Anomaly driven signatures of extra U(1)'s

I. Antoniadis

CERN

String Phenomenology '09, University of Warsaw, 15-19 June 2009

- Improve the second s
- 2 mixed anomalies and Chern-Simons terms

 \Rightarrow new dimensionless coupling

- axion alternatives and optical experiments
 - I.A.-Boyarsky-Ruchayskiy '06, '07
- anomaly driven signatures at LHC

I.A-Boyarsky-Espahbodi-Rucharsky-Wells '09

→ see also Dudas talk (Dudas, Mambrini, Pokorski, Romagnoli '09)

Extra U(1)'s: generic property of several BSM extensions

- GUTs with rank > 4
- general feature of string compactifications

e.g. in D-brane models: U(N) groups away from orientifolds

Masses and couplings:

- $m_X = g_X v \leftarrow \text{VEV}$ of a Higgs field breaking $U(1)_X$
- $m_X = g_X M \leftarrow$ string (or new physics) scale
 - **(**) anomalous $U(1)_X$ with Green-Schwarz anomaly cancellation
 - In non anomalous in 4d but anomalous in 6d

X couples to Standard Model fermions ⇒
 standard LHC signals e.g. Z'-type phenomenology
 or light with suppressed couplings → 5th force experiments

 $m_X = g_X M \Rightarrow$ small mass from coupling suppression

e.g. in models with large extra dims if X propagates in (part of) the bulk but localized mass from anomalies induced by localized chiral states 2) All Standard Model fermions neutral under X ⇒ hidden?
 No if anomaly driven signatures: low energy (optical experiments) or high energy (LHC)

challenging case: all new fermions charged under SM and X unobservable either heavier than LHC energy or very weakly coupled

naive expectation from decoupling \Rightarrow

at low energies double suppression: coupling + mass

4d anomalies and Green-Schwarz mechanism

$$= k_I^X \sim \operatorname{Tr} Q_X Q_I^2 \to \operatorname{axion} \theta : \delta X = d\Lambda \quad \delta \theta = -M\Lambda$$

$$-\frac{1}{4g_I^2} F_I^2 - \frac{1}{2} (d\theta + MX)^2 + \frac{\theta}{M} k_I^X \operatorname{Tr} F_I \wedge F_I$$
cancel the anomaly

string theory: θ = Poincaré dual of a 2-form $d\theta = *dB_2$

- Heterotic: single universal axion
- Type I: B₂ from the RR closed string sector ⇒
 global U(1)_X symmetry remains in perturbation
 e.g. Baryon or Lepton number

$U(1)_A \times U(1)_X$ example and Chern-Simons terms

X anomalous, A anomaly free \Rightarrow 4d G-S mechanism \Rightarrow X massive cancel mixed anomalies: $XA^2 \sim \text{Tr}Q_XQ_A^2 = k_A^X$ and $X^3 \sim \text{Tr}Q_X^3 = k_X^X$ However it is still possible to have AX^2 anomalies $\sim \text{Tr}Q_AQ_X^2 = k_X^A$

$$-\frac{1}{4g_{I}^{2}}F_{I}^{2}-\frac{1}{2}(d\theta+MX)^{2}+\frac{\theta}{M}k_{I}^{X}F_{I}\wedge F_{I}+k_{X}^{A}\left(A\wedge X\wedge F_{X}+\frac{\theta}{M}F_{A}\wedge F_{X}\right)$$

$$A, X \qquad \text{cancels } AX^{2} \text{ anomaly } A\wedge D\theta\wedge F_{X} \quad (D=d+X)$$

I.A.-Kiritsis-Tomaras '00, Anastasopoulos-Bianchi-Dudas-Kiritsis '06

Interesting physics \rightarrow need $X \land A \land F_A$ term!

- $A \equiv \gamma \Rightarrow$ effects in optical experiments but need small photon mass?
- $A \equiv Z, W \Rightarrow$ LHC physics

$A = \gamma \Rightarrow$ axion alternatives I.A.-Boyarsky-Ruchayskiy '06, '07

 $X \wedge A \wedge F_A \Rightarrow XA$ mixing in the presence of magnetic field $F_A \neq 0$ linearly polarized photon gets a mass \Rightarrow axion behavior, interesting effects Effective action: two axionic phases $X \rightarrow \theta_X$, $A \rightarrow \theta_\gamma$

$$\mathcal{L} = -\frac{1}{4}F_A^2 - \frac{1}{4}F_X^2 + \frac{m_X^2}{2}(D\theta_X)^2 + \frac{m_\gamma^2}{2}(D\theta_\gamma)^2 + \kappa D\theta_\gamma \wedge D\theta_X \wedge F_A$$

 \rightarrow unitary gauge: $-\frac{1}{4}F_X^2 + \frac{m_X^2}{2}X^2 - \frac{1}{4}F_A^2 + \frac{m_\gamma^2}{2}A^2 + \kappa A \wedge X \wedge F_A$ [12]

2 parameters: mass m_X , C-S coupling $\kappa \leftarrow$ dimensionless

 $X_{\mu} \leftrightarrow$ axion: $a \equiv heta_X$ with mass $m_a = m_X$ and decay constant $f_a \equiv rac{m_X}{\kappa}$

however without axion constraint $m_a f_a = m_\pi f_\pi$ [9]

astrophysical constraints $\Rightarrow~m_X/\kappa\gtrsim 10^{10}~{
m GeV}$

results independent on m_{γ} : small, finite

experimental upper bounds on m_{γ} : $10^{-14} - 10^{-16}$ eV

(Coulomb's law - magnetohydrodynamics of solar system) also astrophysics and cosmology bounds $\lesssim 10^{-27}$ eV but model dependent Adelberger, Dvali, Gruzinov '03

or limit $m_\gamma
ightarrow 0$ with the constraint $F_A \wedge F_X = 0$

e.g. add $\phi F_A \wedge F_X + M^2 \phi^2$ with $M \to \infty$

Experimental bounds on Axion Like Particles

Evading the astrophysics bounds

QED with photon mass: em current conservation \Rightarrow high energy longitudinal γ emission suppressed by m_{γ}/E not the case for the X-current: $j_X^{\mu} = \kappa \epsilon^{\mu\nu\lambda\rho} A_{\nu} F_{\lambda\rho}^{A} \Rightarrow \partial_{\mu} j_X^{\mu} = \kappa F_A \tilde{F}_A$ However \mathcal{L} effective up to a scale $\Lambda \lesssim m_X/\kappa$ (unitarity bound) Idea: modify the theory at Λ so that j_X^{μ} becomes conserved e.g. integrate massive fermions of mass $m_f \Rightarrow$ $\delta \mathcal{L} = \kappa A \wedge X \wedge F_A + \kappa \theta_X \frac{m_f^2}{\Box + m_e^2} F_A \wedge F_A - \kappa (\partial_\mu X^\mu) \frac{1}{\Box + m_e^2} F_A \wedge F_A$ $E \ll m_f$: $\kappa A \wedge X \wedge F_A + \kappa \theta_X F_A \wedge F_A \rightarrow \kappa A \wedge d\theta_X \wedge F_A$ as before $E >> m_f: \ \kappa A \wedge X \wedge F_A + \kappa (\partial_\mu X^\mu) \frac{1}{\Box} F_A \wedge F_A$

X-current becomes at high energies:

$$j_{X}^{\mu} = \kappa \epsilon^{\mu\nu\lambda\rho} A_{\nu} F_{\lambda\rho}^{A} - \kappa \frac{\partial^{\mu}}{\Box} F_{A} \tilde{F}_{A} \Rightarrow \partial_{\mu} j_{X}^{\mu} = 0$$

longitudinal X production is then suppressed by $(m_X/E)^2$ avoid astrophysical bounds $\Rightarrow m_f \lesssim \text{keV} \leftarrow \text{stellar energies}$

 $\Rightarrow \kappa m_X \lesssim 10^{-10} \text{ eV}$

- gauging axion shift \Rightarrow no $f_a \leftrightarrow m_a$ relation
- conserved current in star emission \Rightarrow weakened bound on f_a
- can accommodate PVLAS type data

- $m_X \lesssim$ eV: κ small may be obtained from millicharged keV fermions f

$A = Z, W \Rightarrow$ LHC signatures I.A.-Boyarsky-Espahbodi-Ruchayskiy-Wells '09

2 axionic phases: $X \rightarrow \theta_X$, $A \rightarrow \theta_A \equiv SM$ Higgs \Rightarrow [7]

$$\mathcal{L}_{\rm eff} = c_1 D \theta_X \frac{H^{\dagger} D H}{|H|^2} F_Y + c_2 D \theta_X \frac{H F_W D H^{\dagger}}{|H|^2}$$

e.g. integrate out two sets of heavy fermions $f=\{\psi,\chi\}$

- ψ : vector-like w.r.t. SM but chiral w.r.t. $U(1)_X$
- χ : chiral w.r.t. SM but vector-like w.r.t. $U(1)_X$

 \Rightarrow dim-4 effective interaction : $D\theta_X \wedge D\theta_I \wedge F_I$

D'Hoker-Farhi type terms

$$c_2 \rightarrow XW^+W^ c_1 \rightarrow XZY$$
 $(XZ\gamma, XZZ)$ vertices

 \Rightarrow interesting LHC signatures : 3 vector boson final state (even $WZ\gamma$)

X phenomenology

1) **Production** mechanisms of X in hadron colliders similar to Higgs dominant production: $qq' \rightarrow V^* \rightarrow XV' \quad V, V'$: SM gauge bosons vector-boson fusion subdominant unlike Higgs: $qq' \rightarrow qq'VV' \rightarrow qq'X$ $VV' \rightarrow H$ enhanced over $V^* \rightarrow HV'$ for both V, V' longitudinal this cannot be for $H \rightarrow X$

- 2) **Decay** channels $X \rightarrow VV'$ [16]
- 3) Signatures in colliders (LHC)

highest production/decay rate: $\it{pp}
ightarrow X W^{\pm}
ightarrow Z \gamma W^{\pm}$

 $\rightarrow \gamma I^+ I^- I'^{\pm} + \text{missing energy}$

very little background when appropriate cuts

similar event from Higgs production but very suppressed [17]

XV production cross-sections at Tevatron c1 = c2 = 1

XV production cross-sections at LHC c1 = c2 = 0.1

Branching ratios: $X \rightarrow WW$, $X \rightarrow \gamma Z$, $X \rightarrow ZZ$ [13]

spin determination

- angular distribution of photon in the rest frame of $X \rightarrow \gamma Z$ if X scalar \rightarrow flat but if vector \rightarrow non-trivial
- angular distribution of leptons in $Z \rightarrow l^+ l^-$

 $\rightarrow \cos \theta_{I^-}$ distribution in the Z rest frame

Non trivial anomaly cancellation \rightarrow new dimensionless coupling

 \Rightarrow extra 'hidden' U(1)'s may couple to SM gauge bosons V

with no mass suppression

• V =photon \Rightarrow axion alternatives

avoiding mass/coupling relation and strong astrophysical bounds

• $V = W^{\pm}, Z \Rightarrow$ interesting LHC physics main signature: $pp \rightarrow WZ\gamma$