account definition (4.2) we see that operator
(id⊗ ψ)W is invariant with respect to the flip:

σ(id⊗ ψ)W = (id⊗ ψ)W.

Therefore, for any ω ∈ B(H)∗ we have:

(5.3)
ψ

(
(ω ⊗ id)W

)
= (ω ⊗ id)(id⊗ ψ)W

= (id⊗ ω)(id⊗ ψ)W = (id⊗ ωZ)W,

where ωZ = ωoψ ∈ B(H)∗. Formula (5.3) shows that ψ(A) = Â. We shall verify (5.2). Let
c = (ω ⊗ id)W ∈ A. Then by the above formula ψ(c) = (id⊗ ωZ)W and using (5.1) we obtain

∆̂(ψ(c)) = (id⊗ id⊗ ωZ)(∆̂⊗ id)W = (id⊗ id⊗ ωZ)W23W13.
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Therefore

(5.4) σ∆̂(ψ(c)) = (id⊗ id⊗ ωZ)W13W23.

On the other hand

(ψ ⊗ ψ)∆(c) = (ψ ⊗ ψ)∆
(

(ω ⊗ id)W
)

= (ω ⊗ ψ ⊗ ψ)W12W13

= (ω ⊗ id⊗ id)
[
(id⊗ ψ)W

]
12

[
(id⊗ ψ)W

]
13
.

Remembering that (id⊗ ψ)W is flip-invariant and that ψ is multiplicative we obtain:

(ψ ⊗ ψ)∆(c) = (id⊗ id⊗ ω)
[
(id⊗ ψ)W

]
13

[
(id⊗ ψ)W

]
23

= (id⊗ id⊗ ω)(id⊗ id⊗ ψ)W13W23 = (id⊗ id⊗ ωZ)W13W23.

Comparing this formula with (5.4) we obtain (5.2)
Q.E.D.

Appendices

A. Affiliation relation and tensor product.

For any Hilbert space H we denote by C∗(H) the set of all non-degenerate separable C∗-algebras
of operators acting on H.

Proposition A.1. Let T1, T2 be non-zero normal operators acting on Hilbert spaces H1,H2 respec-
tively and let A1 ∈ C∗(H1) and A2 ∈ C∗(H2). Then

(A.1)
(
T1 ⊗ T2 η A1 ⊗A2

)
⇐⇒

(
T1 η A1 and T2 η A2

)
.

Proof: The implication ‘⇐=’ follows from [17, Theorem 6.1]. We shall prove the converse.
Multiplying if necessary T2 by a complex number, we may assume that 1 ∈ SpT2. Then for any
r > 0 the spectral subspace H2

(
|T2 − 1| < r

)
6= {0}. Let Ωr be a norm 1 vector belonging to this

subspace and ωr be the state of A2 corresponding to this vector:

ωr(c) = (Ωr c Ωr)

for any c ∈ A2. For any f ∈ C∞(C) and any t ∈ C we set

fr(t) = (Ωr f(tT2) Ωr) .

Clearly

fr(t) =
∫
R

f(tτ)dµr(τ),

where µr is a probability measure on C such that µr(Λ) = (Ωr χ(T2 ∈ Λ) Ωr) for any measurable
subset Λ ⊂ R. Condition Ωr ∈ H2

(
|T2 − 1| < r

)
implies that the support of µr is contained in

the ball {t ∈ C : |t− 1| < r}. Using this result one can easily show that fr ∈ C∞(C) and that fr

converges uniformly to f , when r → 0:

(A.2) lim
r→0

fr = f.

A moment of reflection shows that

(A.3) (id⊗ ωr) f(T1 ⊗ T2) = fr(T1).

If T1⊗T2 η A1⊗A2, then f(T1⊗T2) ∈M(A1⊗A2) and the above formula shows that fr(T1) ∈M(A1).
Taking into account (A.2) we obtain: f(T1) ∈M(A1). Clearly the mapping

(A.4) C∞(C) 3 f −→ f(T1) ∈M(A1)

is a ∗-algebra homomorphism. Assume for the moment that f(t) > 0 for all t ∈ C. Then (cf
[18, formula 1.8]) f (T1 ⊗ T2) > 0 on Sp (A1 ⊗A2) and by (A.3), fr(T1) > 0 on SpA1. It means
that fr(T1)A1 is dense in A1. Therefore (A.4) is a morphism from C∞(C) into A1. The function
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f(t) = t is an element affiliated with C∞(C). Applying the morphism (A.4) to this element we
obtain f(T1) = T1. Therefore T1 η A1. In the same way one can show that T2 η A2.

Q.E.D.

Remark: We are strongly convinced that the equivalence (A.1) holds for any non-zero closed
operators T1 and T2. However we were unable to find a proof working for operators that are not
normal.

B. A QEF equality

This Appendix may be treated as a supplement to [20]. We shall prove an equality satisfied by
the quantum exponential function F~ with ~ = π

2k+3 , where k = 0, 1, 2, . . . . We start with some
simple properties of the polynomial w(t) of the order 2k + 3 introduced by (1.15). Let

(B.1) Φ =
{
−e−i( 1

2−`)~ : ` = 1, 2, . . . , 2k + 3
}

be the set of all zeroes of w. The reader should notice that Φ is contained in the upper half plane.
One can easily verify that the set Φ ∪ (−Φ) =

{
t : 1 + t2(2k+3) = 0

}
. Therefore

(B.2) w(t)w(−t) = 1 + t2(2k+3).

Moreover Φ−1 = −Φ and the product of all elements of Φ equals −i(−1)k = −iα. Therefore

(B.3) w(t) = iαt2k+3w
(
−t−1

)
.

Finally Φ is symmetric with respect to the imaginary axis. Therefore

(B.4) w(t) = w(−t).

Let r ∈ R and % = ±1. We claim that

(B.5)
F~(r, %χ(r < 0))F~(−r, %χ(r > 0)) = w (r)−1 [

1 + i%r2k+3
]

= w(r)−1 + α%w
(
−r−1

)−1
.

The last equality follows immediately from (B.3). Applying complex conjugation to all parts of (B.5)
we obtain the same formula with r replaced by −r. Therefore it is sufficient to prove (B.5) for r > 0.
In this case computing F~(r, %χ(r < 0)) (F~(−r, %χ(r > 0)) respectively) we have to use the first
(the second respectively) version of formula (0.1). We obtain:

(B.6) LHS = Vθ (log r)Vθ (log r − πi)
[
1 + i%r

π
~
]
.

We recall that ~ = π
2k+3 , where k = 0, 1, 2, . . . . Therefore π = (2k + 3)~. We know (cf [20, Formula

1.31]) that

Vθ(x+ i~) =
(

1 + ei~/2ex
)
Vθ(x)

for any x ∈ C. Using this formula (2k+ 3)-times with x = log r− i`~ (` = 1, 2, . . . , 2k+ 3) we obtain

Vθ(log r) =
2k+3∏
`=1

(
1 + ei( 1

2−`)~r
)
Vθ(log r − πi).

For real r, |Vθ(log r)| = 1. Therefore

Vθ(log r)Vθ(log r − πi) =
2k+3∏
`=1

(
1 + ei( 1

2−`)~r
)−1

= w(r)−1.

Formula (B.6) shows now, that

LHS = w (r)−1 [
1 + i%r

π
~
]

and (B.5) follows.
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