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Abstract. The paper is devoted to locally compact quantum groups that are related to classical

‘ax+b’ group. We discuss in detail the quantization of the deformation parameter assumed with
no justification in the previous paper. Next we construct (on the C∗-level) a larger family of

quantum deformations of ‘ax + b’ group corresponding to the deformation parameter q2 running
over an interval in unit circle. To this end, beside the reflection operator β known from the

previous paper we use a new unitary generator w. It commutes with a, b and βwβ = ssgn bw,

where s ∈ S1 is a new deformation parameter related to q2. At the end we discuss the groups
at roots of unity.

0. Introduction

In last years a lot of effort was devoted to constructing explicit examples of (non-compact)
locally compact quantum groups. The present paper inscribes into this line of research. It is
devoted to quantum deformations of the group ‘ax+ b’ of affine transformations of real line. Such
quantum ‘ax+ b’ groups were presented first in [19]. We shall use the adjective old to distinguish
them from the new ‘ax+ b’ groups constructed in section 4 of present paper.

We go back to the subject for the following reasons. At first the quantizations of the deformation
parameter ~ introduced in the previous paper was not discussed in detail. Now we give strong
arguments that the values of ~ = π

2k+3 are the only ones allowed within the setting considered in
[19]. Secondly one of the important formulae in [19] was not proven. We fill this gap. Third, the
old quantum ‘ax+ b’ admits a large set of automorphisms. In [19] we identified only four of them.
Now we show that the group of automorphisms is as large as S1. These automorphisms play an
important role in constructing the new quantum ‘ax + b’ groups. The new groups do exist for ~
running over an interval in R (no more quantization of deformation parameter).

The new quantum groups constructed in the present paper seem to be very important. They
will serve as building blocks in construction of quantum SL(2,R) group. This is our next target.

Let G be the ‘ax+ b’ group. On the classical level G consists of all transformations of the form

(0.1) R 3 x 7−→ ax+ b ∈ R,
where a and b are real parameters labeling the elements of the group. We shall assume that a > 0.
Assigning to each element of the group the values of the parameters we define two unbounded
continuous real functions on G. To denote the functions we shall use the same letters: a, b ∈ C(G).
Then the C∗-algebra C∞(G) of all continuous functions vanishing at infinity on G is generated by
log a and b:

C∞(G) =
{
f(log a)g(b) : f, g ∈ C∞(R)

} uniformly closed
linear envelope

.

Functions a and b may be considered as elements affiliated with C∞(G). Composing two trans-
formations of the form (0.1) with parameters (a1, b1) and (a2, b2) one obtains the transformation
with parameters (a1a2, a1b2 + b1). This result leads to the following formulae describing the co-
multiplication:

(0.2)
∆(a) = a⊗ a,
∆(b) = a⊗ b+ b⊗ I.

At the moment the elements of G are considered as affine transformations of R. However one
may realize them as unitary operators acting on a Hilbert space. To this end, to any transformation
of the form (0.1) we assign unitary operator V(a,b) ∈ B(L2(R)) introduced by the formula:(

V(a,b)f
)
(x) = a−1/2f

(
a−1(x− b)

)
for any f ∈ L2(R). Then G may be identified with the set of unitary operators:

(0.3) G =
{
V(a,b) : a, b ∈ R; a > 0

}
.
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This identification preserves the group structure and the topology. More precisely V(1,0) = I and

(0.4) V(a1,b1)V(a2,b2) = V(a1a2,a1b2+b1)

for any a1, a2 ∈ ]0,∞[ and b1, b2 ∈ R. Moreover a sequence V(an,bn) converges to V(a∞,b∞) in strong
topology if and only if an → a∞ > 0 and bn → b∞. In particular (0.3) with the strong operator
topology is a locally compact space. One can also show that (0.3) is a closed subset of B(L2(R))
(in strong operator topology).

For any Hilbert space H we denote by K(H) the C∗-algebra of all compact operators acting
on H. According to the general theory [13] the strongly continuous family of unitaries (0.3) is
described by a single unitary V ∈ M(K(L2(R)) ⊗ C∞(G)). The C∗-algebra C∞(G)) is generated
(in the sense of [13]) by V . Formula (0.4) means that

(id⊗∆)V = V12V13.

This way we arrive to the notion of a (quantum) group of unitary operators. Let H be a Hilbert
space. We shall consider pairs (A, V ), where A is a C∗-algebra and V is a unitary element of the
multiplier algebra M(K(H) ⊗ A). If A is generated by V ∈ M(K(H) ⊗ A) then (A, V ) is called a
quantum family of unitary operators. We say that the family is closed with respect to operator
multiplication if there exists a morphism ∆ ∈ Mor(A,A⊗A) such that

(0.5) (id⊗∆)V = V12V13.

Then ∆ is unique (because A is generated by V ). Finally (A, V ) is said to be a quantum group
of unitary operators, if it is closed with respect to the operator multiplication and if (A,∆) is a
locally quantum group in the sense of Kustermans and Vaes [3]. It should be possible to formulate
the last condition directly in terms of (A, V ). However this is not the subject of the present paper.

Let us go back to the ‘ax + b’ group. In the quantum setting functions a and b are replaced
by selfadjoint elements a = a∗ > 0 and b = b∗ that no longer commute. Instead they satisfy the
relation

(0.6) ab = q2ba,

where the deformation parameter q2 is a number of modulus 1. Unfortunately in our case elements a
and b are represented by unbounded operators and the products ab and ba may not be well defined
because of the domain problem. For this reason we replace (0.6) by the so called Zakrzewski
relation. It says that for any τ ∈ R:

aiτ ba−iτ = e~τ b.

In this formula ~ is a real constant such that q2 = e−i~. For technical reasons we shall assume
that 0 < ~ < π

2 . The reader should notice that for τ = −i the above relation reduces to (0.6).

The second problem is related to the comultiplication. We would like to keep formulae (0.2).
However in general a ⊗ b + b ⊗ I is not selfadjoint and in the best case we may expect that ∆(b)
is a selfadjoint extension of a⊗ b+ b⊗ I:

a⊗ b+ b⊗ I ⊂ ∆(b).

To choose the extension in a well defined way we have to use additional operators independent of
a and b. For old quantum ‘ax + b’ groups we use a selfadjoint unitary β commuting with a and
anticommuting with b. For new groups the situation is even more complicated. It means that the
algebra A is no longer generated by log a and b.

It is not obvious, how to present quantum ‘ax+b’ group as a quantum group of unitary operators
(A, V ). The crucial point is the formula V = V (a, b, . . . ) expressing V in terms of a, b and perhaps
some other elements related to A. The equation (0.5) takes the form

V (a⊗ a, [a⊗ b+ b⊗ I], . . . ) = V (a⊗ I, b⊗ I, . . . )V (I ⊗ a, I ⊗ b, . . . ),
where [a ⊗ b + b ⊗ I] is a suitable selfadjoint extension of a ⊗ b + b ⊗ I. To find solutions of this
equation we spent a lot of time making use of our experience in the area of quantum exponential
functions and quantum groups (cf. [15, 14, 11, 18, 17, 19, 7, 9]). As a result we got formulae (3.8)
and (4.8) that are starting points in our presentation.

Let us briefly discuss the content of the paper. Sections 1 and 2 are devoted to mathematical
tools used in the paper. In the first one we recall the Zakrzewski commutation relation and related
quantum exponential function (with a slightly modified notation). Most of the results presented in
that section come from [17]; the essentially new result is contained in Proposition 1.4. The second
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section deals with the notion of a C∗-algebra generated by affiliated elements. We prove a number
of results used in the main part of the paper.

Section 3 is devoted to the quantum ‘ax+ b’ groups introduced in [19]. These groups exist only
for special values of deformation parameter q2 = e−i~ with ~ = π

2k+3 , where k = 0, 1, 2, . . . . This
fact was not really shown in [19]. The special values of the deformation parameter were chosen
to proceed with some computations. It was not clear that (at the expense of some complications)
one is not able to construct quantum ‘ax + b’ group for larger set of values of the deformation
parameter. Now, presenting the ‘ax + b’ group as a quantum group of unitary operators we
obtain the quantization of the deformation parameter as a precise mathematical statement (cf.
Theorem 3.3). More precisely for q2 = e−i~ we shall construct a C∗-algebra A with distinguished
selfadjoint elements a, b and iβb affiliated with it (the so called reflection operator β is a unitary
involution which is not affiliated with A). These elements satisfy (in a well defined sense) the
relations ab = q2ba, aβ = βa and bβ = −βb. The algebra A is generated by a unitary element
V ∈ M(K(L2(R)) ⊗ A). The pair (A, V ) is defined for all 0 < ~ < π/2. However, the existence
of ∆ satisfying the condition (0.5) selects much smaller subset of admissible ~’s. We shall prove
that ∆ exists if and only if ~ is of the form indicated above. Next we derive formulae showing how
∆ acts on generators of A. In particular we prove an elegant formula describing the action of the
comultiplication on the reflection operator. This formula appeared (with no proof) in the previous
paper (cf. formula (4.16) of [19]). At the end of section 3 we find an interesting action of S1 on
the algebra A: for any s ∈ S1 we have an automorphism φs of A and φss′ = φsoφs′ . If ∆ exists
(i.e. if ~ = π

2k+3 , where k = 0, 1, 2, . . . ) then ∆oφs = (φs ⊗ φs)o∆.

New quantum groups related to classical ‘ax + b’ group are constructed in section 4. Using
one of the automorphism φs described at the end of section 3 we consider the corresponding
crossed product. In other words we extend the algebra A by adding a new unitary generator w
implementing φs. This enlargement of the algebra opens new possibilities. In particular we obtain
a new admissible values of the deformation parameter. Now ~ = π

p , where p is a number larger
than 2 such that −eiπp = s. The latter relation distinguishes a discrete set of possible p. However
the quantization of ~ disappears because changing s we may cover the whole interval ~ ∈]0, π

2 [.
For s = 1 we obtain p = 2k+3, where k = 0, 1, 2, . . . . In this case the new quantum ‘ax+ b’ group
reduces to a semidirect product of the old one by S1. For s 6= 1 we get essentially new examples
of locally compact quantum groups.

In the next section (section 5) we investigate the multiplicative unitaries for the quantum groups
constructed in section 4. We prove their modularity and find the unitary antipode and scaling
group. In particular the objects constructed in section 4 satisfy all the axioms of Kustermans and
Vaes [3] and the ones of Masuda, Nakagami and Woronowicz [4]. At the end of the section we
briefly discuss the duals of the new quantum ‘ax+ b’ groups.

The last section is devoted to new quantum ‘ax + b’ groups with q2 being a root of unity. In
this case we may pass to groups with smaller size. To this end we have to assume that the unitary
generator w satisfies the additional relation of the form wN = I.

The word size used in the previous paragraph has a precise meaning. It is based on the Stone -
von Neumann theorem. Let (A,∆) be one of the quantum ‘ax+ b’ group considered in this paper
and π be a representation of A acting on a Hilbert spaceHπ such that ker(b) = {0}. Then operators
log(π(a)) and log(|π(b)|) satisfy the same commutation relations as position xQM and momentum
pQM in quantum mechanics. By the Stone - von Neumann theorem the pair (log(π(a)), log(|π(b)|)
is unitarily equivalent to a direct sum of k copies of (xQM, pQM). The number k will be called
the multiplicity of π. We say that the size of the group (A,∆) is equal k if there exists a faithful
representation of A with multiplicity k and if k is the smallest number with this property.

In the classical situation the algebra of functions A is generated by log a and b. This is not the
case when we consider quantum ‘ax+ b’ groups: we use additional generators such as β and w. It
means that together with the quantum deformation we pass to a sort of extension of the group.
The size says us, how large the extension is.

The old quantum ‘ax+b’ groups are of size 2. This is the minimal value. One can show that the
old quantum ‘ax+ b’ groups are the only ones with size 2. The new groups introduced in section
4 are of infinite size. On the other hand the groups at roots of unity considered in the last section
are of size 2N , where N is the number appearing in the relation wN = I.
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Our approach extensively uses the C∗-algebra language and the theory of selfadjoint operators
on Hilbert space. For the basic facts concerning the general C∗-algebra theory we refer to [1, 6].
The notation used in the paper follows the one explained in [13, 12]. In particular M(A) is the
multiplier algebra of a C∗-algebra A. The affiliation relation in the sense of C∗-algebra theory is
denoted by “η” and Aη is the set of all affiliated elements (“unbounded multipliers”). It is known
that M(A) ⊂ Aη. A morphism from A to a C∗-algebra B is by definition any ∗-homomorphism
π : A −→ M(B) such that π(A)B is dense in B. Let us recall that any such π has the unique
extension to a unital ∗-homomorphism π : M(A) −→ M(B) and to ∗-preserving map π : Aη −→ Bη

respectively (both denoted by the same symbol). The set of all morphisms from A to B is denoted
by Mor(A,B).

With some abuse of notation, the symbol Rep(A) will stay for the “set” of all non-degenerate
representations of a C∗-algebra A. For any π ∈ Rep(A), we denote by Hπ the carrier Hilbert space
of π. Then π ∈ Mor(A,K(Hπ)).

In the paper we mostly deal with concrete C∗-algebras. By definition they are norm closed
∗-subalgebras of the algebra B(H) of all bounded operators acting on some (separable) Hilbert
space H. As a rule, C∗-algebras we deal with are separable. Non separable ones will appear only
as a multiplier algebras. In particular B(H) = M(K(H)). We shall denote by C∗(H) the set of all
non-degenerate separable C∗-algebras of operators acting on a Hilbert space H. We recall that an
algebra A ⊂ B(H) is non-degenerate if AH is dense in H.

We shall use functional calculus for strongly commuting selfadjoint operators. If T and β are
selfadjoint operators acting on a Hilbert space H and T and β strongly commute then

T =
∫ ⊕

Λ

r dE(r, %), β =
∫ ⊕

Λ

% dE(r, %),

where dE(r, %) is the common spectral measure supported by the joint spectrum Λ ⊂ R2 of (T, β).
Moreover for any measurable complex valued function on Λ we have

f(T, β) =
∫

Λ

f(r, %)dE(r, %).

In this context the characteristic function χ will appear quite often. By definition for any sentence
R, we have

χ(R) =

{
0 if R is false,
1 if R is true.

Typically R is a formula involving (in)equality sign. For example χ(r ≤ 0) is equal 0 for positive
r and 1 for r = 0 or negative. Consequently χ(T ≤ 0) is the spectral projection assigned to the
negative part of the spectrum of a selfadjoint operator T . The corresponding spectral subspace
will be denoted by H(T ≤ 0): H(T ≤ 0) = χ(T ≤ 0)H. Similarly χ(T = λ) is the orthogonal
projection on the eigenspace H(T = λ) of T corresponding to the eigenvalue λ ∈ R. We refer to
[17] for more detailed explanation of this notation.

Let Np(r) = rχ(r < 0). Then for any selfadjoint T ,

(0.7) Np(T ) = Tχ(T < 0)

is a selfadjoint operator acting on H. This is the negative part of the operator T . Another function
frequently used in the paper is the one that returns the sign of the argument:

sgn r = χ(r > 0)− χ(r < 0).

Then sgnT is the partial isometry that appears in the polar decomposition: T = (sgnT ) |T |.

1. A special function and selfadjoint extensions.

In this section we recall (in a slightly modified version with a certain loss of generality) the basic
definitions and statements of [17]. The only essentially new result is contained in formula (1.11).
Later on it will help us to prove the formula announced in [19, formula (4.16)]. We start with a
modified version the quantum exponential function introduced in [17]. Let ~ ∈ R and 0 < ~ < π

2 .
Instead of function F~ defined on the set R−×{−1, 1}∪R+×{0} we shall use function G~ defined
on R× {−1, 1}. It is related to the function F~ by the formula

(1.1) G~(r, %) = F~(r, %χ(r < 0))
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for any r ∈ R and % = ±1. Taking into account definition [17, formula (1.19)] we obtain

(1.2) G~(r, %) =


Vθ(log r) for r > 0[

1 + i%|r|π~
]
Vθ

(
log |r| − πi

)
for r < 0,

where θ = 2π
~ and Vθ is the meromorphic function on C such that

Vθ(x) = exp
{

1
2πi

∫ ∞

0

log(1 + t−θ)
dt

t+ e−x

}
for all x ∈ C such that |=x| < π. In addition G~(0,±1) = 1. Then G~(r, %) is a continuous function
on R× {−1, 1} and

(1.3)
(
G~(r, %) = G~(r, %′)

)
⇐⇒

(
%χ(r < 0) = %′χ(r < 0)

)
.

The asymptotic behavior of G~(r, %) for large r is described by the formula

(1.4) G~(r, %) ≈ C exp
{

(log |r|)2

2i~

}
,

where C is a phase factor depending only on sgn r and ρ and ‘≈’ means that the difference goes
to 0 when r → ±∞ (see Statements 9 and 10 of [17, Theorem 1.1]).

It is known that the quantum exponential function assumes values of modulus 1. Therefore if
T and β are operators acting on a Hilbert space H, T is selfadjoint and β is unitary selfadjoint
commuting with T then G~(T, β) is unitary.

Now we recall the concept of selfadjoint extension of a symmetric operator defined by a reflection
operator. Let Q be a symmetric operator acting on a Hilbert space H and ρ be a unitary selfadjoint
operator (ρ∗ = ρ, ρ2 = I) anticommuting with Q. Then we denote by [Q]ρ the restriction of Q∗

to the domain {x ∈ D(Q∗) : (ρ− I)x ∈ D(Q)}. It is known (cf. [17, Proposition 5.1]) that [Q]ρ is
a selfadjoint extension of Q. We shall use the following simple

Proposition 1.1. Let Q, X and ρ be operators acting on a Hilbert space H such that Q is
symmetric, X is selfadjoint, ρ is unitary selfadjoint, ρQ = −Qρ and ρX = −Xρ. Assume that the
restrictions of Q and X to H(ρ = −1) coincide:

(1.5) Q|H(ρ=−1) = X|H(ρ=−1).

Then X = [Q]ρ.

Proof. Let H1 = H(ρ = −1) and H2 = H(ρ = 1). Then H = H1 ⊕ H2 and (all) bounded and
(some) unbounded operators may be represented by 2× 2 matrices. In particular

ρ =
(
−I , 0
0 , I

)
.

Remembering that Q and X anticommute with ρ we obtain:

Q =
(

0 , Q−
Q+ , 0

)
and X =

(
0 , X−
X+ , 0

)
,

where Q+ and X+ are operators acting from H1 to H2 and Q− and X− are operators acting from
H2 to H1. Clearly Q+ ⊂ Q∗− (Q is symmetric) and X− = X∗

+ (X is selfadjoint). Assumption (1.5)
means that Q+ = X+. Therefore

X =
(

0 , Q∗+
Q+ , 0

)
.

On the other hand

Q∗ =
(

0 , Q∗+
Q∗− , 0

)
.

It shows that X ⊂ Q∗ and D(X) = {x ∈ D(Q∗) : (ρ− I)x ∈ D(Q)}. �

Let ~ ∈ R. We shall use the Zakrzewski relation ~
o (cf. [17]). Let R and S be selfadjoint

operators acting on a Hilbert space H with the polar decompositions R = sgnR |R| and S =
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sgnS |S|. For simplicity we shall assume that one of the operators R and S has trivial kernel. If
kerS = {0}, then sgnS is unitary selfadjoint and

(
R

~
oS
)
⇐⇒

 sgnS commutes with R
and |S|−iλR |S|iλ = e~λR

for any λ ∈ R.

 .

If kerR = {0}, then sgnR is unitary selfadjoint and

(
R

~
oS
)
⇐⇒

 sgnR commutes with S
and |R|iλS |R|−iλ = e~λS

for any λ ∈ R.

 .

If kerR = kerS = {0}, then the two above conditions are equivalent.

One can easily show that antiunitary operators reverse the direction of Zakrzewski relation:

(1.6)

(
R

~
oS and J is an

antiunitary involution

)
=⇒

(
JSJ

~
o JRJ

)
Let R and S be selfadjoint operators with trivial kernels and R ~

oS. It is known [17, Example
3.1] that in this case, the operators ei~/2S−1R and ei~/2SR−1 are selfadjoint and

sgn
(
ei~/2S−1R

)
= sgn

(
ei~/2SR−1

)
= (sgnR)(sgnS).

We shall use the following result (cf. [17, Theorem 5.2]):

Proposition 1.2. Let R, S and τ be operators acting on a Hilbert space H. Assume that R and S
are selfadjoint with trivial kernels, R ~

oS, and that τ is unitary, selfadjoint anticommuting with
R and S. We set T = ei~/2S−1R. Then T is a selfadjoint operator with trivial kernel, T commutes
with τ , R+ S is a closed symmetric operator and the selfadjoint extension

(1.7)
[R+ S]τ = G~(T, τ)∗SG~(T, τ)

= G~(T−1, τ)RG~(T−1, τ)∗

Remark 1.3. If τ ′ is another unitary, selfadjoint operator anticommuting with R and S and
if in addition there exists a unitary selfadjoint operator ρ that commutes with τ, τ ′ and S and
anticommutes with R then

(1.8)
(

[R+ S]τ = [R+ S]τ ′
)

=⇒
(
τ = τ ′

)
.

Indeed if [R+ S]τ = [R+ S]τ ′ , then (cf. (1.7))

G~(T, τ)∗SG~(T, τ) = G~(T, τ ′)∗SG~(T, τ ′).

It shows that the unitary operator U = G~(T, τ ′)G~(T, τ)∗ commutes with S and hence with |S|.
Clearly

(1.9) G~(T, τ)∗ = G~(T, τ ′)∗U.

Moreover T ~
oS due to Zakrzewski relation R

~
oS and ρ anticommutes with T . As we know

τ and τ ′ anticommute with S, hence they commute with |S|. We shall use Proposition 2.4 (see
the next section). Setting R1 = R2 = T , ρ1 = τ , ρ2 = τ ′, U1 = I, U2 = U and replacing S by
|S| we have all the assumptions of that proposition satisfied. Therefore (1.9) implies the equality
τ Np(T ) = τ ′Np(T ). It means that τ and τ ′ coincide on H(T < 0). Then τ and τ ′ coincide on
ρH(T < 0) for any operator ρ commuting with τ and τ ′. If ρ commutes with S and anticommutes
with R then it anticommutes with T and ρH(T < 0) = H(T > 0). In this case τ and τ ′ coincide
on H(T < 0)⊕H(T > 0) = H (this is because kerT is trivial). Hence τ = τ ′.

We shall prove a result of the same flavor as (1.7):

Proposition 1.4. Let R and S be strictly positive selfadjoint operators acting on a Hilbert space
H such that R ~

oS and let τ , ρ, σ and ξ be unitary selfadjoint operators commuting with R and
S. Assume that τ commutes with ξ and anticommutes with ρ and σ and

(1.10) ξχ(τ = −1) = αρσχ(τ = −1),
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where α = i e
iπ2
2~ . We set: T = ei~/2S−1R. Then T is a positive selfadjoint operator with tri-

vial kernel, σS
π
~ + ρR

π
~ is a closed symmetric operator anticommuting with τ and the selfadjoint

extension

(1.11)

[
σS

π
~ + ρR

π
~
]
−τ

= G~(τT, ξ)∗σS
π
~G~(τT, ξ)

= G~(τT−1, ξ)ρR
π
~G~(τT−1, ξ)∗

Proof. At first we shall prove the first equality of (1.11). Inserting S−1 instead of R and R instead
of S in [17, Example 3.1] we see that T is a positive selfadjoint operator with trivial kernel and

(1.12) T ik = e−
i~
2 k2

S−ikRik = e
i~
2 k2

RikS−ik

for any k ∈ R.

Denote byX the right hand side of the first equality in (1.11). We know that G~(τT, ξ) is unitary
(in what follows we write G~(τT, ξ)−1 instead of G~(τT, ξ)∗). Operator S

π
~ commutes with σ and

τ whereas σ and τ anticommute. Therefore σS
π
~ is a selfadjoint operator anticommuting with τ .

So is X.

Let Q = σS
π
~ + ρR

π
~ . Clearly Q is a symmetric operator anticommuting with τ . By virtue of

Proposition 1.1 it is sufficient to show that

(1.13) Q|H(τ=1) = X|H(τ=1).

Restricting G~(τT, ξ)∗σS
π
~G~(τT, ξ) to H(τ = 1) we may replace the second τ by 1 and the first

τ by −1 (this is because σ maps H(τ = 1) onto H(τ = −1)):

X|H(τ=1) = G~(−T, ξ)−1σS
π
~G~(T, ξ)|H(τ=1)

and using (1.2) we obtain

(1.14) X|H(τ=1) =
[
1 + iξT

π
~
]−1

Vθ

(
log T − πi

)−1

σS
π
~ Vθ(log T )|H(τ=1)

Now we shall move σS
π
~ to the right end of (1.14). It is known (cf. [17, relation (1.30)])

that the function Vθ(x) has no poles and no zeroes in strip Σ = {x ∈ C : 0 ≤ =x ≤ π}. Therefore
functions Vθ(x) and Vθ(x)−1 are continuous on Σ and holomorphic inside Σ. Moreover (cf. [17,
the asymptotic formula (1.37)]), Vθ(x) −→ 1 when <x −→ −∞ whereas =x stays bounded and
using formula (1.32) of [17] one can easily show that for any λ > 0, functions e−λx2

Vθ(x) and
e−λx2

Vθ(x)−1 are bounded on Σ. Furthermore T is a strictly positive selfadjoint operator and

T
~

oS. Therefore T π
oS

π
~ and using Statement (3) of Theorem 3.1 of [17] we obtain

S
π
~ Vθ(log T ) = Vθ(log T + iπ)S

π
~ .

Inserting this formula into (1.14) and using in the second step formula (1.28) of [17] we get:

X|H(τ=1) =
[
1 + iξT

π
~
]−1

Vθ (log T − πi)−1
Vθ(log T + πi)σS

π
~ |H(τ=1)

=
[
1 + iξT

π
~

]−1 [
1 + T

2π
~

]
σS

π
~ |H(τ=1)

=
[
1− iξT π

~
]
S

π
~ σ|H(τ=1).

On the other hand multiplying both sides of (1.10) by σ from the right we obtain ξσχ(τ = 1) =
αρχ(τ = 1). Therefore ρ|H(τ=1) = αξσ|H(τ=1) and

Q|H(τ=1) =
(
S

π
~ + αξR

π
~
)
σ|H(τ=1).

To end this part of the proof it is sufficient to show that

(1.15) S
π
~ + αξR

π
~ =

[
1− iξT π

~
]
S

π
~ .

We shall use (1.12). It shows that for any x, y ∈ H and any k ∈ R we have(
y Sik x

)
− i e i~

2 k2 (
y ξRikx

)
=
((
I + iξT−ik

)
y Sikx

)
Let x ∈ D

(
S

π
~
)
∩ D

(
R

π
~
)
. If y ∈ D(T

π
~ ) then both sides of the above formula have continuous

holomorphic continuation to the strip −π
~ ≤ =k ≤ 0. Inserting k = −iπ

~ we obtain(
y S

π
~ x
)

+ α
(
y ξR

π
~ x
)

=
((
I + iξT

π
~
)
y S

π
~ x
)
.
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This formula holds for any y in the domain of I + iξT
π
~ . Therefore S

π
~ x ∈ D

(
I − iξT π

~
)

and
S

π
~ x+ αξR

π
~ x =

(
I − iξT π

~
)
S

π
~ x. This way we showed that

(1.16) S
π
~ + αξR

π
~ ⊂

(
I − iξT π

~
)
S

π
~ .

To prove the converse inclusion we use again (1.12). Let x ∈ D
(
S

π
~
)

and S
π
~ x ∈ D

(
T

π
~
)
. Then

for any y ∈ H and k ∈ R:

e−
i~
2 k2

(
R−iky S

π
~−ikx

)
=
(
y T ikS

π
~ x
)
.

If y ∈ D(R
π
~ ) then both sides of the above formula have continuous holomorphic continuation to

the strip −π
~ ≤ =k ≤ 0. Inserting k = −iπ

~ we obtain

iα
(
R

π
~ y x

)
=
(
y T

π
~ S

π
~ x
)
.

This formula holds for any y ∈ D(R
π
~ ). Therefore x ∈ D(R

π
~ ). This way we showed the inclusion

D(T
π
~ S

π
~ ) ⊂ D(R

π
~ ). Consequently D

((
I − iξT π

~
)
S

π
~
)
⊂ D

(
S

π
~ + αξR

π
~
)
. Combining this result

with (1.16) we get (1.15) and (1.13). This way the first equality of (1.11) is shown.

The second equality may be shown in the same manner. However it is simpler to use the
following trick based on (1.6). Let J be an antiunitary involutive operator acting on H and

Rn = JSJ, Sn = JRJ, τn = JτJ,
ρn = JσJ, σn = JρJ, ξn = JξJ.

The subscript ‘n’ stands for ‘new’. One can easily show that the new operators satisfy all the
assumptions of our theorem. In particular ξnχ(τn = −1) = Jξχ(τ = −1)J = Jαρσχ(τ = −1)J
= ασnρnχ(τn = −1) = (ασnρnχ(τn = −1))∗ = αρnσnχ(τn = −1). In the present case

Tn = ei~/2S−1
n Rn = Je−i~/2R−1SJ = JT−1J

and the first equality of (1.11) takes the form:[
σnS

π
~
n + ρnR

π
~
n

]
−τn

= G~(JτT−1J, JξJ)∗σnS
π
~
n G~(JτT−1J, JξJ)

= JG~(τT−1, ξ)ρR
π
~G~(τT−1, ξ)∗J.

A moment of reflection shows that the left hand side of this formula equals J
[
σS

π
~ + ρR

π
~
]
−τ
J

and the second equality of (1.11) follows immediately.

To end the proof we have to show that the operator Q = σS
π
~ +ρR

π
~ is closed. Operator ξT

π
~ is

selfadjoint. Therefore operator I−iξT π
~ is invertible with the inverse

(
I − iξT π

~
)−1 ∈ B(H). Using

this fact one can easily show that the composition
(
I − iξT π

~
)
S

π
~ σ is a closed operator. Restricting

this operator to H(τ = 1) we obtain Q|H(τ=1). Hence Q|H(τ=1) is closed. Remembering that Q
anticommute with τ we conclude that Q is closed. �

Remark 1.5. According to (1.10) operator αρσχ(τ = −1) is selfadjoint. Using this fact and
remembering that ρ and σ anticommute with τ one can show that

ρσ = α2τσρ.

Conversely let τ, ρ, σ be unitary selfadjoint operators commuting with R, S and let τ anticommutes
with ρ and σ. If the above relation is satisfied, then using (1.10) to define ξ on H(τ =−1) and
extending it in an arbitrary way to a unitary selfadjoint operator defined on the whole space we
obtain the quadruple (ρ, σ, τ, ξ) of operators satisfying the assumptions of Proposition 1.4.

We end this section with the reformulation of Theorem 6.1 of [17].

Theorem 1.6. Let (R,S) be a pair of selfadjoint operators acting on a Hilbert space H such that

kerR = kerS = {0} and R ~
oS and let ρ, σ be unitary selfadjoint operators on H. Assume that ρ

commutes with R, ρ anticommutes with S, σ commutes with S and σ anticommutes with R. We
set:

T = ei~/2S−1R,

τ = αρσχ(S < 0) + ασρχ(S > 0),

where α = i e
iπ2
2~ . Then

1. T is selfadjoint, sgnT = (sgnR) (sgnS), T ~
oR and T ~

oS

2. τ is unitary selfadjoint, τ commutes with T and τ anticommutes with R and S.
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3. G~ satisfies the following exponential function equality:

(1.17)
G~(R, ρ)G~(S, σ) = G~(T, τ)∗G~(S, σ)G~(T, τ)

= G~ ([R+ S]τ , σ̃) ,

where [R+ S]τ is the selfadjoint extension of R+ S corresponding to the reflection operator τ and
σ̃ = G~(T, τ)∗σG~(T, τ).

Proof. By direct computation one can easily show that τ2 = I, τ∗ = τ and

τχ(T < 0) = αρχ(R < 0)σχ(S < 0) + ασχ(S < 0)ρχ(R < 0).

Now, our theorem follows immediately from [17, Theorem 6.1]. �

Remark 1.7. In Theorem 1.6, operator τ may be replaced by τ ′ = αρσχ(R > 0) +ασρχ(R < 0).
Operator σ̃ is not affected by this change.

Indeed, using the formula sgnT = sgnR sgnS, one can verify that τ ′χ(T < 0) = τχ(T < 0). It
shows that G~(T, τ ′) = G~(T, τ).

2. The special functions and affiliation relation.

In this section we shall use the concept of a C∗-algebra generated by a set of affiliated elements
[13, Definition 4.1, page 501]. Let C, A be C∗-algebras and V be an element affiliated with C ⊗A.
We say that A is generated by an element V η (C ⊗A) if and only if for any π ∈ Rep(A) and any
B ∈ C∗(Hπ) we have:

(2.1)
(
(id⊗π)V η (C⊗B)

)
=⇒

(
π ∈ Mor(A,B)

)
In general the above condition is not easy to verify. We shall use the following criterion (cf. [13,

Example 10, page 507]):

Proposition 2.1. Let C, A be C∗-algebras and V be a unitary element of M(C ⊗ A). Assume
that there exists a faithful representation φ of C such that:

1. For any φ-normal linear functional ω on C we have (ω ⊗ id)V ∈ A

2. The smallest ∗-subalgebra of A containing {(ω ⊗ id)V : ω is φ-normal} is dense in A.

Then A is generated by V ∈ M(C ⊗A).

We recall that a linear functional ω on C is said to be φ-normal if there exists a trace-class
operator ρ acting on Hφ such that ω(c) = Tr(ρφ(c)) for all c ∈ C.

Let Λ be the locally compact space obtained from R×{−1, 1} by gluing points (r,−1) and (r, 1)
for all r ≥ 0. Then:

C∞(Λ) =
{
f ∈ C∞

(
R× {−1, 1}

)
:
f(r,−1) = f(r, 1)

for all r ≥ 0

}
.

If R, ρ are operators acting on a Hilbert space H, R is selfadjoint, ρ is unitary selfadjoint and ρ
commutes with R then the mapping

(2.2) C∞(Λ) 3 f 7−→ π(f) = f(R, ρ) ∈ B(H)

is a representation of C∞(Λ) acting on H. Operators R and ρNp(R) are determined by π. Indeed
R = π(f1) and ρNp(R) = π(f2), where f1, f2 are elements of C∞(Λ)η = C(Λ) introduced by the
formulae

(2.3) f1(r, %) = r, f2(r, %) = %Np(r)

for any r ∈ R and % = ±1. Using [13, Example 2, page 497] we see that f1, f2 generate C∞(Λ).
Therefore for any π ∈ Rep (C∞(Λ)) and any B ∈ C∗(Hπ) we have:(

π(f1), π(f2) η B
)

=⇒
(
π ∈ Mor(C∞(Λ), B)

)
=⇒

(
π(f) η B for any f ∈ C(Λ)

)
In particular for π introduced by (2.2) we obtain the following result:

(2.4)

(
R, ρNp(R) η B
f ∈ C(Λ)

)
=⇒

(
f(R, ρ) η B

)
.
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Our special function G~ is continuous and satisfies the relation G~(r,−1) = G~(r, 1) for all
r ≥ 0. In other words G~ ∈ C(Λ). For any r ∈ R, % = ±1 and t > 0 we set:

(2.5) F (t; r, %) = G~(r, %)G~(tr, %).

Let R+ = {t ∈ R : t > 0}. Then F is a continuous function on R+ × Λ with values of modulus
1 and we may treat F as unitary element of M (C∞(R+)⊗ C∞(Λ)). We shall prove the following

Proposition 2.2. The C∗-algebra C∞(Λ) is generated by F ∈ M(C∞(R+)⊗ C∞(Λ)).

Proof. We shall use Proposition 2.1 with C = C∞(R+), A = C∞(Λ) and V = F . Let φ be
the natural representation of C∞(R+) acting on L2(R+). For any g ∈ C∞(R+), φ(g) is the
multiplication by g. Then φ is faithful and a linear functional ω on C∞(R+) is φ-normal if and
only if it is of the form

ω(g) =
∫

R+

g(t)ϕ(t) dt,

where ϕ ∈ L1(R+). Applying ω ⊗ id to F ∈ M(C∞(R+)⊗ C∞(Λ)) we obtain an element of
M (C∞(Λ)) i.e. a bounded continuous function on Λ. Clearly for any r ∈ R and % = ±1 we have

(2.6)
(ω ⊗ id)F (r, %) =

∫
R+

F (t; r, %)ϕ(t) dt

= G~(r, %)
∫

R+

G~(tr, %)ϕ(t) dt.

Taking into account the asymptotic behavior (1.4) and using the Riemann–Lebesgue lemma
one can verify that the integral on right hand side tends to 0 when r → ±∞. In other words,
(ω ⊗ id)F ∈ C∞(Λ).

Using Statement 7 of Theorem 1.1 of [17] one can easily show that

(2.7) lim
t→0+

1
t

[
G~(tr, %)− 1

]
=

r

2i sin (~/2)

for all r ∈ R and % = ±1.

Let r, r′ ∈ R and %, %′ = ±1. Assume for the moment that (ω ⊗ id)F (r, %) = (ω ⊗ id)F (r′, %′)
for all φ-normal functionals ω. Then G~(r, %)G~(tr, %) = G~(r′, %′)G~(tr′, %′) for all t > 0. Going
to the limit when t→ +0 we get G~(r, %) = G~(r′, %′). Comparing this formula with the previous
one we see that G~(tr, %) = G~(tr′, %′) for all t > 0. Formula (2.7) shows now that r = r′ and
by (1.3) %χ(r < 0) = %′χ(r < 0). This way we have shown that the functions (2.6) separate points
of Λ. Now, using the Stone - Weierstrass theorem (applied to the one point compactification of Λ)
we conclude that the smallest ∗-algebra containing all functions (2.6) is dense in C∞(Λ). �

The following Proposition will be very useful in proving many technical details important in the
future considerations.

Proposition 2.3. Let R, ρ, U , S be operators acting on a Hilbert space H and C ∈ C∗(H).
Assume that:

1. R is selfadjoint and ρ is unitary selfadjoint commuting with R,

2. U is unitary,

3. S is positive selfadjoint, kerS = {0}, S commutes with ρ and U and R ~
oS,

4. Operators R, ρNp(R), U and logS are affiliated with C.

Then G~(R, ρ) ∈ M(C) and

1. For any φ ∈ Rep(C) and any B ∈ C∗(Hφ) we have:(
φ(logS), φ

(
G~(R, ρ)∗U

)
are affiliated with B

)
=⇒

(
φ(R), φ(ρNp(R)), φ(U)

are affiliated with B

)
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2. For any φ1, φ2 ∈ Rep(C) such that Hφ1 = Hφ2 we have:(
φ1(S) = φ2(S),

φ1

(
G~(R, ρ)∗U

)
= φ2

(
G~(R, ρ)∗U

) ) =⇒

 φ1(R) = φ2(R),
φ1(ρNp(R)) = φ2(ρNp(R)),

φ1(U) = φ2(U)


Proof. Relation G~(R, ρ) ∈ M(C) follows immediately from (2.4).

Ad 1. Let λ ∈ R. Using the commutation relations satisfied by operators R, ρ, U, S we have:

S−iλG~(R, ρ)∗USiλ = G~(tR, ρ)∗U,

where t = e~λ > 0. Applying a representation φ of C to both sides of the above relation we get

φ(S)−iλφ
(
G~(R, ρ)∗U

)
φ(S)iλ = φ

(
G~(tR, ρ)∗U

)
.

If φ(logS), φ
(
G~(R, ρ)∗U

)
η B, then all factors on the left hand side of the above equation

belong to M(B) and depend continuously on λ (we use strict topology on M(B)). Therefore
φ
(
G~(tR, ρ)∗U

)
∈ M(B) for any t ∈ R+ and the mapping

R+ 3 t 7−→ φ
(
G~(tR, ρ)∗U

)
∈ M(B)

is strictly continuous. Applying the hermitian conjugation and multiplying from the left by
φ
(
G~(R, ρ)∗U

)
∈ M(B) we see that φ

(
G~(R, ρ)∗G~(tR, ρ)

)
= φ

(
F (t;R, ρ)

)
∈ M(B) and the

mapping

(2.8) R+ 3 t 7−→ φ
(
F (t;R, ρ)

)
∈ M(B)

is strictly continuous. In the above relations F is the function introduced by (2.5). According to
the general theory [13], strictly continuous bounded mappings from R+ into M(B) correspond to
elements of M(C∞(R+) ⊗ B). A moment of reflection shows that the mapping (2.8) corresponds
to the element (id⊗ φoπ)F , where π is the representation of C∞(Λ) introduced by (2.2).

This way we have shown that (id ⊗ φoπ)F ∈ M(C∞(R+) ⊗ B). Using now Proposition 2.2
we conclude that φoπ ∈ Mor(C∞(Λ), B). Therefore φoπ maps continuous functions on Λ into
elements affiliated with B. Applying this rule to functions f1, f2 (cf. (2.3)) and G~ we obtain:
φ(R), φ(ρNp(R)) η B and φ(G~(R, ρ)) ∈ M(B). Comparing the last relation with the assumed one
φ
(
G~(R, ρ)∗U

)
∈ M(B) we see that φ(U) ∈ M(B). Statement 1 is shown.

Ad 2. Let φ = φ1⊕φ2. Then Hφ = Hφ1⊕Hφ2 and φ(c) = φ1(c)⊕φ2(c). In our case Hφ1 = Hφ2 .
We set: B = {m⊕m : m ∈ K(Hφ1)}. Then B ∈ C∗(Hφ). One can easily verify that for any c η C
we have: (

φ(c) η B
)
⇐⇒

(
φ1(c) = φ2(c)

)
.

Now Statement 2 follows immediately from Statement 1. �

We shall use slightly different version of Statement 2 of the above proposition.

Proposition 2.4. Let R1, ρ1, U1, R2, ρ2, U2, S be operators acting on a Hilbert space H. Assume
that for each k = 1, 2 the operators Rk, ρk, Uk, S satisfy the assumptions 1-3 of the previous
Proposition. Then

(2.9)
(
G~(R1, ρ1)∗U1 = G~(R2, ρ2)∗U2

)
=⇒

 R1 = R2,

ρ1 Np(R1) = ρ2 Np(R2),
U1 = U2.


Proof. Let C = K(H) ⊕ K(H) and for any m1,m2 ∈ K(H) we set φk(m1 ⊕m2) = mk (k = 1, 2).
We use Proposition 2.3 with R, ρ, U and S replaced by R1⊕R2, ρ1⊕ ρ2, U1⊕U2 and S⊕S, Now
(2.9) follows immediately from Statement 2 of Proposition 2.3. �

Proposition 2.5. Let X and Y be selfadjoint operators acting on Hilbert spaces K and H respec-
tively. Assume that the spectral measure of X is absolutely continuous with respect to the Lebesgue
measure. Then for any A ∈ C∗(H) we have:(

eiX⊗Y is affiliated

with K(K)⊗A

)
=⇒

(
Y is affiliated with A

)
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Proof. For any normal linear functional ω on B(K) and t ∈ R we set

fω(t) = ω
(
eitX

)
.

Then fω is a continuous function on R. Remembering that the spectral measure of X is absolutely
continuous with respect to the Lebesgue measure and using the Riemann-Lebesgue lemma one can
easily show that fω(t)→ 0 when t→ ±∞. Therefore fω ∈ C∞(R).

Let t, t′ ∈ R, t 6= t′. Assume for the moment that fω(t) = fω(t′) for all ω. Then eitX = eit′X and
ei(t−t′)X = I. It shows that the spectral measure of X is supported by the set 2π

t−t′Z, which is in
contradiction with the assumption saying that the spectral measure of X is absolutely continuous
with respect to the Lebesgue measure. This way we showed that functions fω separate points of
R. By the Stone – Weierstrass theorem, the smallest ∗-subalgebra of C∞(R) containing all fω is
dense in C∞(R).

By the general theory strongly continuous mappings from R into the set of unitary operators
acting on K correspond to unitary multipliers of K(K)⊗ C∞(R). Let X ∈ M(K(K)⊗ C∞(R)) be
the unitary corresponding to the mapping

R 3 t 7−→ eitX ∈ B(K).

Then for any normal linear functional ω on B(K) we have

(ω ⊗ id)X = fω.

Using Proposition 2.1 we see that C∞(R) is generated by X ∈ M(K(K) ⊗ C∞(R)). For any
f ∈ C∞(R) we set:

π(f) = f(Y ).
Then π is a representation of C∞(R) acting on the Hilbert space Hπ = H. A moment of reflection
shows that (id ⊗ π)X = eiX⊗Y . If eiX⊗Y is affiliated with K(K) ⊗ A then π ∈ Mor(C∞(R), A)
and π maps continuous functions on R into elements affiliated with A. Applying this rule to the
coordinate function f(t) = t we obtain Y = π(f) η A. �

3. Constructions related to old quantum ‘ax+ b’ groups.

In this section we recall the main results of [19]. The quantum ‘ax+b’ group will be presented as
a quantum group of unitary operators. We shall construct a pair (A, V ), where A is a C∗-algebra
and V is a unitary element of M(K(K) ⊗ A), where K is a Hilbert space endowed with a certain
structure and K(K) denotes the algebra of all compact operators acting on K. (A, V ) may be
treated as a quantum family of unitary operators acting on K ‘labeled by elements’ of quantum
space related to the C∗-algebra A. Our construction will depend on a real parameter ~. We shall
assume that 0 < ~ < π/2. Negative value of ~ leads to the C∗-algebra anti-isomorphic to that with
positive ~. On the other hand the restriction ~ < π/2 is related to the technical assumption used
in the theory of the quantum exponential function [17].

The main result of this section is contained in Theorem 3.2. It states that (A, V ) is a quantum
group if and only if ~ = π

2k+3 with k = 0, 1, 2, . . . .

To define A we consider three operators a, b and β acting on the Hilbert space L2(R). Operator
a is strictly positive selfadjoint and such that for any τ ∈ R and any x ∈ L2(R) we have(

aiτx
)
(t) = e~τ/2x(e~τ t)

In other words a is the analytic generator of one-parameter group of unitaries corresponding to
the homotheties of R. Operator b is the multiplication operator:

(bx)(t) = tx(t).

By definition domain D(b) consists of all x ∈ L2(R) such that the right hand side of the above
equation is square integrable. Finally, β is the reflection: for any x ∈ L2(R) we have:

(βx)(t) = x(−t)

Clearly β is unitary selfadjoint. One can easily verify that aβ = βa and bβ = −βb. By the last
relation ibβ is selfadjoint. Moreover

(3.1) aiτ ba−iτ = e~τ b

for any τ ∈ R. This relation means that a ~
o b.
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Theorem 3.1. Let

(3.2) A =
{(

f1(b) + βf2(b)
)
g(log a) :

f1, f2, g ∈ C∞(R)
f2(0) = 0

} norm closed
linear envelope

.

Then: 1. A is a nondegenerate C∗-algebra of operators acting on L2(R),

2. log a, b and ibβ are affiliated with A: log a, b, ibβ η A,

3. log a, b and ibβ generate A.

Proof.
Ad 1. Using the relation bβ = −βb one can easily show that

(3.3) B =
{
f1(b) + βf2(b) :

f1, f2 ∈ C∞(R)
f2(0) = 0

} norm closed
linear envelope

is a non-degenerate C∗-algebra of operators acting on L2(R). Let C0(R, B) denote the set of all
continuous mappings from R into B with compact support. Then

(3.4) A =
{∫

R
f(t)aitdt : f ∈ C0(R, B)

}norm closure

.

To prove this formula it is sufficient to notice that for f(t) =
(
f1(b) + βf2(b)

)
ϕ(t), where t ∈ R

and ϕ ∈ C0(R) we have ∫
R
f(t)aitdt =

(
f1(b) + βf2(b)

)
g(log a),

where g(λ) =
∫

R ϕ(t)eiλtdt (λ ∈ R) and by the Riemann-Lebesque Lemma, g ∈ C∞(R). On
the other hand (3.1) shows that the unitaries ait (t ∈ R) implement a one parameter group of
automorphisms of B. Using now the standard technique of the theory of crossed products (cf. [6,
Section 7.6]) one can easily show that (3.4) is a non-degenerate C∗-algebra of operators acting on
L2(R). Statement 1 is proven.

Ad 2. We recall (cf. [5, 13]) that a closed operator T is affiliated with a C∗-algebra A if the
z-transform zT = T (I +T ∗T )−

1
2 ∈ M(A) and if (I +T ∗T )−

1
2A is dense in A. Inspecting definition

(3.2) one can easily show that zlog a = (log a)
[
I + (log a)2

]− 1
2 is a right multiplier of A and that

A
[
I + (log a)2

]− 1
2 is dense in A. Passing to adjoint operators we see that z∗log a = zlog a is a left

multiplier (hence zlog a ∈ M(A)) and that
[
I + (log a)2

]− 1
2 A is dense in A. It shows that log a is

affiliated with A.

For T = b and T = iβb we have zT = b(I + b2)−
1
2 and zT = iβb(I + b2)−

1
2 respectively. In

both cases (I + T ∗T )−
1
2 = (I + b2)−

1
2 . Taking into account definition (3.2) one can easily show

that (I + T ∗T )−
1
2A is dense in A and that zT is a left multiplier of A. However in both cases zT

is selfadjoint. Therefore zT is also a right multiplier and zT ∈ M(A). It shows that b and iβb are
affiliated with A.

Ad 3. We shall use Theorem 3.3 of [13]. By definition (3.2), (I+ b2)−1
(
I + (log a)2

)−1 ∈ A. To
end the proof it is sufficient to show that a, b, iβb separate representations of A. If c ∈ A is of the
form

(3.5) c =
(
f1(b) + βf2(b)

)
g(log a),

where f1, f2, g ∈ C∞(R), f2(0) = 0 and f2 is differentiable at point 0 ∈ R, then f2(t) = ith(t),
where t ∈ R and h ∈ C∞(R) and

(3.6) π(c) =
(
f1(π(b)) + π(iβb)h(π(b))

)
g(π(log a))

for any representation π of A. One can easily see that elements of the form (3.5) form a dense subset
of A. Formula (3.6) shows now that π is determined uniquely by π(log a), π(b) and π(iβb). �

Now we pass to the description of the Hilbert space K (cf. the first paragraph of this section).
The structure of K is determined by a triple of selfadjoint operators (â, b̂, β̂) acting on K and
having the following properties:

1. â > 0, ker â = ker b̂ = {0} and â ~
o b̂,
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2. β̂ is a unitary involution, β̂ commutes with â and anticommutes with b̂.

One of the possible choices is: K = L2(R) and (â, b̂, β̂) = (a, b, β). However there is another
possibility that is even more interesting:

(3.7) (â, b̂, β̂) = (|b|−1
, ei~/2b−1a, αβ),

where α = ±1. The reader easily verifies that these operators possess the required properties.

Zakrzewski relation â ~
o b̂ implies that the spectral measures of â and b̂ are absolutely continuous

with respect to the Lebesgue measure. Moreover Sp(â) = R+ and Sp(̂b) = R. The latter fact follows
from the relation β̂b̂ = −b̂β̂.

Let

(3.8) V = G~(̂b⊗ b, β̂ ⊗ β)∗ e
i
~ log ba⊗log a.

This is the basic object considered in this section. We shall prove

Theorem 3.2.
1. V is a unitary operator and V ∈ M(K(K)⊗A),

2. A is generated by V ∈ M(K(K)⊗A).

Proof. Let R = b̂⊗ b, ρ = β̂ ⊗ β, U = e
i
~ log ba⊗log a, S = â−1 ⊗ I and C = K(K)⊗A. Then all the

assumptions of Proposition 2.3 are satisfied. Clearly V = G~(R, ρ)∗U ∈ M(C) and Statement 1 is
proved.

Let π ∈ Rep(A) and B ∈ C∗(Hπ). Then id ⊗ π is a representation of C acting on K ⊗ Hπ.
The reader should notice that (id ⊗ π)S = â−1 ⊗ I is affiliated with K(K) ⊗ B. Assume that
(id ⊗ π)V ∈ M(K(K) ⊗ B). By Statement 1 of Proposition 2.3, operators: (id ⊗ π)R = b̂ ⊗ π(b),
(id ⊗ π)(ρNp(R)) and (id ⊗ π)U = e

i
~ log ba⊗π(log a) are affiliated with K(K) ⊗ B. Using now

Proposition A.1 of [19] we see that π(b) is affiliated with B. One can easily verify that β̂ ⊗ I
commutes with ρ and anticommutes with R. Therefore

ρNp(R)− (β̂ ⊗ I)ρNp(R)(β̂ ⊗ I) = ρ(Np(R)−Np(−R)) = ρR

and applying id⊗ π to both sides we get

(id⊗ π)(ρNp(R))− (β̂ ⊗ I)(id⊗ π)(ρNp(R))(β̂ ⊗ I) = (id⊗ π)(ρR)

= −iβ̂b̂⊗ π(iβb)

The operators β̂ ⊗ I and (id ⊗ π)(ρNp(R)) appearing on the left hand side are affiliated with
K(K) ⊗ B. Therefore iβ̂b̂ ⊗ π(iβb) η K(K) ⊗ B and using again Proposition A.1 of [19] we see
that π(iβb) is affiliated with B. Moreover, remembering that e

i
~ log ba⊗π(log a) η K(K)⊗B and using

Proposition 2.5 we see that π(log a) is affiliated with B. According to Statement 3 of Theorem 3.1,
b, iβb and log a generate A. Therefore π ∈ Mor(A,B). We showed that (id⊗π)V ∈ M(K(K)⊗B)
implies π ∈ Mor(A,B). It means that A is generated by V ∈ M(K(K)⊗A). �

Now we are able to formulate the main result of this section:

Theorem 3.3. There exists ∆ ∈ Mor(A,A⊗A)
such that

(id⊗∆)V = V12V13

⇐⇒ (
~ =

π

2k + 3
, k = 0, 1, 2, . . .

)
.

Proof. Let

(3.9)

α = ie
iπ2
2~ ,

T = I ⊗ ei~/2b−1a⊗ b,

τ = (I ⊗ β ⊗ β)
[
αχ(̂b⊗ b⊗ I < 0) + αχ(̂b⊗ b⊗ I > 0)

]
.

and

(3.10) W ′ = G~(T, τ)∗ e−
i
~ [I⊗log|b|⊗log a].
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Clearly W ′ is a unitary operator acting on K ⊗ L2(R)⊗ L2(R). We shall prove that

(3.11) V12V13 = W ′V12W
′∗.

To make our formulae shorter we set

U = e
i
~ log ba⊗log a, Z = e−

i
~ log|b|⊗log a.

Using the relations â ~
o b̂, âβ̂ = β̂â and a ~

o b one can easily verify that

(3.12) U (̂b⊗ I)U∗ = b̂⊗ a, U(β̂ ⊗ I)U∗ = β̂ ⊗ I,

(3.13) Z(a⊗ I)Z∗ = a⊗ a.

With the above notation V = G~(̂b⊗ b, β̂ ⊗ β)∗U and

V12V13 = G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ U13.

Using (3.12) we get

U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ = G~(̂b⊗ a⊗ b, β̂ ⊗ I ⊗ β)∗ U12

and

(3.14) V12V13 =
[
G~(̂b⊗ a⊗ b, β̂ ⊗ I ⊗ β)G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)

]∗
U12U13.

Let us consider the first factor in (3.14). We apply Theorem 1.6 with

(3.15)
R = b̂⊗ a⊗ b, ρ = β̂ ⊗ I ⊗ β,

S = b̂⊗ b⊗ I, σ = β̂ ⊗ β ⊗ I,
Then T and τ are given by (3.9) and

G~(̂b⊗a⊗b, β̂⊗I⊗β)G~(̂b⊗b⊗I, β̂⊗β⊗I) = G~(T, τ)∗G~(̂b⊗b⊗I, β̂⊗β⊗I)G~(T, τ).

Now (3.14) takes the form

(3.16) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗G~(T, τ)U12U13.

We shall move G~(T, τ) to the end of the right hand side of this formula. Performing simple
computations and using (3.13) we obtain:

U12U13 = e
i
~ log ba⊗log(a⊗a)

= Z23U12Z
∗
23.

It turns out that

(3.17) log â⊗ log(a⊗ a) commutes with T,

(3.18) log â⊗ log(a⊗ a) commutes with τ.

Indeed Zakrzewski relation a
~

o b implies b−1 ~
o a. Using the both relations we see that a⊗ a

commutes with ei~/2b−1a⊗b. Therefore log(a⊗a) commutes with ei~/2b−1a⊗b and log â⊗log(a⊗a)
commutes with T = I ⊗ ei~/2b−1a⊗ b. Relation (3.17) is shown.

To prove (3.18) we use Zakrzewski relations a ~
o b and â

~
o b̂. They show that a commutes

with sgn b and â commutes with sgn b̂. Therefore log â⊗ log(a⊗a) commutes with sgn(̂b⊗ b⊗ I) =
sgn b̂⊗ sgn b⊗ I and (3.18) follows.

Taking into account (3.17) and (3.18) we see that G~(T, τ) commutes with U12U13. Now relation
(3.16) takes the form:

(3.19) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ Z23U12Z
∗
23G~(T, τ).

Finally b⊗ I and β ⊗ I commute with log |b| ⊗ log a. Therefore G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I) commutes
with Z23. Clearly G~(̂b⊗ b⊗ I, β̂⊗β⊗ I)∗ U12 = V12 and W ′ = G~(T, τ)∗Z23. Now (3.11) follows
immediately from (3.19).

By the Zakrzewski relation âiλb̂â−iλ = e~λb̂ for all λ ∈ R. Multiplication by a strictly positive
number does not change the sign of an operator. Using this fact one can easily show that τ
commutes with âiλ⊗ I ⊗ I. Consequently τ commutes with â⊗ I ⊗ I. Since T = I ⊗ ei~/2b−1a⊗ b



16 W. PUSZ AND S. L. WORONOWICZ

and I ⊗ log |b| ⊗ log a obviously commute with â ⊗ I ⊗ I, we conclude that W ′ commutes with
â⊗ I ⊗ I.

Now we are ready to prove the main statement.

=⇒ . Let ∆ ∈ Mor(A,A ⊗ A) and (id ⊗∆)V = V12V13. We go back to the notation used in the
proof of Theorem 3.2. In particular C = K(K)⊗A. For any c ∈ C we set:

φ1(c) = (id⊗∆)(c),

φ2(c) = W ′(c⊗ I)W ′∗.

Then φ1 and φ2 are representations of C acting on the same Hilbert space K⊗L2(R)⊗L2(R). One
can easily verify that φ1(â⊗I) = â⊗I⊗I = φ2(â⊗I). Formula (3.11) shows that φ1(V ) = φ2(V ).
In our notation (cf. the beginning of the proof of Theorem 3.2), â⊗ I = S and V = G~(R, ρ)∗U ,
where in particular R = b̂ ⊗ b. Statement 2 of Theorem 2.3 shows now that φ1(R) = φ2(R). It
means that

b̂⊗∆(b) = W ′ (̂b⊗ b⊗ I)W ′∗.

Taking into account (3.10) and using Proposition 1.2 we get:

(3.20)
b̂⊗∆(b) = G~(T, τ)(̂b⊗ b⊗ I)G~(T, τ)∗

=
[
b̂⊗ a⊗ b+ b̂⊗ b⊗ I

]
τ
.

We recall that
τ = (I ⊗ β ⊗ β)

[
αχ(̂b⊗ b⊗ I < 0) + αχ(̂b⊗ b⊗ I > 0)

]
.

Inspecting last two formulae we observe that b̂ is the only operator appearing in the first leg
position. We know that b̂ is selfadjoint. Therefore replacing in both sides of (3.20) operator b̂ by a
real number λ we obtain a formula that should hold for almost all λ ∈ Sp b̂. For positive λ we get

(3.21) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ+

where

(3.22) τ+ = (β ⊗ β)
[
αχ(b⊗ I < 0) + αχ(b⊗ I > 0)

]
.

On the other hand for negative λ we have

(3.23) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ−

where

(3.24) τ− = (β ⊗ β)
[
αχ(b⊗ I > 0) + αχ(b⊗ I < 0)

]
.

Clearly the two expressions for ∆(b) must coincide. Let us notice that the operator I⊗β commutes
with τ+, τ− and b⊗I and anticommutes with a⊗b. Therefore τ+ = τ− by Remark 1.3. Comparing
(3.22) and (3.24) we get α = α. Remembering that α = i e

iπ2
2~ and 0 < ~ < π

2 we conclude that
~ = π

2k+3 (k = 0, 1, 2, . . . ).

⇐=. Assume that ~ = π
2k+3 for some k = 0, 1, 2, . . . . Then formula (3.10) essentially simplifies. In

this case α = (−1)k, τ = (−1)k(I ⊗ β ⊗ β) and W ′ = W23 = I ⊗W , where

(3.25) W = G~

(
ei~/2b−1a⊗ b, (−1)kβ ⊗ β

)∗
e−

i
~ log|b|⊗log a.

Formula (3.11) takes the form

(3.26) V12V13 = W23V12W
∗
23.

For any c ∈ A we set

(3.27) ∆(c) = W (c⊗ I)W ∗.

Then ∆ is a representation of A acting on L2(R) ⊗ L2(R). We know that V ∈ M(K(K) ⊗ A).
Formula (3.26) shows that

(id⊗∆)V = V12V13.

Clearly V12, V13 ∈ M(K(K) ⊗ A ⊗ A). Therefore (id ⊗ ∆)V = V12 V13 ∈ M(K(K) ⊗ A ⊗ A).
Remembering that A is generated by V we conclude that ∆ ∈ Mor(A,A⊗A). �
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Let ~ = π
2k+3 (k = 0, 1, 2, . . . ). Then formula (3.27) makes it possible to calculate ∆(c) for any

c ∈ A. The same holds for any c affiliated with A. We shall show that

(3.28)

∆(a) = a⊗ a,

∆(b) =
[
a⊗ b+ b⊗ I

]
(−1)kβ⊗β

,

∆(ib2k+3β) =
[
a2k+3 ⊗ ib2k+3β + ib2k+3β ⊗ I

]
− sgn(b⊗b)

.

Formula for ∆(a) follows immediately from (3.13); the reader should notice that operators
ei~/2b−1a ⊗ b and β ⊗ β commute with a ⊗ a. The formula for ∆(b) was in fact shown in the
proof of Theorem 3.3; in the present case τ+ = τ− = (−1)kβ ⊗ β and the second formula of (3.28)
coincides with (3.21) (and with (3.23) as well).

It remains to prove the third formula. We know that |b| commutes with ib2k+3β. Taking into
account (3.25) we obtain

(3.29)
∆(ib2k+3β) = W (ib2k+3β ⊗ I)W ∗

= G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)∗ (
ib2k+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)
.

To compute the right hand side we use Proposition 1.4 with

R = a⊗ |b| , S = |b| ⊗ I,

τ = sgn(b⊗ b), ξ = (−1)kβ ⊗ β,

ρ = I ⊗ i(sgn b)β, σ = i(sgn b)β ⊗ I.

Remembering that β2 = I and β anticommutes with b and hence commutes with |b| one can
easily check that these operators fulfill all assumption of Proposition 1.4. In this case we have
T = (ei~/2 |b|−1

a) ⊗ |b| and τT = ei~/2b−1a ⊗ b. According to our assumption π
~ = 2k + 3 is an

odd positive integer. Therefore

σS
π
~ =

[
i(sgn b)β ⊗ I

] [
|b|2k+3 ⊗ I

]
= ib2k+3β ⊗ I,

ρR
π
~ =

[
I ⊗ i(sgn b)β

] [
a2k+3 ⊗ |b|2k+3

]
= a2k+3 ⊗ ib2k+3β

and formula (1.11) takes the form

(3.30)

[
ib2k+3β ⊗ I + a2k+3 ⊗ ib2k+3β

]
− sgn(b⊗b)

= G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)∗ (
ib2k+3β⊗I

)
G~
(
ei~/2b−1a⊗b, (−1)kβ⊗β

)
.

Comparing (3.29) with (3.30) we get the last formula of (3.28). This formula appeared without
proof in [19].

Remark 3.4. Let s ∈ S1 be a number of modulus 1. Replacing in the above computations
σ = i(sgn b)β⊗ I and ρ = i(sgn b)β⊗ I by σ = ssgn bβ⊗ I and ρ = ssgn bβ⊗ I respectively, one can
prove that

(3.31) ∆(ssgn b |b|2k+3
β) =

[
a2k+3 ⊗ ssgn b |b|2k+3

β + ssgn b |b|2k+3
β ⊗ I

]
− sgn(b⊗b)

.

If s = i then ssgn b = i sgn b and (3.31) reduces to the previous formula. For s = 1 we get

(3.32) ∆(|b|2k+3
β) =

[
a2k+3 ⊗ |b|2k+3

β + |b|2k+3
β ⊗ I

]
− sgn(b⊗b)

.

Assume now that K = L2(R) and that the operators â, b̂, β̂ are given by (3.7). Then operator
(3.8) coincides with (3.25): V = W . Relation (3.26) takes the form:

W23W12 = W12W13W23.

This is the famous pentagon equation of Baaj and Skandalis [2]. It means that W is a multiplicative
unitary. It is known that W is modular [8]. This property enables us to introduce unitary antipode,
scaling group and Haar weight (see [8, 16, 19, 10, 20] for details).

In [19] we discussed the cyclic group of four elements acting on a quantum ‘ax + b’ group. In
fact this action may be extended to an action of S1. At the beginning we set no condition for
~ ∈ R. For any s ∈ S1 and any closed operator c we set

φs(c) = w∗s cws,
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where ws is unitary operator introduced by ws = sχ(b<0). Obviously ws commutes with a and
b. Moreover w∗sβws = s−χ(b<0)βsχ(b<0) = s−χ(b<0)sχ(b>0)β = ssgn bβ. These facts show that the
algebra A introduced by (3.2) is invariant under φs (for all real ~). For special values h = π

2k+3

the algebra A is equipped with the comultiplication ∆ introduced by Theorem 3.3. Using (1.3)
one can easily check that the multiplicative unitary (3.25) commutes with ws⊗ws. Formula (3.27)
shows now that the comultiplication is preserved by the automorphisms φs:

∆(φs(c)) = (φs ⊗ φs)∆(c)

for all s ∈ S1 and c ∈ A.

4. New quantum deformations of ‘ax+ b’ group.

In this section we shall show how to enlarge the set of admissible values of the deformation
parameter ~ beyond the one described in Theorem 3.3. To this end one has to add a new element
to the set of generators of the C∗-algebra A. This new element denoted by w is a unitary operator
commuting with a and b such that

(4.1) w∗βw = ssgn bβ.

In this formula s ∈ S1 is a new deformation parameter. We shall see later that s is related to ~.

To define the new C∗-algebra A we consider four operators a, b, β and w acting on the Hilbert
space L2(R× S1) introduced in the following way: for any τ ∈ R and any x ∈ L2(R× S1) we set:

(4.2)

(
aiτx

)
(t, z) = e~τ/2x(e~τ t, z), (bx)(t, z) = tx(t, z),

(βx)(t, z) = x(−t, z), (wx)(t, z) = sχ(t<0)z x(t, z).

As in the previous section a is the analytic generator of the group of unitaries defined by the first
formula. Operator b is selfadjoint. Its domain consists of all x such that |tx(t, z)|2 is integrable
over R × S1. Clearly β and w are unitary and β∗ = β. By simple computations, aβ = βa,
bβ = −βb, aw = wa, bw = wb, w∗βw = ssgn bβ and a

~
o b. Furthermore βwβ = ssgn bw and

βwsgn bβ = (βwβ)− sgn b = (ssgn bw)− sgn b = s−1w− sgn b. Hence βwsgn b = s−1w− sgn bβ.

In what follows we shall use operator L introduced by the formula

(4.3) (Lx)(t, z) = z
∂x(t, z)
∂z

.

One can easily verify that L is a selfadjoint operator with integer spectrum, it commutes with a, b
and β and w∗Lw = L+ I. Using the last relation we get

(4.4) (I ⊗ w)L⊗I(w ⊗ I)(I ⊗ w)−L⊗I = w ⊗ w.

Using essentially the same method as in the proof of Theorem 3.1 one can easily show

Theorem 4.1. Let

(4.5) A =
{

(f1(b) + βf2(b)) g(log a)wk :
f1, f2, g ∈ C∞(R)
f2(0) = 0, k ∈ Z

} norm closed
linear envelope

.

Then: 1. A is a nondegenerate C ∗-algebra of operators acting on L2(R× S1),

2. log a, b, ibβ and w are affiliated with A: log a, b, ibβ, w η A,

3. log a, b, ibβ and w generate A,

The reader should notice that the C∗-algebra A introduced by (4.5) coincides with the crossed
product of the C∗-algebra A considered in the previous section (cf. (3.2)) by the automorphism
that leaves a and b invariant and maps β into ssgn bβ.
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Now we pass to the description of the Hilbert space K. The structure of K is determined by a
quadruple of selfadjoint operators (â, b̂, β̂, L̂) acting on K and having the following properties:

(4.6)

1. â > 0, ker â = ker b̂ = {0} and â ~
o b̂,

2. β̂ is a unitary involution, β̂ commutes with â and anticommutes with b̂,

3. L̂ is of integer spectrum, L̂ strongly commutes with â and b̂,

4. β̂L̂β̂ = L̂− sgn b̂.

One of the possible choices is: K = L2(R× S1) and (â, b̂, β̂, L̂) = (a, b, β, L+ χ(b > 0)). However
there is another possibility that is even more interesting:

(4.7) (â, b̂, β̂, L̂) = (|b|−1
, ei~/2b−1a, αwsgn bβ, L),

where α ∈ S1 and α2 = s. The reader easily verifies that these operators possess the properties
(4.6).

Let

(4.8) V = G~(̂b⊗ b, β̂ ⊗ β)∗ e
i
~ log ba⊗log a (I ⊗ w)bL⊗I .

This is the basic object considered in this section. We shall prove

Theorem 4.2.
1. V is a unitary operator and V ∈ M(K(K)⊗A),

2. A is generated by V ∈ M(K(K)⊗A).

Proof. Let R = b̂ ⊗ b, ρ = β̂ ⊗ β, U = e
i
~ log ba⊗log a(I ⊗ w)bL⊗I , S = â−1 ⊗ I and C = K(K) ⊗ A.

Then all the assumptions of Proposition 2.3 are satisfied. Hence V = G~(R, ρ)∗U ∈ M(C) and
Statement 1 is proved.

Let π be a representation of A and B ∈ C∗(Hπ). Then id ⊗ π is a representation of C acting
on K ⊗Hπ. Assume that (id ⊗ π)V ∈ M(K(K) ⊗ B). Repeating the reasoning used in the proof
of Theorem 3.2 we see that π(b) and π(iβb) are affiliated with B. Furthermore (id ⊗ π)U =
e

i
~ log ba⊗π(log a)(I ⊗ π(w))bL⊗I is affiliated with K(K)⊗B.

We know that â commutes with L̂. Therefore â respects the decomposition of K into direct
sum of eigenspaces of L̂. Let K` = K(L̂ = `). Then

K =
⊕
`∈Z

K`, â =
⊕
`∈Z

â` and L̂ =
⊕
`∈Z

`I.

With this notation
(id⊗ π)U =

⊕
`∈Z

e
i
~ log ba`⊗π(log a)(I ⊗ π(w)`).

Let ` = 0, 1. Remembering that (id⊗π)U is affiliated with K(K)⊗B we see that e
i
~ log ba0⊗π(log a) is

affiliated with K(K0)⊗B and e
i
~ log ba1⊗π(log a)(I ⊗π(w)) is affiliated with K(K1)⊗B. Proposition

2.5 shows now that π(log a) is affiliated with B. Using this fact one can easily show that π(w) is
also affiliated with B. According to Statement 3 of Theorem 4.1, b, iβb, log a and w generate A.
Therefore π ∈ Mor(A,B). We showed that (id⊗ π)V ∈ M(K(K)⊗ B) implies π ∈ Mor(A,B). It
means that A is generated by V ∈ M(K(K)⊗A). �

Now we are able to formulate the main result of this section:

Theorem 4.3. There exists ∆ ∈ Mor(A,A⊗A)
such that

(id⊗∆)V = V12V13

⇐⇒ (
~ =

π

p
, where

p ∈ R, p > 2
and eiπp = −s

)
.

Proof. We essentially repeat the proof of Theorem 3.3. Since in the great part calculations are
very similar, we sketch the main steps only and point out necessary modifications. We shall use
the operator L introduced in (4.3).
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Let

(4.9)

α = ie
iπ2
2~ ,

T = I ⊗ ei~/2b−1a⊗ b,

τ = (I ⊗ βw− sgn b ⊗ β)
[
αs−1χ(̂b⊗ b⊗ I < 0) + αχ(̂b⊗ b⊗ I > 0)

]
.

and

(4.10) W ′ = G~(T, τ)∗ e−
i
~ I⊗log|b|⊗log a(I ⊗ I ⊗ w)I⊗L⊗I .

Clearly W ′ is a unitary operator acting on K ⊗ L2(R× S1)⊗ L2(R× S1). We shall prove that

(4.11) V12V13 = W ′V12W
′∗.

In order to make our formulae shorter we set

U = e
i
~ log ba⊗log a(I ⊗ w)bL⊗I ,

Z = e−
i
~ log|b|⊗log a(I ⊗ w)L⊗I .

Using the commutation relations, one can easily verify that

(4.12) U (̂b⊗ I)U∗ = b̂⊗ a, U(β̂ ⊗ I)U∗ = (β̂ ⊗ I)(I ⊗ w)− sgnbb⊗I ,

(4.13) Z(a⊗ I)Z∗ = a⊗ a, Z(w ⊗ I)Z∗ = w ⊗ w.

The last formula follows from (4.4). With the above notation V = G~(̂b⊗ b, β̂ ⊗ β)∗U and

V12V13 = G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ U13.

Taking into account (4.12) we get

(4.14)
U12G~(̂b⊗ I ⊗ b, β̂ ⊗ I ⊗ β)∗ = G~(̂b⊗ a⊗ b, (β̂ ⊗ I ⊗ β)(I ⊗ w ⊗ I)− sgnbb⊗I⊗I)∗ U12

= G~

(
b̂⊗ a⊗ b, β̂ ⊗

[
(I ⊗ β)(w ⊗ I)I⊗sgn b

])∗
U12.

The second equality follows from (1.3). Therefore

(4.15) V12V13 =
[
G~(R, ρ)G~(S, σ)

]∗
U12U13.

where

(4.16)
R = b̂⊗ a⊗ b, ρ = β̂ ⊗

[
(I ⊗ β)(w ⊗ I)I⊗sgn b

]
,

S = b̂⊗ b⊗ I, σ = β̂ ⊗ β ⊗ I,

One can easily verify that R,S are selfadjoint, ρ, σ are unitary selfadjoint, R commutes with
ρ and anticommutes with σ and S anticommutes with ρ and commutes with σ. Operator T =
ei~/2S−1R = I ⊗ ei~/2b−1a⊗ b coincides with the operator T introduced by (4.9). Moreover

σρ = I ⊗ (β ⊗ β)(w ⊗ I)I⊗sgn b ≡ I ⊗ βw− sgn b ⊗ β,

ρσ = I ⊗ (I ⊗ β)(w ⊗ I)I⊗sgn b(β ⊗ I) = I ⊗ (β ⊗ β)(βwβ ⊗ I)I⊗sgn b

= I ⊗ (β ⊗ β)(ssgn bw ⊗ I)I⊗sgn b ≡ s−1I ⊗ βw− sgn b ⊗ β,

where ‘≡’ denotes the equivalence relation: x ≡ y if and only if xχ(T < 0) = yχ(T < 0).
Consequently

αρσχ(S < 0) + ασρχ(S > 0) ≡ τ,
where τ is given by (4.9). Theorem 1.6 shows now that

G~(R, ρ)G~(S, σ) = G~(T, τ)∗G~(S, σ)G~(T, τ)

and (4.15) takes the form

(4.17) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗G~(T, τ)U12U13.

Performing simple computations and using (4.13) we obtain

U12U13 = e
i
~ log ba⊗log(a⊗a)(I ⊗ w ⊗ w)bL⊗I⊗I

= Z23U12Z
∗
23.
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Repeating the arguments used in the proof of Theorem 3.3 we see that G~(T, τ) commutes with
e

i
~ log ba⊗log(a⊗a). One can easily check that T commute with L̂⊗ I ⊗ I, I ⊗w⊗w and τ commutes

with L̂⊗ I ⊗ I. Moreover

(I ⊗ w ⊗ w)∗τ(I ⊗ w ⊗ w) = τ(I ⊗ ssgn b ⊗ ssgn b) ≡ τ.

Therefore G~(T, τ) commutes with (I ⊗ w ⊗ w)bL⊗I⊗I and in (4.17) we may move G~(T, τ) to the
most right position:

(4.18) V12V13 = G~(T, τ)∗G~(̂b⊗ b⊗ I, β̂ ⊗ β ⊗ I)∗ Z23U12Z
∗
23G~(T, τ)

Finally one easily verifies that b ⊗ I and β ⊗ I commute with log |b| ⊗ log a, L ⊗ I and I ⊗ w.
Therefore G~(̂b⊗ b⊗ I, β̂⊗β⊗ I) commutes with Z23. Clearly G~(̂b⊗ b⊗ I, β̂⊗β⊗ I)∗ U12 = V12

and W ′ = G~(T, τ)∗Z23. Now (4.11) follows immediately from (4.18).

Also in the present case W ′ commutes with â⊗ I ⊗ I. The same proof applies.

Now we are ready to prove the main statement.

=⇒ . Let ∆ ∈ Mor(A,A⊗A) and (id⊗∆)V = V12V13. Repeating the reasoning used in the proof
of Theorem 3.3 we easily arrive to the formula

(4.19) ∆(b) =
[
a⊗ b+ b⊗ I

]
τ+

=
[
a⊗ b+ b⊗ I

]
τ−

where

(4.20)
τ+ = (βw− sgn b ⊗ β)

[
αs−1χ(b⊗ I < 0) + αχ(b⊗ I > 0)

]
,

τ− = (βw− sgn b ⊗ β)
[
αs−1χ(b⊗ I > 0) + αχ(b⊗ I < 0)

]
.

Clearly the two expressions for ∆(b) must coincide. Let us notice that the operator I⊗β commutes
with τ+, τ− and b ⊗ I and anticommutes with a ⊗ b. Therefore τ+ = τ− by Remark 1.3. Using
(4.20) we get s = α2. Remembering that α = i e

iπ2
2~ and 0 < ~ < π

2 we conclude that ~ = π
p , where

p ∈ R, p > 2 and eiπp = −s.

⇐=. Assume that ~ = π
p , for some p ∈ R such that p > 2 and eiπp = −s. Then formula (4.10)

essentially simplifies. In this case αs−1 = α, τ = I ⊗ αβw− sgn b ⊗ β = I ⊗ αwsgn bβ ⊗ β and
W ′ = W23 = I ⊗W , where

(4.21) W = G~

(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)∗
e−

i
~ log|b|⊗log a (I ⊗ w)L⊗I .

Formula (4.11) takes the form

(4.22) V12V13 = W23V12W
∗
23.

For any c ∈ A we set

(4.23) ∆(c) = W (c⊗ I)W ∗.

Then ∆ is a representation of A acting on L2(R× S1)⊗L2(R× S1). We know that V ∈ M(K(K)⊗
A). Formula (4.22) shows that

(id⊗∆)V = V12V13.

Clearly V12, V13 ∈ M(K(K) ⊗ A ⊗ A). Therefore (id ⊗ ∆)V = V12 V13 ∈ M(K(K) ⊗ A ⊗ A).
Remembering that A is generated by V we conclude that ∆ ∈ Mor(A,A⊗A). �

Let s = −eiπp and ~ = π
p for some p > 2. Formula (4.23) enables us to calculate ∆(c) for any

c ∈ A. The same holds for any c affiliated with A. We shall show that

(4.24)

∆(a) = a⊗ a,

∆(b) =
[
a⊗ b+ b⊗ I

]
αwsgn bβ⊗β

,

∆ (β |b|p) =
[
(w ⊗ I)−I⊗sgn b(ap ⊗ β |b|p) + β |b|p ⊗ I

]
− sgn(b⊗b)

,

∆(w) = w ⊗ w.

Repeating the reasoning preceding the formula (4.18) one can show that a⊗a and w⊗w commute
with G~

(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)
and formulae for ∆(a) and ∆(w) follow immediately from

(4.13). The formula for ∆(b) coincides with (4.19).
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It remains to prove the third formula. According to (4.21) operator W is the composition of two
unitaries: G~

(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)∗
and e−

i
~ log|b|⊗log a (I ⊗ w)L⊗I . Formula (4.23) shows

now that ∆ = ψoϕ, where

ϕ(c) = e−
i
~ log|b|⊗log a (I ⊗ w)L⊗I (c⊗ I) (I ⊗ w)−L⊗Ie

i
~ log|b|⊗log a,

ψ(d) = G~
(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)∗
dG~

(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)
.

One can easily verify that ϕ(b) = b⊗ I and ϕ(β) = β ⊗ I. Therefore

ϕ(β |b|p) = β |b|p ⊗ I
and

(4.25) ∆ (β |b|p) = ψ (β |b|p ⊗ I) .
To compute the right hand side we use Proposition 1.4 with

R = a⊗ |b| , S = |b| ⊗ I,

τ = sgn(b⊗ b), ξ = αwsgn bβ ⊗ β,

ρ = (w ⊗ I)−I⊗sgn b(I ⊗ β), σ = β ⊗ I.
One can easily check that these operators fulfill all assumptions of Proposition 1.4. In this case
we have T = (ei~/2 |b|−1

a) ⊗ |b| and τT = ei~/2b−1a ⊗ b. According to our assumption π
~ = p.

Therefore
σS

π
~ = β |b|p ⊗ I,

ρR
π
~ = (w ⊗ I)−I⊗sgn b

(
ap ⊗ β |b|p

)
and formula (1.11) takes the form

(4.26)
[
β |b|p ⊗ I + (w ⊗ I)−I⊗sgn b

(
ap ⊗ β |b|p

)]
− sgn(b⊗b)

= ψ (β|b|p⊗I) .

Comparing (4.25) with (4.26) we get the third formula of (4.24).

5. Modularity and all that

Now we shall investigate the unitary W introduced by (4.21). We shall prove that W is a
modular multiplicative unitary. Throughout this section s = −eiπp and ~ = π

p where p > 2.

Let K be the Hilbert space complex conjugate to K. The structure of K is established by an
antiunitary mappingK 3 x←→ x ∈ K. For any closed operator c acting onK, we denote by c> the
transpose of c. By definition c> is an operator acting on K with domain D(c>) = {x : x ∈ D(c∗)}
such that

c>x = c∗x

for any x ∈ D(c∗). In what follows Q = a
1
2 .

Proposition 5.1. Let V be the unitary operator introduced by (4.8) and

(5.1) Ṽ = G~

(
−b̂>⊗ei~/2ba−1,−β̂>⊗αwsgn bβ

)
e

i
~ log ba>⊗log a(I ⊗ w)bL>⊗I .

Then Ṽ is unitary and for any x, z ∈ K, y ∈ D(Q−1), u ∈ D(Q) we have:

(5.2) (x⊗ u V z ⊗ y) =
(
z ⊗Qu Ṽ x⊗Q−1y

)
.

Proof. Let us notice that χ(−b̂>⊗ei~/2ba−1 < 0) = χ(̂b> ⊗ b > 0). By virtue of (1.3), we may
replace β̂>⊗ αwsgn bβ = β̂>⊗ αβw− sgn b by α(I ⊗ β)τ̃ , where

(5.3) τ̃ = (β̂> ⊗ I)(I ⊗ w)− sgnbb>⊗I .

Therefore

(5.4) Ṽ = G~

(
−b̂>⊗ei~/2ba−1,−α(I ⊗ β)τ̃

)
e

i
~ log ba>⊗log a(I ⊗ w)bL>⊗I .

We know that β̂L̂ = (L̂− sgn b̂)β̂. Therefore L̂>β̂> = β̂>(L̂> − sgn b̂>) and

(I ⊗ w)bL>⊗I(β̂> ⊗ I) = (β̂> ⊗ I)(I ⊗ w)bL>⊗I−sgnbb>⊗I .
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It shows that

(5.5) τ̃(I ⊗ w)bL>⊗I = (I ⊗ w)bL>⊗I(β̂> ⊗ I).

We shall follow the proof of Proposition 2.3 of [19]. The reader should notice that in large part
that proof is independent of the particular value of ~. To make our formulae shorter we set:

(5.6)

U ′ = e
i
~ log ba⊗log a, Ũ ′ = e

i
~ log ba>⊗log a,

U = U ′(I ⊗ w)bL⊗I , Ũ = Ũ ′(I ⊗ w)bL>⊗I ,

B =
∣∣∣̂b⊗ b∣∣∣ , B̃ =

∣∣∣̂b>⊗ ei~/2ba−1
∣∣∣ .

We know that sgn b and Q commute. Therefore we may assume that u and y are eigenvectors
of sgn b. Similarly we may assume that x and z are common eigenvectors of sgn b̂. Proceeding in
the same way as in [19] we reduce (5.2) to the following three equations (cf. [19, formula (2.23)
and next two]):

(5.7) (x⊗ u Vθ(logB)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
,

(5.8) (x⊗ u Vθ(logB − πi)∗U z ⊗ y) =
(
z ⊗Qu Vθ(log B̃)Ũ x⊗Q−1y

)
,

(5.9)

(
x⊗ u

[
i
(
β̂ ⊗ β

)
B

π
~ Vθ(logB − πi)

]∗
U z ⊗ y

)
=
(
z ⊗Qu − iα(I ⊗ β)τ̃ B̃

π
~ Vθ(log B̃ − πi)Ũ x⊗Q−1y

)
.

In these formulae θ = 2π
~ = 2p, The left hand side of the last formula

LHS of (5.9) = −i
(
β̂x⊗ βu B π

~ Vθ(logB − πi)∗U z ⊗ y
)
.

Similarly remembering that β commutes with Q we have:

RHS of (5.9) = −iα
(
z ⊗Qβu τ̃B̃ π

~ Vθ(log B̃ − πi)Ũ x⊗Q−1y
)
.

We shall move τ̃ to the most right position. Clearly (cf. (5.3)) this operator commutes with B̃

and Ũ ′ = e
i
~ log ba>⊗log a. Taking into account (5.5) we obtain

RHS of (5.9) = −iα
(
z ⊗Qβu B̃ π

~ Vθ(log B̃ − πi)Ũ β̂x⊗Q−1y
)
.

Replacing β̂x and βu by x and u respectively we see that (5.9) is equivalent to the equation

(5.10)
(
x⊗ u αB π

~ Vθ(logB − πi)∗U z ⊗ y
)

=
(
z ⊗Qu B̃ π

~ Vθ(log B̃ − πi)Ũ x⊗Q−1y
)

Let us notice that our crucial formulae (5.7), (5.8) and (5.10) fit the same pattern:

(5.11) (x⊗ u fi(B)U z ⊗ y) =
(
z ⊗Qu gi(B̃)Ũ x⊗Q−1y

)
,

where fi and gi (i = 1, 2, 3) are functions on positive reals:

f1(t) = Vθ(log t), g1(t) = Vθ(log t− πi),

f2(t) = Vθ(log t− πi), g2(t) = Vθ(log t),

f3(t) = αt
π
~ Vθ(log t− πi), g3(t) = t

π
~ Vθ(log t− πi).

for all t > 0.

Replacing operators U and Ũ by U ′ and Ũ ′ (cf. (5.6)) we obtain a simplified version of (5.11):

(5.12) (x⊗ u fi(B)U ′ z ⊗ y) =
(
z ⊗Qu gi(B̃)Ũ ′ x⊗Q−1y

)
.

It is known that the last equality holds in all three cases i = 1, 2, 3 (cf. [19, proof of Proposi-
tion 2.3]). We shall show that (5.11) follows from (5.12). We shall use the expansion

(5.13) (I ⊗ w)bL⊗I =
∞∑

m=−∞
χ(L̂ = m)⊗ wm.
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Inserting in (5.12), χ(L̂ = m)x and wmy instead of x and y we obtain:(
x⊗u fk(B)U ′

(
χ(L̂=m)⊗wm

)
z⊗y

)
=
(
z⊗Qu gk(B̃)Ũ ′

(
χ(L̂>=m)⊗wm

)
x⊗Q−1y

)
.

Summing over m and using (5.13) we obtain (5.11). The proof is complete. �

We recall the basic definitions [2, 16, 8]. Let H be a Hilbert space and W be a unitary operator
acting on H ⊗H. We say that W is multiplicative unitary if it satisfies the pentagonal equation

W23W12 = W12W13W23.

A multiplicative unitary W is said to be modular if there exist strictly positive selfadjoint operators
Q̂ and Q acting on H and a unitary operator W̃ acting on H ⊗H such that Q̂⊗Q commutes with
W and

(5.14) (x⊗ u W z ⊗ y) =
(
z ⊗Qu W̃ x⊗Q−1y

)
for any x, z ∈ H, u ∈ D(Q) and y ∈ D(Q−1). In this definition H is the complex conjugate Hilbert
space related to H by an antiunitary mapping H 3 x←→ x ∈ H. The main result of this section
is contained in the following

Theorem 5.2. The operator W introduced by (4.21) is a modular multiplicative unitary acting on
L2(R× S1)⊗ L2(R× S1).

Proof. Assume that K = L2(R× S1). One can easily verify that operators

(5.15)
â = |b|−1

, β̂ = αwsgn bβ,

b̂ = ei~/2b−1a, L̂ = L

obey the properties listed in (4.6). In particular β̂2 = I, β̂∗ = β̂ and β̂L̂β̂ = wsgn bβLβw− sgn b

= wsgn bLw− sgn b = L− sgn b = L̂− sgn b̂. With this choice, right hand side of (4.8) coincides with
that of (4.21): V = W and relation (4.22) takes the form:

W23W12 = W12W13W23.

Hence W is a multiplicative unitary operator.

Let Q = a1/2 and Q̂ = |b|1/2. Inserting in (5.1) operators (5.15) we obtain a unitary operator
W̃ satisfying formula (5.14). To end the proof we have to show that W commutes with Q̂⊗Q.

We know that a commutes with β and w. One can easily check that |b| commutes with αwsgn bβ

and L. Therefore Q̂⊗Q = |b|1/2 ⊗ a1/2 commutes with αwsgn bβ ⊗ β, L⊗ I and I ⊗ w. Clearly it

commutes with log |b| ⊗ log a. Moreover due to the Zakrzewski relation a
~

o b, Q̂ ⊗ Q commutes
with ei~/2b−1a⊗ b. Inspecting formula (4.21) we see that Q̂⊗Q commutes with W . �

Now we can use the full power of the theory of multiplicative unitaries [2, 16, 8]. Denoting by
B(L2(R× S1))∗ the set of all normal functionals on B(L2(R× S1)) we have:

A =
{
(ω ⊗ id)W : ω ∈ B(L2(R× S1))∗

}norm closure
.

Indeed according to Theorem 1.5 of [16], the set on the right hand side is a C∗-algebra generated
by W and above equality follows immediately from Theorem 4.2 (in the present setting V = W ).

Formula (4.22) shows that (4.8) is an adapted operator in the sense of [16, Definition 1.3].
Comparing (5.1) with Statement 5 of Theorem 1.6 of [16] one can easily find the unitary antipode
R of our quantum group. It acts on a, b, β, w as follows:

aR = a−1, βR = −αwsgn bβ,

bR = −ei~/2ba−1, wR = w∗.

The action of the scaling group is described by the formulae:

τt(a) = a, τt(β) = β,

τt(b) = e~tb, τt(w) = w.
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In the following, Tr denotes the trace of operators acting on L2(R× S1) and E0 denotes the
orthogonal projection onto kernel of L̂− χ(̂b > 0):

E0 =χ
(
L̂− χ(̂b > 0) = 0

)
=χ

(
L̂ = 0 and b̂ < 0

)
+ χ

(
L̂ = 1 and b̂ > 0

)
.

The reader should notice that E0 commutes with all operators (5.15). Therefore E0⊗ I commutes
with the multiplicative unitary W . For any positive c ∈ A we set

h(c) = Tr
(
E0Q̂cQ̂E0

)
= Tr

(
E0 |b|1/2

c |b|1/2
E0

)
.

Let c = g(log a)f(b), where f, g ∈ C∞(R). Then c ∈ A. In what follows, dµ(z) denotes the
normalized Haar measure on S1. One can verify that the operator c Q̂E0 = c |b|

1
2 E0 is an integral

operator:

(c |b|
1
2 E0x)(t′, z′) =

∫
R×S1

Kc(t′, z′; t, z)x(t, z) dt dµ(z)

with the kernel
Kc(t′, z′; t, z) = |t′|−1/2

g̃(t′/t)f(t) (z′/z)χ(t>0),

where

g̃(%) =
1

2π~

∫
R
g(τ)%iτ/~dτ.

for % > 0 and g̃(%) = 0 for % < 0. Therefore

h(c∗c) =
∫

R×S1×R×S1

∣∣Kc(t′, z′; t, z)
∣∣2 dt′ dµ(z′) dt dµ(z)

=
∫ ∞

0

|g̃(%)|2 d%
%

∫
R
|f(t)|2 dt

=
1
π~

∫
R
|g(τ)|2 dτ

∫
R
|f(t)|2 dt <∞

for g, f ∈ L2(R). Let ε > 0 and cε = (I + ε log2 a)−1(I + εb2)−1. Then h(c∗εcε) <∞ for any ε > 0.
Clearly cε → I in strict topology, when ε → +0. Therefore the left ideal {c ∈ A : h(c∗c) <∞} is
dense in A. According to the theory developed by Van Daele [10], h is a right Haar weight on
our quantum group. See also [20], where the right invariance of h is verified by a straightforward
computation.

One can easily construct the reduced dual of our quantum group. By definition (see [2, 16]) this
is a quantum group (Â, ∆̂) related to the multiplicative unitary Ŵ = ΣW ∗Σ (Σ denotes the flip
operator acting on the tensor product of a Hilbert space by itself: Σ(x⊗ y) = y⊗x). In particular

Â =
{
(id⊗ ω)W ∗ : ω ∈ B(L2(R× S1))∗

}norm closure
.

Let â, b̂, β̂ and L̂ be operators introduced by (5.15). One can show that log â, b̂, β̂ |̂b| and L̂ are
affiliated with Â. Furthermore Â is generated by these operators. The action of ∆̂ is described by
the formula:

∆̂(c) = Ŵ (c⊗ I)Ŵ ∗ = ΣW ∗(I ⊗ c)WΣ.

In particular

(5.16)

∆̂(â) = â⊗ â,

∆̂(̂b) =
[
b̂⊗ â+ I ⊗ b̂

]
bβ⊗α bwsgn bb bβ ,

∆̂
(
β̂ |̂b|p

)
=
[
(I ⊗ ŵ)− sgnbb⊗I

(
β̂ |̂b|p ⊗ âp

)
+ I ⊗ β̂ |̂b|p

]
− sgn(bb⊗bb) ,

∆̂(L̂) = L̂⊗ I + I ⊗ L̂,

where ŵ = α−2bL = s−
bL. To derive the second and third formulae one has to use the second

versions of formulae (1.7) and (1.11). The details are left to the reader. The last relation in (5.16)
shows that ∆̂(ŵ) = ŵ ⊗ ŵ.
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It is easy to verify that operators â, b̂, β̂ and ŵ obey the same commutation relations as a, b, β
and w. Using this fact one can show that there exists ψ ∈ Mor(A, Â) such that ψ(a) = â, ψ(b) = b̂,
ψ(ibβ) = îbβ̂ and ψ(w) = s−

bL. Let ∆̂opp be the comultiplication opposite to ∆̂: ∆̂opp = flipo∆̂.
Comparing formulae (4.24) with (5.16) we see that

(5.17) ∆̂opp(ψ(c)) = (ψ ⊗ ψ)∆(c)

for c = a, b, β |b|p , w. Functions of these operators generate A, so (5.17) holds for any c ∈ A.

Let us notice that the operator

(id⊗ ψ)W = G~(̂b⊗ b̂, β̂ ⊗ β̂) e
i
~ log ba⊗log ba s−bL⊗bL.

commutes with Σ. There exists an independent proof of (5.17) based on this observation.

6. ‘ax+ b’-groups at roots of unity

In this section we shall assume that q2 = e−i~ is a root of unity. Then s = α2 = −e iπ2
~ is a root

of unity. Let N be the smallest natural number such that sN = 1. Formula (4.1) shows now that
wN commutes with β. Consequently wN commutes with all elements of A and the set

CN =
{
(wN − I)c : c ∈ A

}norm closure

is a two-sided ideal in A. We know that ∆(w) = w ⊗ w. Therefore

∆(wN − I) = wN ⊗ wN − I ⊗ I = wN ⊗ (wN − I) + (wN − I)⊗ I.
It shows that ∆(CN ) ⊂ A⊗ CN + CN ⊗ A and the comultiplication ∆ goes down to the quotient
algebra AN = A/CN . More precisely there exists ∆N ∈ Mor(AN , AN ⊗AN ) such that ∆N (π(c)) =
(π ⊗ π)∆(c). In this formula π ∈ Mor(A,AN ) denotes the canonical epimorphism from A onto
AN = A/CN .

From now till the end of this section we shall work with the quantum group (AN ,∆N ). To
simplify notation we shall omit π and write a, b, β |b| and w instead of π(a), π(b), π(β |b|) and π(w).
These operators are affiliated with AN and we have the following commutation relation:

(6.1)

a∗ = a, a > 0, b∗ = b, a
~

o b,

β∗ = β, β2 = I, βaβ = a, βbβ = −b,

w∗w = ww∗ = I, w∗aw = a, w∗bw = b,

w∗βw = ssgn bβ, wN = I.

The action of ∆N is described by the formulae identical with (4.24).

It is not difficult to describe AN as a concrete C∗-algebra and find the multiplicative unitary
corresponding to (AN ,∆N ). To this end one has to repeat the considerations of section 4 replacing
S1 by the cyclic group of N elements:

ZN =
{
s` : ` = 0, 1, . . . , N − 1

}
=
{
z ∈ S1 : zN = 1

}
.

In particular elements of AN will be operators acting on L2(R× ZN ). To define a, b, β and w we
shall use the same formulae (4.2) with necessary reinterpretation: now x ∈ L2(R× ZN ) and z runs
over ZN . One can easily verify that a, b, β and w satisfy the relations (6.1). Now the formula (4.5)
defines a C∗-algebra acting on L2(R× ZN ). This algebra is isomorphic to AN .

It is not possible to find a selfadjoint operator L acting on L2(R× ZN ) such that SpL ⊂ Z
and w∗Lw = L+ I. However there is a replacement for (I ⊗ w)L⊗I . Instead of L we shall use an
operator u acting on L2(R× ZN ) according to the formula:

(ux)(t, z) = x(t, s−1z).

One can easily verify that u is a unitary operator commuting with a, b, β such that wuw∗ = su
and uN = I. By the last relation Spu = ZN . Similarly Spw ⊂ ZN . We shall use the bicharacter
describing the selfduality of the group ZN :

Ch : ZN × ZN −→ S1.

By definition Ch(s`, sk) = s−k` for any k, ` ∈ Z. The reader should notice that Ch(s`, z) = z−` and
Ch(sz′, z)=z−1Ch(z′, z) for any ` ∈ Z and z, z′ ∈ ZN . Using the last formula and remembering that
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wuw∗ = su we obtain (w⊗I) Ch(u⊗I, I⊗w)(w∗⊗I) = Ch(su⊗I, I⊗w) = (I⊗w∗) Ch(u⊗I, I⊗w).
Therefore

(6.2) Ch(u⊗ I, I ⊗ w)(w ⊗ I) Ch(u⊗ I, I ⊗ w)∗ = w ⊗ w.
One should compare this formula with (4.4). It shows that Ch(u⊗I, I⊗w) is the right replacement
for (I ⊗ w)L⊗I .

For the moment we shall use the Hilbert space K and operators â, b̂, β̂ and L̂ the same as in
the section 4. Remembering that Ch(s`, z) = z−` we obtain Ch(s−bL ⊗ I, I ⊗w) = (I ⊗w)bL⊗I and
formula (4.8) takes the form:

(6.3) V = G~(̂b⊗ b, β̂ ⊗ β)∗ e
i
~ log ba⊗log a Ch(ŵ ⊗ I, I ⊗ w),

where ŵ = s−
bL. Taking into account (4.6) we see that ŵ is a unitary operator with Sp ŵ ⊂ ZN ,

it commutes with â and b̂ and β̂ŵβ̂ = s−
bL+sgnbb = ssgn

bbŵ. We should note that in order to define
V ∈ M(K(K)⊗AN ) we need only the operators â, b̂, β̂, ŵ acting on K. These operators must have
the following properties:

(6.4)

1. â, b̂ are selfadjoint, â > 0, ker â = ker b̂ = {0} and â ~
o b̂,

2. β̂ is a unitary involution, β̂ commutes with â and anticommutes with b̂,

3. ŵ is unitary with Sp ŵ ⊂ ZN , ŵ commutes with â and b̂,

4. β̂ŵβ̂ = ssgn
bbŵ.

In this way operator L̂ disappears from our setup. Let us notice that operators â, b̂, β̂, ŵ satisfy
the same commutation relations as a, b, β, w.

From the beginning of this section we assumed that the deformation parameters s and ~ are
related by the formula s = α2 = −eiπ2/~. Repeating (with the necessary modifications indicated
above) the considerations of section 4 we obtain the following formulae:

(6.5) W = G~

(
ei~/2b−1a⊗ b, αwsgn bβ ⊗ β

)∗
e−

i
~ log|b|⊗log a Ch(u⊗ I, I ⊗ w),

(6.6) V12V13 = W23V12W
∗
23,

(6.7) ∆N (c) = W (c⊗ I)W ∗

for any c ∈ AN .

Assume that K = L2(R× ZN ), â = |b|−1, β̂ = αwsgn bβ, b̂ = ei~/2b−1a, and ŵ = u. One
can easily verify that these operators obey the properties listed in (6.4). In particular β̂2 = I,
β̂∗ = β̂, β̂ŵβ̂ = wsgn buw− sgn b = ssgn bu = ssgn

bbŵ where in the second step we used the relation
wuw∗ = su. With this choice, operators (6.3) and (6.5) coincide: V = W and (6.6) shows that
W is a multiplicative unitary. Using the method described in section 5 one can show that W is
modular with Q = a1/2 and Q̂ = |b|1/2.

This is the multiplicative unitary corresponding to the quantum group (AN ,∆N ). It can be used
to determine the action of unitary antipode and scaling group, the Haar weight and the reduced
dual (ÂN , ∆̂N ). We know that â, b̂, β̂ and ŵ satisfy the same commutation relations as a, b, β and
w. Furthermore formula (6.3) is symmetric: replacing operators without ‘hats’ by corresponding
operators with ‘hats’ we obtain an element of M(Â⊗sym Â). Using these facts one can show that
the quantum group (ÂN , ∆̂N ) is isomorphic to (AN ,∆

opp
N ).
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saw, Hoża 74, 00-682 Warszawa, Poland.

E-mail address, W. PUSZ: wieslaw.pusz@fuw.edu.pl

(S. L. WORONOWICZ) Department of Mathematical Methods in Physics, Faculty of Physics, Univer-
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