Stabilising the moduli of the supersymmetric Standard Model on the \mathbb{Z}_{6}^{\prime} orientifold

David Bailin \& Alex Love
Department of Physics \& Astronomy
University of Sussex
d.bailin@sussex.ac.uk

US
University of Sussex

Outline

- The supersymmetric Standard Model on the \mathbb{Z}_{6}^{\prime} orientifold
- Fluxes
- Stabilising the moduli
- Summary \& conclusions

The supersymmetric Standard Model on the \mathbb{Z}_{6}^{\prime} orientifold

DB \& Love NPB 809 (2009) 64

- The \mathbb{Z}_{6}^{\prime} orientifold is defined as $T_{1}^{2} \otimes T_{2}^{2} \otimes T_{3}^{2} / \mathbb{Z}_{6}^{\prime} \times \mathcal{R}$. Using complex coordinates $z_{k}(k=1,2,3)$ in each torus T_{k}^{2}, the \mathbb{Z}_{6}^{\prime} point group generator θ acts as $\theta z_{k}=e^{2 \pi i v_{k}} z_{k}$, where $\mathbf{v}=\frac{1}{6}(1,2,-3) . \theta$ must act as an automorphism of the lattice, and we use an $S U(3)$ root lattice in the tori $T_{1,2}^{2}$. \mathcal{R} is the embedding of Ω which acts as $\mathcal{R} z_{k}=\bar{z}_{k}$.
- We have four supersymmetric stacks $\kappa=a, b, c, d$ of \mathbb{Z}_{6}^{\prime}-invariant $D 6$-branes wrapping fractional 3 -cycles with homology class

$$
\kappa=\frac{1}{2}\left(\Pi_{\kappa}^{\mathrm{bulk}}+\Pi_{\kappa}^{\mathrm{ex}}\right)
$$

The bulk 3-cycle $\Pi_{\kappa}^{\text {bulk }}$ wraps a 1-cycle in each T_{k}^{2}; the exceptional 3-cycle $\Pi_{\kappa}^{e x}$ wraps a collapsed 2-cycle, associated with the θ^{3}-twisted sector fixed points in $T_{1}^{2} \times T_{3}^{2}$, times a 1-cycle in T_{2}^{2}.

- Open strings beginning and ending on a stack κ with N_{κ} D6-branes give the (massless) gauge bosons of $U\left(N_{\kappa}\right)=U(1)_{\kappa} \times S U\left(N_{\kappa}\right)$. At the intersections of any two stacks κ and λ there is chiral matter in the bi-fundamental $\left(\mathbf{N}_{\kappa}, \overline{\mathbf{N}}_{\lambda}\right)$ representation of $U\left(N_{\kappa}\right) \times U\left(N_{\lambda}\right)$, where \mathbf{N}_{κ} and $\overline{\mathbf{N}}_{\lambda}$ have charges $Q_{\kappa}=+1$ and $Q_{\lambda}=-1$ with respect to $U(1)_{\kappa}$ and $U(1)_{\lambda}$.
- Under the action of \mathcal{R} each stack λ has an orientifold image $\lambda^{\prime}=\mathcal{R} \lambda$, and at the intersections of κ with the orientifold image λ^{\prime} there is chiral matter in the bi-fundamental $\left(\mathbf{N}_{\kappa}, \mathbf{N}_{\lambda}\right)$ representation of $U\left(N_{\kappa}\right) \times U\left(N_{\lambda}\right)$,
- a has $N_{a}=3, b$ has $N_{b}=2$, and c, d have $N_{c}=1=N_{d}$, so in the first instance the gauge group from these four stacks is

$$
\begin{aligned}
G & =U(3)_{a} \times U(2)_{b} \times U(1)_{c} \times U(1)_{d} \\
& =S U(3)_{\text {colour }} \times S U(2)_{L} \times U(1)_{Y} \times U(1)^{3}
\end{aligned}
$$

- The weak hypercharge Y is a linear combination

$$
Y=\frac{1}{6} Q_{a}-\frac{1}{2} Q_{c}+\frac{1}{2} Q_{d}
$$

of the charges Q_{κ}. In our model the number of intersections of a with b, b^{\prime} is

$$
\left(a \cap b, a \cap b^{\prime}\right)=(2,1) \longrightarrow 3 Q_{L}
$$

and these give three quark doublets $3 Q_{L}$ having $Y=\frac{1}{6}$, two with $\left(Q_{a}, Q_{b}\right)=(1,-1)$ and one with $\left(Q_{a}, Q_{b}\right)=(1,1)$.

- The remaining intersections are

$$
\begin{aligned}
\left(a \cap c, a \cap c^{\prime}\right) & =(0,0) \\
\left(a \cap d, a \cap d^{\prime}\right) & =(-3,-3) \longrightarrow\left(3 d_{L}^{c}, 3 u_{L}^{c}\right) \\
\left(b \cap c, b \cap c^{\prime}\right) & =(-2,1) \longrightarrow 3 L \\
\left(b \cap d, b \cap d^{\prime}\right) & =(1,1) \longrightarrow\left(H_{d}, H_{u}\right) \\
\left(c \cap d, c \cap d^{\prime}\right) & =(-3,-3) \longrightarrow\left(3 \ell_{L}^{c}, 3 \nu_{L}^{c}\right)
\end{aligned}
$$

- In orientifolds there is also chiral matter on a stack κ in the $\mathbf{N}_{\kappa} \times \mathbf{N}_{\kappa}$ representation of $S U\left(N_{\kappa}\right)$ on the branes (as well as gauge particles). For the $S U(3)$ stack a this gives $\mathbf{3} \times \mathbf{3}=\mathbf{6}+\overline{\mathbf{3}}$, and for the $S U(2)$ stack b $2 \times 2=3+1$. In our model, both symmetric and antisymmetric representations are absent on all stacks. $\#\left(\mathbf{S}_{\kappa}\right)=0=\#\left(\mathbf{A}_{\kappa}\right)$.
- Overall, we have the spectrum of the supersymmetric Standard Model plus three right-chiral neutrino singlets $3 \nu_{L}^{c}$.
- Conservation of the $U(1)$ charges Q_{κ} allows Yukawa couplings of the Higgs $H_{u, d}$ for one (or two) generations, but not three.
- Any anomalous $U(1)$ acquires a string scale mass, $\mathrm{O}\left(10^{17}\right) \mathrm{GeV}$ in a supersymmetric theory, and survives only as a global symmetry. In our model $U(1)_{Y}$ is massless, as required.

HOWEVER,

- So too is $U(1)_{B-L}$, where

$$
B-L=\frac{1}{3} Q_{a}-Q_{c}
$$

The other two $U(1)$ s survive as global symmetries.

- Also, for this to be a consistent string theory realisation there must be overall cancellation of RR tadpoles, which requires that the overall homology class of the D6-branes and the O6-plane must vanish, whereas in our model

$$
\sum_{\kappa=a, b, c, d} N_{\kappa}\left(\kappa+\kappa^{\prime}\right)-4 \pi_{\mathrm{O} 6} \neq 0
$$

Fluxes

- The massless fields in the RR sector of type IIA include a 1-form C_{1}, with field strength $F_{2}=d C_{1}$ dual to the 8-form field strength $F_{8}=d C_{7}={ }^{*} F_{2}$ associated with the 7-form potential C_{7} to which the the D6-branes $\kappa=a, b, c, d$ are (electrically) coupled.
- The type IIA action then includes terms

$$
S_{I I A} \supset-\frac{1}{2 \kappa_{10}^{2}} \int F_{2} \wedge^{*} F_{2}+\sqrt{2} \mu_{6} \sum_{\kappa} N_{\kappa} \int_{\mathcal{M}_{4} \times \kappa} C_{7}
$$

The sum in the C_{7} tadpole term includes contributions from κ^{\prime} and the O6-plane. In the massive version, $F_{2}=d C_{1}+m_{0} B_{2}+\bar{F}_{2}$, where \bar{F}_{2} is the background flux, and

$$
\begin{aligned}
F_{2} \wedge^{*} F_{2} & =F_{2} \wedge\left(d C_{7}+\ldots\right) \\
& =d\left(F_{2} \wedge C_{7}\right)+C_{7} \wedge\left(-m_{0} \bar{H}_{3}+\ldots\right)
\end{aligned}
$$

with $H_{3}=d B_{2}+\bar{H}_{3}$ and \bar{H}_{3} also background flux. Hence background fluxes $m_{0} \bar{H}_{3}$ also contributes to the RR tadpole cancellation conditions

$$
\frac{1}{2 \kappa_{10}^{2}} \pi_{m_{0} \bar{H}_{3}}+\sqrt{2} \mu_{6}\left(\sum_{\kappa} N_{\kappa}\left(\kappa+\kappa^{\prime}\right)-4 \pi_{\mathrm{O} 6}\right)=0
$$

where $\pi_{m_{0}} \bar{H}_{3}$ is the Poincaré dual 3-cycle of the 3 -form $m_{0} \bar{H}_{3}$. In our model tadpole cancellation requires that the flux $m_{0} \bar{H}_{3} \neq 0$.

- There is also a 4 -form field strength F_{4} associated with C_{3}, which in the massive theory is given by $F_{4}=d C_{3}+\bar{F}_{4}-C_{1} \wedge H_{3}-\frac{m_{0}}{2} B_{2} \wedge B_{2}$. Here \bar{F}_{4} is the background flux used to stabilise the Kähler moduli

$$
\bar{F}_{4}=\sum_{a} e_{a} \tilde{w}_{a}
$$

with \tilde{w}_{a} the $h_{+}^{2,2}=h_{-}^{1,1}$ untwisted and twisted (2,2)-forms having $\mathcal{R}=+1$.

Stabilising moduli

DeWolfe et al. JHEP07 (2005) 066

Ihl \&Wrase JHEP07 (2006) 027

- Axions enter $S_{I I A}$ via the Chern-Simons term $C_{3} \wedge \bar{H}_{3} \wedge d C_{3}$. Since C_{3} and \bar{H}_{3} live only on the compact space Y, this is non-zero only when $d C_{3}=f d^{4} x \equiv \mathcal{F}_{0}$, which enters the action as a Lagrange multiplier

$$
S_{I I A} \supset-\frac{1}{2 \kappa_{10}^{2}} \int\left(\mathcal{F}_{0} \wedge^{*} \mathcal{F}_{0}+2 \mathcal{F}_{0} \wedge X\right)
$$

where $X=\bar{F}_{6}+B_{2} \wedge \bar{F}_{4}+C_{3} \wedge \bar{H}_{3}-\frac{m_{0}}{6} B_{2} \wedge B_{2} \wedge B_{2}$. Eliminating \mathcal{F}_{0} gives $\int X=0$, which fixes a single linear combination of the axions in C_{3}. On the \mathbb{Z}_{6}^{\prime} orbifold $h^{2,1}=5$, and there are four untwisted and eight twisted 3 -forms, six with $\mathcal{R}=1$ and six with $\mathcal{R}=-1$. C_{3} has $\mathcal{R}=1$, so five axions are unfixed by \bar{H}_{3}. Their stabilisation will need non-perturbative world-sheet instanton effects that are allowed by the \mathcal{R}-projection and the non-zero fluxes.

- Grimm \& Louis NPB 718 (2005)153 Alternatively, the effective four-dimensional $\mathcal{N}=1$ supergravity is obtained by performing the orientifold projection \mathcal{R} on the $\mathcal{N}=2$ theory for the vector mutiplets (Kähler moduli t_{a}) and hypermultiplets (complex structure moduli and dilaton N_{k}). In a supersymmetric theory, for any field Φ_{i},

$$
\begin{gathered}
F_{i} \equiv D_{i} W=\partial_{i} W+W \partial_{i} K=0, \quad W=W^{K}\left(t_{a}\right)+W^{Q}\left(N_{k}\right) \\
W^{K}=\int \bar{F}_{6}+\int J_{c} \wedge \bar{F}_{4}-\frac{1}{2} \int J_{c} \wedge J_{c} \wedge \bar{F}_{2}-\frac{m_{0}}{6} \int J_{c} \wedge J_{c} \wedge J_{c} \\
W^{Q}=\int \Omega_{c} \wedge \bar{H}_{3}
\end{gathered}
$$

and $K=K^{K}+K^{Q}$. Here $J_{c}=\sum_{a} t_{a} w_{a}$ is the complexified Kähler form, and $\Omega_{c}=\sum_{k} 2 N_{k} \alpha_{k}$ the complexified 3-form. Since the derivatives $\partial_{N_{k}} W^{Q}$ are real, the equations $\operatorname{Im} F_{N_{k}}=0$ yield one constraint $\operatorname{Re} W=0$ which, as before, stabilises one linear combination of the (six) axions.

- The equations $\operatorname{Re} F_{N_{k}}=0$ fix the $h^{2,1}$ complex-structure moduli and the dilaton.
- Since $\operatorname{Re} W=0$, the equations $\operatorname{Im} F_{t_{a}}=0$ for the Kähler moduli $t_{a} \equiv b_{a}+i v_{a}$ require that $\operatorname{Im}\left(\partial_{t_{a}} W^{K}\right)=0$. Taking $\bar{F}_{2}=0$, for example, these are most easily satisfied by taking $b_{a}=0 \forall a$. Thus the (eleven) Kähler moduli axions are all fixed.
- With these solutions, the equations $\operatorname{Re} F_{t_{a}}=0$ give $h_{-}^{1,1}$ equations for the volumes v_{a}. On the \mathbb{Z}_{6}^{\prime} orientifold, the θ^{3}-twisted sector $(1,1)$-forms are associated with fixed points in $T_{1}^{2} \times T_{3}^{2}$, so there are trilinear couplings in $W^{K}\left(t_{a}\right)$, deriving from the $J_{c} \wedge J_{c} \wedge J_{c}$ term, involving the moduli associated with two twisted $(1,1)$-forms and the untwisted (1,1)-form associated with T_{2}^{2}. The equations therefore couple the blow-up volumes V_{j} to the untwisted volume v_{2} of T_{2}^{2}. For example, $v_{2} v_{3} \sim e_{1} / m_{0}, v_{2} V_{j} \sim E_{j} / m_{0}$, where e_{1}, E_{j} are the \bar{F}_{4} fluxes on the untwisted, twisted $(2,2)$-forms $\tilde{w}_{1}, \tilde{W}_{j}$.
- The solutions of these equations are valid provided that both the untwisted volumes v_{k} and the blow-up volumes V_{j} are sufficiently large that $\mathrm{O}\left(\alpha^{\prime}\right)$ corrections to $S_{\text {IIA }}$ are negligible. We also require that $v_{k} \gg V_{j}$,, so that we remain within the Kähler cone: $v_{k} \gg V_{j}, \gg 1$.
- This requires that the fluxes on the untwisted forms are much larger than those on the twisted forms, and that both are large enough to justify the neglect of the $\mathrm{O}\left(\alpha^{\prime}\right)$ corrections: $e_{k} \gg E_{j} \gg m_{0}$. The background flux \bar{F}_{4} does not contribute to RR tadpole cancellation, so we are free to choose it so that such a geometric solution is justified. Because of the coupling of v_{2} to the blow-up volumes V_{j}, satisfying the constraints requires us to choose $e_{1} \sim e_{3} \gg e_{2} \gg E_{j} \gg m_{0}$. Further, in this large-volume limit the coupling constant is small, quantum corrections are suppressed, so the supersymmetric vacuum is stable against corrections.

Summary \& conclusions

We have constructed 4-stack models with just the spectrum of the (supersymmetric) standard model, plus three neutrino singlets $3 \nu_{L}^{c}$. The Yukawas couple H_{u}, H_{d} to one (or two) matter generations.

However, there remains a single unwanted massless
$U(1)_{B-L}$, and all models have uncancelled RR tadpoles.

The RR tadpoles require the introduction of non-zero background fluxes m_{0}, \bar{H}_{3} to cancel them. They determine which one of the complex-structure axions is stabilised.

The Kähler moduli and dilaton can be stabilised using other background fluxes $\bar{F}_{2,4}$. Choosing \bar{F}_{4} large enough ensures the validity of the supergravity approximation.

It remains to consider coupling constant unification, determination of the Yukawas, and stabilisation of the complex-structure axions.

