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Abstract
We propose a weaker condition for multiplicative unitary operators related to quan-

tum groups, than the condition of manageability introduced by S.L. Woronowicz. We
prove that all the main results of the theory of manageable multiplicative unitaries
remain true under this weaker condition. We also show that multiplicative unitaries
arising naturally in the construction of some recent examples of non-compact quantum
groups satisfy our condition, but fail to be manageable.

1 Introduction

The theory of multiplicative unitary operators initiated by S. Baaj and G. Skandalis in [2]
has played a central role in the modern approach to quantum groups. A unitary operator
W ∈ B(H ⊗H) is called multiplicative if it satisfies the pentagon equation (cf. [2]):

W23W12 = W12W13W23. (1.1)

However this condition alone does not guarantee that W is a multiplicative unitary related
to a quantum group. S. Baaj and G. Skandalis proposed a condition called regularity which
unfortunately did not fit all applications (cf. [1], Proposition 4.2). In [5] the condition
of regularity was replaced by another one called manageability. In [3] it is shown that
all quantum groups possess a manageable multiplicative unitary which is called the Kac-
Takesaki operator.
As one might expect the manageability condition is often difficult to check in particular
examples. Moreover the natural choice for the multiplicative unitaries in specific examples
like the quantum “ax + b” and “az + b” groups turns out not to be manageable (cf. [6], [7]
and Section 5).
The aim of this paper is to weaken the manageability condition in such a way that it suits
the above mentioned examples (cf. Section 5). The condition we propose is the following:
let H be a Hilbert space and let W ∈ B(H⊗H) be a multiplicative unitary. We will suppose

that there exist two positive selfadjoint operators Q̂ and Q on H with ker Q = ker Q̂ = {0}
and a unitary W̃ ∈ B(H ⊗H) such that

W ∗(Q̂⊗Q
)
W = Q̂⊗Q

∗Partially supported by Komitet Badań Naukowych, grant No. 2 P0A3 030 14 and the Foundation for
Polish Science
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and
(x⊗ u W z ⊗ y) =

(
z ⊗Qu W̃ x⊗Q−1y

)
for all x, z ∈ H, y ∈ D(Q−1) and u ∈ D(Q). We hereby take opportunity to change the
name “manageable” and we shall call a multiplicative unitary satisfying the above condition
a modular multiplicative unitary. The modularity is reflected in the existence of the scaling
group and the polar decomposition of the coinverse (cf. Theorem 2.3).

In case Q̂ = Q we retain manageability and in particular any manageable multiplicative
unitary is modular. It turns out that all the results obtained in [5] are true with these
weaker assumptions. One may try to adapt the proofs from [5] to this new situation, however
we encountered some difficulties with this programme. Instead we will construct a new
multiplicative unitary (on a different Hilbert space) which is manageable and describes the
same quantum group.
In Section 3 we will use an auxiliary separable Hilbert space K and a pair (r, s) of closed
operators acting on K such that s is selfadjoint, r is positive selfadjoint and

ritsr−it = s− tI

for all t ∈ R. An example of such a pair (r, s) on K = L2(R) can be obtained by taking(
sf

)
(x) = xf(x), f ∈ L2(R), x ∈ R

and letting r be the analytic generator of the translation group:(
ritf

)
(x) = f(x− t), f ∈ L2(R), x, t ∈ R

i.e. r = exp(−D) where D = 1
i
∂x.

Let us briefly recall the leg numbering notation which we already used in (1.1). Suppose H
is a Hilbert space and T is an operator in H. Then by Tk we shall denote the operator

I ⊗ · · · ⊗ I︸ ︷︷ ︸
k−1

⊗T ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−k

acting on H⊗n. A more sophisticated version of this notational convention applies to opera-
tors acting on a tensor product of H with itself. Let U ∈ B(H ⊗H). Then Ukl denotes the
operator acting as U on the k-th and l-th copies of H sitting inside H⊗n and as identity on
all remaining copies of H in H⊗n. We say that this operator has legs in the k-th and l-th
factors of the tensor product H⊗n. We will also be using this notation when dealing with
tensor products of different Hilbert spaces.
Let H be a separable Hilbert space and let H be the complex conjugate of H. For any
x ∈ H the corresponding element of H will be denoted by x. Then H 3 x 7→ x ∈ H is an
antiunitary map. In particular (x y) = (y x) for any x, y ∈ H. For any closed operator m
acting on H the symbol m> will denote the transpose of m. By definition D(m>) = D(m∗)
and

m>x = m∗x

for any x ∈ D(m∗). If m ∈ B(H) then m> is the bounded operator on H such that(
x m> y

)
= (y m x) for all x, y ∈ H. Clearly B(H) 3 m 7→ m> ∈ B(H) is an antiiso-

morphism of C∗-algebras. Setting x = x we identify H with H. With this identification
m>> = m for any m ∈ B(H).
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2 The results

Definition 2.1 Let H be a Hilbert space and let W ∈ B(H ⊗H) be a multiplicative unitary
operator. We say that W is modular if there exist two positive selfadjoint operators Q and
Q̂ on H and a unitary operator W̃ ∈ B(H ⊗H) such that ker Q = ker Q̂ = {0},

W
(
Q̂⊗Q

)
W ∗ = Q̂⊗Q (2.1)

and
(x⊗ u W z ⊗ y) =

(
z ⊗Qu W̃ x⊗Q−1y

)
(2.2)

for all x, z ∈ H, u ∈ D(Q) and y ∈ D(Q−1).

We begin with an analogue of Proposition 1.4 of [5]. It shows that the dual multiplicative

unitary (cf. [2]) of a modular multiplicative unitary is modular. The operators Q and Q̂
exchange their positions.

Proposition 2.2 Let H be a Hilbert space, W a modular multiplicative unitary and Q, Q̂
and W̃ the operators related to W in the way described in Definition 2.1. Then

1. W̃and Q̂> ⊗Q−1 commute.

2. For any x ∈ D(Q̂−1), z ∈ D(Q̂) and y, u ∈ H we have

(x⊗ u W z ⊗ y) =
(
Q̂z ⊗ u W̃ Q̂−1x⊗ y

)
. (2.3)

3. The multiplicative unitary Ŵ = ΣW ∗Σ is modular.

Proof: The proof is almost the same as that of Proposition 1.4 of [5]. The necessary
modifications are so easy that we present only the proof of Statement 3 as an example. It is

obvious that Ŵ commutes with Q⊗Q̂. Moreover introducing the unitary
˜̂
W =

(
ΣW̃ ∗Σ

)>⊗>

we have: (
x⊗ u Ŵ z ⊗ y

)
=

(
z ⊗ Q̂u

˜̂
W x⊗ Q̂−1y

)
(2.4)

for any x, z ∈ H, u ∈ D(Q̂) and y ∈ D(Q̂−1). Indeed: using in the fourth step formula (2.3)
we obtain (

z ⊗ Q̂u
(

ΣW̃ ∗Σ
)>⊗>

x⊗ Q̂−1y

)
=

(
x⊗ Q̂−1y ΣW̃ ∗Σ z ⊗ Q̂u

)
=

(
Q̂−1y ⊗ x W̃ ∗ Q̂u⊗ z

)
=

(
Q̂u⊗ z W̃ Q̂−1y ⊗ x

)
= (y ⊗ z W u⊗ x)

= (u⊗ x W ∗ y ⊗ z) = (x⊗ u ΣW ∗Σ z ⊗ y)

and (2.4) follows. It shows that Ŵ is modular. Q.E.D.

Now we will present the main result of the paper.
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Theorem 2.3 Let H be a separable Hilbert space and let W ∈ B(H ⊗ H) be a modular
multiplicative unitary. Define

A =
{

(ω ⊗ id)W : ω ∈ B(H)∗
}norm closure

,

Â =
{

(id⊗ ω)W ∗ : ω ∈ B(H)∗
}norm closure

.

 (2.5)

Then

1. A and Â are nondegenerate separable C∗-subalgebras in B(H).

2. W ∈ M
(
Â⊗ A

)
.

3. There exists a unique ∆ ∈ Mor(A, A⊗ A) such that

(id⊗∆)W = W12W13. (2.6)

Moreover

(i) ∆ is coassociative: (∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

(ii)
{

∆(a)(I ⊗ b) : a, b ∈ A
}

and
{

(a⊗ I)∆(b) : a, b ∈ A
}

are linearly dense
subsets of A⊗ A.

4. There exists a unique closed linear operator κ on the Banach space A such that
{(ω ⊗ id)W : ω ∈ B(H)∗} is a core for κ and

κ
(
(ω ⊗ id)W

)
= (ω ⊗ id)W ∗

for any ω ∈ B(H)∗. Moreover

(i) the domain of κ is a subalgebra of A and κ is antimultiplicative: for any
a, b ∈ D(κ) we have ab ∈ D(κ) and κ(ab) = κ(b)κ(a),

(ii) the image κ(D(κ)) coincides with D(κ)∗ and κ(κ(a)∗)∗ = a for all
a ∈ D(κ),

(iii) the operator κ admits the following polar decomposition:

κ = R ◦ τi/2,

where τi/2 is the analytic generator of a one parameter group {τt}t∈R of
∗-automorphisms of the C∗-algebra A and R is an involutive normal anti-
automorphism of A,

(iv) R commutes with automorphisms τt for all t ∈ R, in particular
D(κ) = D(τi/2),

(v) R and {τt}t∈R are uniquely determined.

5. We have

(i) ∆ ◦ τt = (τt ⊗ τt) ◦∆ for all t ∈ R,

(ii) ∆ ◦R = σ(R⊗R)∆,

where σ denotes the flip map σ : A⊗ A 3 a⊗ b 7→ b⊗ a ∈ A⊗ A.

4



6. Let W̃ and Q be the operators related to W as in Definition 2.1. Then

(i) for any t ∈ R and a ∈ A we have τt(a) = Q2itaQ−2it,

(ii) writing aR instead of R(a) we have W>⊗R = W̃ ∗.

Apart from Statement 5 the conclusion of Theorem 2.3 is the same as that of Theorem 1.5
of [5]. The only difference lies in the weaker condition imposed on W .

3 The modified multiplicative unitary

In this section for a given modular multiplicative unitary W acting on H ⊗ H we shall
construct unitary WM acting on HM ⊗HM. The Hilbert space HM = K ⊗H, where K is the
Hilbert space with a pair (r, s) of operators described in Section 1.
Let W ∈ B(H ⊗ H) be a modular multiplicative unitary. Define a unitary operator
X ∈ B(HM) by

X = (I ⊗Q)i(s⊗I)(I ⊗ Q̂)−i(s⊗I) = Qis1
2 Q̂−is1

2 . (3.1)

Let us notice that
X∗(r ⊗Q)X = r ⊗ Q̂. (3.2)

Indeed: for any t ∈ R we have

(r ⊗Q)itX = (rit ⊗Qit)X = rit
1 Qit

2 Qis1
2 Q̂−is1

2

= rit
1 Q

i(s1+tI)
2 Q̂−is1

2 = Qis1
2 rit

1 Q̂−is1
2

= Qis1
2 Q̂

−i(s1−tI)
2 rit

1 = Qis1
2 Q̂−is1

2 Q̂it
2 rit

1 = X(r ⊗ Q̂)it

and (3.2) follows. Using the same method one can easily check that (2.1) implies that

Qit
2 WQ−it

2 = Q̂−it
1 WQ̂it

1 . (3.3)

Now we can define a unitary operator WM ∈ B(K ⊗H ⊗K ⊗H):

WM = X12W24X
∗
12. (3.4)

Notice that
WM = (α⊗ β)W, (3.5)

where α and β are injective unital and normal ∗-homomorphisms

α : B(H) 3 m 7−→ X(I ⊗m)X∗ ∈ B(K ⊗H),

β : B(H) 3 m 7−→ I ⊗m ∈ B(K ⊗H).

}
(3.6)

Proposition 3.1 WM is a manageable multiplicative unitary acting on HM ⊗HM.

Proof: First we shall prove that WM is a multiplicative unitary. We have to verify that

(WM)23(WM)12 = (WM)12(WM)13(WM)23
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which reads as

X34W46X
∗
34X12W24X

∗
12 = X12W24X

∗
12X12W26X

∗
12X34W46X

∗
34 (3.7)

on K ⊗H ⊗K ⊗H ⊗K ⊗H. By commuting X12 through X34W46X
∗
34 on the left hand side

of (3.7) and moving X∗
12 though X34W46X

∗
34 on the right hand side of (3.7) one reduces (3.7)

to
X34W46X

∗
34W24 = W24W26X34W46X

∗
34. (3.8)

The pentagon equation (1.1) gives us

W46W24 = W24W26W46 (3.9)

Taking into account (3.3) and using the fact that operators with different legs commute we
infer that the right hand side of (3.9) is equal to

RHS = W24Q̂
−is3
2

(
Q̂is3

2 W26Q̂
−is3
2

)
Q̂is3

2 W46

= W24Q̂
−is3
2

(
Q−is3

6 W26Q
is3
6

)
Q̂is3

2 W46

= Q−is3
6 W24Q̂

−is3
2 W26Q

is3
6 W46Q̂

is3
2 .

Thus
W46W24 = Q−is3

6 W24Q̂
−is3
2 W26Q

is3
6 W46Q̂

is3
2 . (3.10)

Applying the map m 7→ Qis3
6 Q̂is3

2 mQ̂−is3
2 Q−is3

6 to both sides of (3.10) and repeatedly using
(3.3) we obtain

Qis3
6 Q̂is3

2 W46W24Q̂
−is3
2 Q−is3

6 = Q̂is3
2 W24Q̂

−is3
2 W26Q

is3
6 W46Q

−is3
6(

Qis3
6 W46Q

−is3
6

)(
Q̂is3

2 W24Q̂
−is3
2

)
=

(
Q̂is3

2 W24Q̂
−is3
2

)
W26

(
Qis3

6 W46Q
−is3
6

)(
Q̂−is3

4 W46Q̂
is3
4

)(
Q−is3

4 W24Q
is3
4

)
=

(
Q−is3

4 W24Q
is3
4

)
W26

(
Q̂−is3

4 W46Q̂
is3
4

)
.

Now we apply the map m 7→ Qis3
4 mQ−is3

4 to both sides of the last equality and use (3.1) to
obtain (3.8) which proves that WM is a multiplicative unitary.
In order to prove manageability of WM we have to construct the operators required by
Definition 1.2 of [5]. Let

QM = r ⊗Q (3.11)

and
W̃M =

(
X>

12

)∗
W̃24X

>
12,

where the symbol > denotes the transposition B(HM) 3 m 7−→ m> ∈ B(HM) (cf. Section
1). Take ξ, ξ′ ∈ K ⊗H and η, η′ ∈ D(r)⊗alg D(Q) ⊂ D(QM). Using selfadjointness of r, the
equation (2.1) and the fact that operators with different legs commute we obtain:

(ξ ⊗ η WM ξ′ ⊗QMη′) = (ξ ⊗ η X12W24X
∗
12 ξ′ ⊗QMη′)

= (X∗ξ ⊗ η W24 X∗ξ′ ⊗QMη′) = (X∗ξ ⊗ η W24 X∗ξ′ ⊗ r1Q2η
′)

= (X∗ξ ⊗ η W24 r3(X
∗ξ′ ⊗Q2η

′)) = (r3(X
∗ξ ⊗ η) W24 X∗ξ′ ⊗Q2η

′)

= (X∗ξ ⊗ r1η W24 X∗ξ′ ⊗Q2η
′) =

(
X∗ξ′ ⊗Q2r1η W̃24 X∗ξ ⊗ η′

)
=

(
X>ξ′ ⊗QMη W̃24 X>ξ ⊗ η′

)
=

(
ξ′ ⊗QMη

(
X>

12

)∗
W̃24X

>
12 ξ ⊗ η′

)
=

(
ξ′ ⊗QMη W̃M ξ ⊗ η′

)
.


(3.12)
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Since D(r)⊗alg D(Q) is a core for QM we have (3.12) for all η, η′ ∈ D(QM). Now replacing η′

by Q−1
M η′ we obtain

(ξ ⊗ η WM ξ′ ⊗ η′) =
(
ξ′ ⊗QMη W̃M ξ ⊗Q−1

M η′
)

for all ξ, ξ′ ∈ K ⊗H, η ∈ D(QM) and η′ ∈ D(Q−1
M ).

It remains to prove that WM commutes with QM ⊗QM. Using formula (3.2), (2.1) and again
(3.2) we obtain

(QM ⊗QM)WM = (r ⊗Q⊗ r ⊗Q)(X ⊗ I ⊗ I)W24(X
∗ ⊗ I ⊗ I)

= (X ⊗ I ⊗ I)(r ⊗ Q̂⊗ r ⊗Q)W24(X
∗ ⊗ I ⊗ I)

= (X ⊗ I ⊗ I)W24(r ⊗ Q̂⊗ r ⊗Q)(X∗ ⊗ I ⊗ I)

= (X ⊗ I ⊗ I)W24(X
∗ ⊗ I ⊗ I)(r ⊗Q⊗ r ⊗Q) = WM(QM ⊗QM).

We have thus checked that WM satisfies all the conditions of Definition 1.2 from [5]. Q.E.D.

We are now free to use the theory presented in [5]. All objects constructed for WM with help
of Theorem 1.5 of that paper will be denoted by letters with a subscript M. For example

AM =
{

(Φ⊗ id)WM : Φ ∈ B(HM)∗
}norm closure

,

ÂM =
{

(id⊗ Φ)W ∗
M : Φ ∈ B(HM)∗

}norm closure

.

}
(3.13)

We also have ∆M, κM, {τMt}t∈R and RM.

4 Proof of Theorem 2.3

Ad 1. We know that AM and ÂM defined by (3.13) are nondegenerate separable
C∗-subalgebras of B(HM). Recall that α and β are ultra-weakly continuous injections of
B(H) into B(HM). Therefore for any normal functional ω on B(H) there exits Φ, Φ′ ∈
B(HM)∗ such that

ω = Φ ◦ α = Φ′ ◦ β.

Keeping this fact in mind, remembering the definitions (2.5) and formula (3.5) we have

β(A) =
{
β
(
(ω ⊗ id)W

)
: ω ∈ B(H)∗

}norm closure

=
{

(ω ⊗ β)W : ω ∈ B(H)∗
}norm closure

=
{

(Φ ◦ α⊗ β)W : Φ ∈ B(HM)∗
}norm closure

=
{

(Φ⊗ id)WM : Φ ∈ B(HM)∗
}norm closure

= AM.

Similarly we prove that
α
(
Â

)
= ÂM.

Now it is easy to see that A and Â are nondegenerate separable C∗-subalgebras in B(H).

Ad 2. We know that WM ∈ M
(
ÂM ⊗ AM

)
. In other words (cf. (3.5))

(α⊗ β)W ∈ M
(
α
(
Â

)
⊗ β(A)

)
= M

(
(α⊗ β)

(
Â⊗ A

))
7



and it follows that W ∈ M
(
Â⊗ A

)
.

Ad 3. We have ∆M ∈ Mor(AM, AM⊗AM) and a ∗-isomorphism β : A → AM, so we can define
∆ = (β ⊗ β)−1∆Mβ. This provides us with a coassociative ∆ ∈ Mor(A, A ⊗ A) such that{

∆(a)(I ⊗ b) : a, b ∈ A
}

and
{

(a⊗ I)∆(b) : a, b ∈ A
}

are linearly dense subsets of A ⊗ A.
Furthermore notice that

(id⊗∆)W =
(
id⊗ (β ⊗ β)−1∆Mβ

)
W

=
(
α−1α⊗ (β ⊗ β)−1∆Mβ

)
W

=
(
α−1 ⊗ (β ⊗ β)−1∆M

)
(α⊗ β)W

=
(
α−1 ⊗ (β ⊗ β)−1∆M

)
WM

= (α⊗ β ⊗ β)−1(id⊗∆M)WM

= (α⊗ β ⊗ β)−1(WM)12(WM)13

= (α⊗ β ⊗ β)−1(WM)12(α⊗ β ⊗ β)−1(WM)13

= (α⊗ β ⊗ id)−1(WM)12(α⊗ id⊗ β)−1(WM)13 = W12W13.

Remark. Despite a fairly complicated way of introducing the comultiplication on A we
can still recover formula (5.1) of [5] i.e.

∆(a) = W (a⊗ I)W ∗ (4.1)

for all a ∈ A (cf. [2], Théorème 3.8). Indeed: take a = (ω⊗ id)W then using (2.6) and (1.1)
we obtain

∆(a) = (ω ⊗ id⊗ id)(id⊗∆)W

= (ω ⊗ id⊗ id)W12W13

= (ω ⊗ id⊗ id)W12W13

= (ω ⊗ id⊗ id)W23W12W
∗
23

= W
(
(ω ⊗ id)W ⊗ I

)
W ∗.

For an arbitrary a ∈ A we use the continuity argument. This also proves the uniqueness of
∆.
Ad 4. Since β is an isomorphism A → AM we can define κ = β−1κMβ. Now it is important
to notice (cf. the proof of Statement 1) that

β−1
(
(Φ⊗ id)WM

)
= (Φ ◦ α⊗ id)W

β−1
(
(Φ⊗ id)W ∗

M

)
= (Φ ◦ α⊗ id)W ∗.

}
(4.2)

Then first of all it follows from (4.2) that

β
({

(ω ⊗ id)W : ω ∈ B(H)∗
})

=
{

(Φ⊗ id)WM : Φ ∈ B(HM)∗
}

.

Furthermore for ω ∈ B(H)∗ we have ω = Φ ◦α for some Φ ∈ B(HM)∗ and using (4.2) we get

κ
(
(ω ⊗ id)W

)
= β−1κMβ

(
(ω ⊗ id)W

)
= β−1κM

(
(Φ⊗ id)WM

)
= β−1

(
(Φ⊗ id)W ∗

M

)
= (ω ⊗ id)W ∗.
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Since
{

(Φ⊗ id)WM : Φ ∈ B(HM)∗
}

is a core for κM we see that
{

(ω ⊗ id)W : ω ∈ B(H)∗
}

is
a core for κ. Now setting

τt = β−1τMtβ, t ∈ R,

R = β−1RMβ

}
(4.3)

we see that assertions (i) – (v) follow directly from analogous statements for AM, κM, RM and
{τMt}t∈R (cf. [5], Theorem 1.5, Statement 4.) and the fact the β is a normal ∗-isomorphism
of A onto AM.
Ad 6. We know (cf. [5], Theorem 1.5, Statement 5) that for any aM ∈ AM and any t ∈ R

τMt(aM) = Q2it
M aMQ−2it

M . (4.4)

Thus formula (i) follows from the first line of (4.3), (4.4), (3.11) and the definition of β.
From the results of [5] (formula (1.14)) we know that

W>⊗RM
M = W̃ ∗

M. (4.5)

Notice that
W̃M = (α> ⊗ β)W̃ , (4.6)

where α> : B(H) → B(HM) is a normal ∗-monomorphism given by

α>(m) =
(
X>)∗

(I ⊗m)X>.

It is easy to check that
> ◦ α = α> ◦ >. (4.7)

Finally recall that from the definition of R (4.3) it follows that

RM ◦ β = β ◦R. (4.8)

Now taking into account (4.6) and (4.5) and using (3.5), (4.7) and (4.8) we obtain

(α> ⊗ β)W̃ ∗ = W̃ ∗
M = W>⊗RM

M

=
(
(α⊗ β)W

)>⊗RM

= (α> ⊗ β)
(
W>⊗R

)
,

which gives formula (ii).
Ad 5. Recall (cf. [5], Theorem 1.5, Statement 5 and formula (5.1)) that for any aM ∈ AM

we have
∆M(aM) = WM(aM ⊗ I)W ∗

M.

Now formula (i) follows from an easy computation:

∆M

(
τMt(aM)

)
= WM

(
τMt(aM)⊗ I

)
W ∗

M

= WM(Q2it
M aMQ−2it

M ⊗ I)W ∗
M

= WM(Q2it
M ⊗Q2it

M )(aM ⊗ I)(Q−2it
M ⊗Q−2it

M )W ∗
M

= (Q2it
M ⊗Q2it

M )WM(aM ⊗ I)W ∗
M(Q−2it

M ⊗Q−2it
M )

= (τMt ⊗ τMt)∆M(aM),

where in the second last equality we used the fact that WM commutes with QM ⊗QM.
For the proof of (ii) we will need two propositions:
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Proposition 4.1 There exists a closed densely defined linear operator T : B(H) → B(H)
such that ker T = {0}, D(T) is a subalgebra of B(H) and T is antimultiplicative. Moreover
the set {

(id⊗ ω)W : ω ∈ B(H)∗
}

is contained in the domain of T and

T
(
(id⊗ ω)W

)
= (id⊗ ω)W̃ .

Proof: Consider a one parameter group R 3 t 7→ σt ∈ Aut
(
B(H)

)
, σt(m) = Q̂itmQ̂−it.

Let σ−i be its analytic generator ([8]). Now for m ∈ D(σ−i) define

T(m) = (σ−i(m))> .

It follows (cf. [8]) that T is a densely defined closed operator whose domain is a subalgebra
of B(H) and that T is antimultiplicative.
Now from formula (2.3) we infer that for any ω ∈ B(H)∗ we have

(x (id⊗ ω)W z) =
(
Q̂z (id⊗ ω)W̃ Q̂−1x

)
for any x ∈ D(Q̂−1) and z ∈ D(Q̂). This can be rephrased as(

z (id⊗ ω)W̃ x
)

=
(
Q̂x (id⊗ ω)W Q̂−1z

)
for any z ∈ D(Q̂−1) and x ∈ D(Q̂). Therefore Q̂

(
(id ⊗ ω)W

)
Q̂−1 extends to a bounded

operator on H and (
Q̂

(
(id⊗ ω)W

)
Q̂−1

)>
= (id⊗ ω)W̃ ∈ B(H).

This shows that any element of the form (id ⊗ ω)W lies in the domain of T and that

T
(
(id⊗ ω)W

)
= (id⊗ ω)W̃ . Q.E.D.

Formula (4.1) allows us to define ∆(m) for any m ∈ B(H) which justifies its use in the
statement of the next proposition.

Proposition 4.2 We have
(id⊗∆)W̃ = W̃13W̃12. (4.9)

Proof: Take µ, ν ∈ B(H)∗ and denote by ν ∗ µ the normal functional (µ ⊗ ν) ◦ ∆. Now
using (2.6) and the fact that T defined in Proposition 4.1 is antimultiplicative we compute:

(id⊗ µ⊗ ν)(id⊗∆)W̃ = (id⊗ ν ∗ µ)W̃

= T
(
(id⊗ ν ∗ µ)W

)
= T

(
(id⊗ µ⊗ ν)(id⊗∆)W

)
= T

(
(id⊗ µ⊗ ν)W12W13

)
= T

(
(id⊗ µ)W (id⊗ ν)W

)
= T

(
(id⊗ ν)W

)
T
(
(id⊗ µ)W

)
= (id⊗ ν)W̃ (id⊗ µ)W̃

= (id⊗ µ⊗ ν)W̃13W̃12.
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Now since functionals of the form µ ⊗ ν separate elements of B(H ⊗ H) we obtain (4.9).
Q.E.D.

We will use formula (4.9) to prove assertion (ii) of point 5 of our theorem. Applying ∗ to
both sides of (4.9) we get

(id⊗∆)W̃ ∗ = W̃ ∗
12W̃

∗
13. (4.10)

Notice that due to (ii) of point 6 of our theorem the left hand side of (4.10) is equal to

(>⊗∆ ◦R)W

while the right hand side of (4.10) equals(
W>⊗R

)
12

(
W>⊗R

)
13

= (>⊗R⊗R)W13W12 = (>⊗R⊗R)(id⊗ σ)(id⊗∆)W.

In other words

(>⊗∆ ◦R)W = (>⊗R⊗R)(id⊗ σ)(id⊗∆)W = (>⊗ σ ◦ (R⊗R) ◦∆)W. (4.11)

Applying (ω ◦>⊗ id) to both sides of (4.11) and taking into account (2.5) we obtain formula
(ii).

5 Applications

In this section we will briefly present two examples of quantum groups whose naturally
occurring multiplicative unitaries are modular, but not manageable. These groups are the
quantum “ax + b” and “az + b” groups constructed in [7] and [6] respectively. The algebras
Ax and Az of continuous functions vanishing at infinity on these groups are generated ([4])
by ax, a

−1
x , bx, β and az, a

−1
z , bz affiliated with Ax and Az. These distinguished elements are

subject to relations
ax and bx are selfadjoint
ax is strictly positive and

ait
x bxa

−it
x = e~tbx

for any t ∈ R,
β2 = χ(bx 6= 0), βax = axβ

and βbx = −bxβ




az and bz are normal operators
Sp az, Sp bz ⊂ Γ, ker az = {0}

(Phase az)bz(Phase az)
∗ = e

2πi
N bz

|az|−itbz|az|it = e
2π
N

tbz

for any t ∈ R



where Γ = {0}∪
N−1⋃
k=0

e
2πi
N

kR+, R+ = {x ∈ R : x > 0} and ~ ∈]0, π[ and N ∈ N are deformation

parameters satisfying additional requirements. The natural choices for multiplicative unitary
operators for these groups are

Wx = F~

(
ei i

~ b−1
x ax ⊗ bx, ie

iπ2

2~ (β ⊗ β)χ (bx ⊗ bx < 0)
)∗

e
i
~ log (|bx|−1)⊗log ax (5.1)

for the “ax + b” group and

Wz = FN

(
azb

−1
z ⊗ bz

)
χ

(
b−1

z ⊗ I, I ⊗ az

)
(5.2)
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for the “az + b” group. In the above formulae we choose representations in which bx and bz

are invertible and F~, FN and χ are special functions. It can be shown that both Wx and Wz

are multiplicative unitary operators, but neither of them is manageable. Nevertheless they
are both modular with

Q̂x = |bx|
1
2 , Qx = (ax)

1
2 ,

Q̂z = |bz|, Qz = |az|
and

W̃x = F~

(
−ei ~

2 (b−1
x ax)

> ⊗ ei ~
2 bxa

−1
x ,−(β ⊗ β)χ

(
ei ~

2 (b−1
x ax)> ⊗ bx > 0

))
e

i
~ log (ax)>⊗log ax ,

W̃z = FN

(
− (azb

−1
z )

> ⊗ e
2πi
N a−1

z bz

)∗
χ

(
b−1

z

> ⊗ I, I ⊗ az

)
.

In both constructions [7] and [6] a clever trick was used to obtain manageability of the
unitaries (5.1) and (5.2). This trick was the basis of our construction of the modified mul-
tiplicative unitary presented in Section 3. Using Theorem 2.3 one is able to carry out the
construction of the two quantum groups without having to resort to some slightly unintuitive
means (cf. [7] Theorem 2.1 and [6] Theorem 3.1).
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