Grand F-theory Uplifts Ralph Blumenhagen

Max-Planck-Institut für Physik, München

based on: (Bhg., B. Jurke, T. Grimm and T. Weigand, arXiv:0906.0013) substantial overlap with: (A. Collinucci, arXiv:0906.0003)

Grand Unification from String Theory

Grand Unification from String Theory

Realizations of GUTs from String Theory

- Weakly coupled $E_8 \times E_8$ Heterotic String (heterotic orbifolds)
 - SU(N) bundles embedded into E_8
 - hierarchy $M_X/M_{\rm pl} \simeq 10^{-3} \Rightarrow$ "large" threshold corrections at M_X , anisotropic backgrounds
 - GUT breaking via discrete Wilson lines
- F-theory/Type IIB with 7-branes:
 - no exceptional groups via perturbative string
 - F-theory: non-perturbative states (string junctions) realize E_8 and its subgroups
 - hierarchy $M_X/M_{\rm pl} \simeq 10^{-3} \Rightarrow \text{GUT}$ brane wraps del Pezzo surface (exist a limit where gravity decouples)
 - GUT breaking via $U(1)_Y$ flux

Basic idea of F-Theory

Basic idea of F-Theory

F-theory is a way of book-keeping of the positions of more general (p,q)-7-branes in Type IIB $\mathcal{N} = 1$ compactifications

elliptic fibration : $Y \to B_3$

(Vafa,Nucl.Phys.B469:403,1996), (Beasley, Heckman, Vafa, arXiv:0802.3391 & 0806.0102), (Donagi, Wijnholt, arXiv:0802.2969) Warsaw, 18.06.2009 - p.3/23

Working hypothesis: decoupling of GUT scale from Planck scale \rightarrow localization of GUT physics on del Pezzo surfaces (Beasley, Heckman, Vafa, arXiv:0806.0102)

Shortcomings of a purely local approach:

- Missing stringy global consistency conditions: landscape vs. swampland
- Physics of abelian gauge symmetries: Green-Schwarz mechanism, trivial cycles in B_3 .
- closed string moduli stabilization: need to explain why susy breaking is subleading to gauge mediation (see F. Quevedo's talk)

series of recent papers: (Tatar, Watari, Donagi, Wijnholt, Beasley, Heckman, Vafa, Marsano, Saulina, Schäfer-Nameki, Plauschinn, Kane et. al.)

Program:

- Embed the local ideas into a global framework: F-theory on compact elliptically fibered four-folds
- Derivation of the global consistency conditions
- First step: Formulate the consistency conditions on much better understood global Type IIB orientifolds (T. Weigand's talk)
- Up-lift and generalize them to genuine F-theory models (this talk)
- Study of consequences of $U(1)_Y$ flux (Bhg, arXiv:0812.0248)
- Moduli stabilization → gravity/moduli/gauge mediated supersymmetry breaking and "low" energy signatures at LHC

Creating del Pezzos

Creating del Pezzos

Identify geometries X that contain del Pezzo surfaces with $h_2(dP_n, \mathbb{Z}) > h_2(X, \mathbb{Z})$. (Grimm, Klemm, 2008)

• Start with the Quintic $Q = \mathbb{P}^4[5]$ and choose the quintic constraint as

$$x_5^2 P_3(x_1, x_2, x_3, x_4) + x_5 P_4(x_1, \dots, x_4) + P_5(x_1, \dots, x_4) = 0$$

At $(x_1, x_2, x_3, x_4, x_5) = (0, 0, 0, 0, 1)$ a del Pezzo singularity of the form $dP_6 = \mathbb{IP}^3[3]$ is generated.

- blow up singularity by pasting in a ${\rm dP_6}\to Q_1^{{\rm dP_6}}$ with $(h^{1,1},h^{2,1})=(2,90)$
- only a single $f \in H_2(dP_6, \mathbb{Z})$ is non-trivial in $H_2(Q_1, \mathbb{Z})$ \Rightarrow essential ingredient for massless $U(1)_Y$

Such geometries are naturally described in toric geometry: scaling relations: $\{x_i\} \simeq \{\lambda^{q_a(x_i)}x_i\}$

	u_1	u_2	u_3	u_4	v	w	p
q_1	1	1	1	1	1	0	5
q_2	0	0	0	0	1	1	2
class	Η	Н	Η	Н	H + X	Х	5H+2X

• Sequence of transitions:

- new del Pezzos intersect in \mathbb{P}^1
- E_6 sublattice of each higher dP_n is trivial on Calabi-Yau

Warsaw, 18.06.2009 - p.7/23

Toric data for $Q_2^{(dP_7)^2}$:

	u_1	u_2	u_3	v_1	v_2	w_1	w_2	p
q_1	1	1	1	1	1	0	0	5
q_2	0	0	0	0	1	1	0	2
q_3	0	0	0	1	0	0	1	2
class	Н	Η	Η	H+Y	H +X	Х	Y	5H+2X+2Y

Orientifold projection

Orientifold projection

Specify orientifold projection $\Omega\sigma(-1)^{F_L}$: (Bhg. , V. Braun, T. Grimm and T. Weigand, arXiv:0811.2936)

• Type 1: reflection symmetry. For $Q_1^{\mathrm{dP}_6}$ consider

 $\sigma: v \to -v$

requires that def. polynomial contains even powers of v, w, i.e. $P_{5,2} = p(u_i)_{3,0} v^2 + q(u_i)_{5,0} w^2 \Rightarrow \text{O7-planes:}$ $O7 = D_v + D_w$

• Type 2: exchange symmetry. For $Q_2^{(dP_7)^2}$ consider

$$\sigma: v_1 \leftrightarrow v_2, \qquad w_1 \leftrightarrow w_2$$

which exchanges the two dP₇. Using Q^2 and Q^3 the O7-plane wraps the surface $v_1 w_1 = v_2 w_2$ in the homol. class [H + X + Y].

F-Theory uplift

F-Theory uplift

F-Theory: elliptic fibration Y over base B with degenerations over divisors $D_i \subset B$.

$$\sum_{i} n_i D_i = 12 c_1(B)$$

with n_i : degree of zeroes of $\Delta = 4f^3 + 27g^2$.

- Y is smooth $\Leftrightarrow B$ is Fano, $(-K_B|_C > 0 \quad \forall \text{ curves } C)$ $\Rightarrow \text{ only } I_1 \text{ degenerations of fiber and}$ $\chi^*(Y) = 12 \int_B c_1(B) c_2(B) + 360 \int_B c_1^3(B)$
- Non-abelian enhancement for proper singularities in Y $\Rightarrow \chi(Y) = \chi^*(Y) - \delta$ For a singularity of type G along D: $\chi(Y) = \chi^*(Y) - r_G c_G (c_G + 1) \int_D c_1(D)^2$ (Andreas, Curio, arXiv:0902.4143)

Sen limit

Sen limit

Connection to IIB orientifold on CY 3-fold X by Sen limit:

• General ansatz:
$$f = -3h^2 + \epsilon \eta, \qquad g = -2h^3 + \epsilon h\eta - \frac{\epsilon^2}{12}\chi$$

- IIB limit: $\epsilon \to 0 \Rightarrow \Delta = -9\epsilon^2 h^2 (\eta^2 h\chi) + \mathcal{O}(\epsilon^3)$ $O7: h = 0, \qquad D7: \eta^2 - h\chi = 0$
- X: double cover of base B branched over h = 0, simplest case: X given by equation h = ξ², orientifold ξ → -ξ.

Uplift: reversal of Sen limit

- take $B = X/\sigma$ and consider Weierstrass fibration over B
- Check: $\chi(Y)/24 = \frac{\chi(D_{O7})}{12} + \sum_a N_a \frac{\chi(D_a)}{24}$ for configuration of D7-branes on top of O7-plane

Construction of $B = X/\sigma$: (Collinucci, arXiv:0812.0175) 2-1 map $X \to B$: $(u_i, v, w) \mapsto (u_i, v^2, w^2) \equiv (u_i, \tilde{v}, \tilde{w})$

	u_1	u_2	u_3	u_4	ilde v	ŵ	<i>p</i>
Q_1	1	1	1	1	2	0	5
Q_2	0	0	0	0	1	1	1
class	Ρ	Ρ	Ρ	Ρ	2P +X	Х	5P+X

- B is not Calabi-Yau: $K_B^{-1} = P + X$
- B can be analyzed with toric methods: $\chi(2P+X)=55, \qquad \chi(X)=9$, i.e. topology of O7-plane unchanged
- 4-fold Y: Weierstrass model: $y^2 = x^3 + x z^4 f(u_i, \tilde{v}, \tilde{w}) + z^6 g(u_i, \tilde{v}, \tilde{w})$

Warsaw, 18.06.2009 - p.12/23

B is not Fano \leftrightarrow generic appearance of singularities!

- Type IIB picture: Naively: cancel O7-tadpole by $1 \times [8D_v] + 1 \times [8D_v]$ $\Rightarrow \chi^*(Y) = \frac{1}{2}(\chi_0(8D_v) + \chi_0(8D_w)) + 2\chi(O7) = 1728$ But: dP_6 along $[D_w]$ is rigid $\Rightarrow \exists$ no single brane of charge $[8D_w] \Rightarrow$ minimal gauge group: $SO(1) \times SO(8)$ \Rightarrow branes $1 \times [8D_v] + 8 \times [D_w]$ with $\chi(Y) = 1224$
- F-theory picture: Naively: $\chi^*(Y) = 12 \int_B c_1(B) c_2(B) + 360 \int_B c_1^3(B) = 1728 \quad \checkmark$ But gauge enhancement SO(8) along $D_{\tilde{w}}$: $\chi(Y) = \chi^*(Y) - r_{SO(8)} c_{SO(8)} (c_{SO(8)} + 1) \int_{D_{\tilde{v}}} c_1(D_{\tilde{v}})^2$ $= 1228 \quad \checkmark$

Gauge enhancements from Tate's algorithm:

$$y^2 + x y z a_1 + y z^3 a_3 = x^3 + x^2 z^2 a_2 + x z^4 a_4 + z^6 a_6,$$

with $a_n \in H^0(B, K_B^{-n}).$

- Gauge group along $D \leftrightarrow$ order of zeroes of a_n and Δ
- O7-plane in Sen limit: $h = a_1^2 + 4a_2 \Rightarrow$ F-theory with orientifold limit $h = \tilde{v}\tilde{w} = 0 \iff$ $a_1 = p_1(\mathbf{u})\tilde{w}, \qquad a_2 = c_0 \tilde{v}\tilde{w} - \frac{1}{4}p_1^2(\mathbf{u})\tilde{w}^2$
- generic choice of $a_1, a_2 \rightarrow$ inherently non-pert. vacua

Questions:

- Do general Type IIB configurations survive uplift?
- Does uplift of IIB geometry allow for interesting non-pert. gauge groups?

sing.	discr.	group	coefficient vanishing degrees					
type	$\deg(\Delta)$	enhancement	ment a_1 a_2 a_3		a_4	a_6		
I ₀	0		0	0	0	0	0	
I_1	1	—	0	0	1	1	1	
I_2	2	SU(2)	0	0	1	1	2	
$\mathrm{I}_3^{\mathrm{ns}}$	3	[unconv.]	0	0	2	2	3	
I_3^{s}	3	[unconv.]	0	1	1	2	3	
$\mathrm{I}_{2k}^{\mathrm{ns}}$	2k	SP(2k)	0	0	k	k	2k	
$\mathbf{I}_{2k}^{\mathrm{s}}$	2k	SU(2k)	0	1	k	k	2k	
$\mathbf{I}_{2k+1}^{\mathrm{ns}}$	2k + 1	[unconv.]	0	0	k+1	k+1	2k + 1	
I_{2k+1}^{s}	2k + 1	SU(2k+1)	0	1	k	k+1	2k + 1	
II	2		1	1	1	1	1	
III	3	SU(2)	1	1	1	1	2	
$\rm IV^{ns}$	4	[unconv.]	1	1	1	2	2	
IV^{s}	4	SU(3)	1	1	1	2	3	
I_0^{*ns}	6	G_2	1	1	2	2	3	
	-	-	-		ALAISIT	Warsaw	18.06.2009 -	

Warsaw, 18.06.2009 - p.15/23

sing.	discr.	group	coefficient vanishing degrees						
type	$\deg(\Delta)$	enhancement	a_1	a_2	a_3	a_4	a_6		
I_0^* ss	6	SO(7)	1	1	2	2	4		
$I_0^{* s}$	6	$SO(8)^*$	1	1	2	2	4		
$I_1^{*\mathrm{ns}}$	7	SO(9)	1	1	2	3	4		
$I_1^{* \ s}$	7	SO(10)	1	1	2	3	5		
I_2^{*ns}	8	SO(11)	1	1	3	3	5		
I_2^{*s}	8	$SO(12)^{*}$	1	1	3	3	5		
$\mathrm{I}_{2k-3}^{*\mathrm{ns}}$	2k + 3	SO(4k+1)	1	1	k	k+1	2k		
$I_{2k-3}^{* s}$	2k + 3	SO(4k+2)	1	1	k	k+1	2k + 1		
$I_{2k-2}^{* ns}$	2k + 4	SO(4k+3)	1	1	k+1	k+1	2k + 1		
$\mathrm{I}_{2k-2}^{*\mathrm{s}}$	2k + 4	$SO(4k+4)^*$	1	1	k+1	k+1	2k + 1		
IV ^{* ns}	8	F_4	1	2	2	3	4		
$\mathrm{IV}^{*\mathrm{s}}$	8	E_6	1	2	2	3	5		
III^*	9	E_7	1	2	3	3	5		
II*	10	E_8	1	2	3	4	5		

 $M_{h_{\mu}h_{fystt}}$ Warsaw, 18.06.2009 - p.16/23

Observations

Observations

 non-local cancellation: IIB: $8 \times [D_{u_1}] + 16 \times [D_w] \Rightarrow G = SO(8) \times SP(16)$ F-theory: $a_1 = p_1(\mathbf{u}) \tilde{w}$, $a_2 = \tilde{v} \tilde{w} - \frac{1}{4} (p_1(\mathbf{u}) \tilde{w})^2$, $a_3 = 0, \quad a_4 = c \, u_1^4 \tilde{w}^4, \quad a_6 = 0$ discriminants: $\Delta_{\epsilon} \simeq \epsilon^2 u_1^8 \, \tilde{w}^{10} \, \tilde{v}^2$, $\Delta_F \simeq \epsilon^2 u_1^8 \, \tilde{w}^{10} \, (\tilde{v}^2 - \epsilon 4 c u_1^4 \tilde{w}^2)$ non-pert. splitting of part of the O7-plane along $D_{\tilde{v}}$

• minimal gauge group: IIB: $1 \times [8D_w] + 8 \times [D_v] \Rightarrow G = SO(8)$ F-theory : all $a_n = \tilde{w}^{d_n}(\ldots)$ with $(d_1, d_2, d_3, d_4, d_6) = (1, 1, 2, 2, 3)$ $\Delta_F = \tilde{w}^6 \Rightarrow G = G_2$ Sen limit: discard $a_6/a_i \rightarrow 0 \Rightarrow G_2 \rightarrow SO(8)$

Exceptional enhancements

Exceptional enhancements

Off the orientifold locus: exceptional gauge enhancements possible!

Example: E_6 along $dP_6 D_{\tilde{w}}$:

• E_6 along surface $\tilde{w} = 0$:

$$a_{1} = p_{(1,0)} \tilde{w}, \quad a_{2} = p_{(2,0)} \tilde{w}^{2}, \quad a_{3} = p_{(3,1)} \tilde{w}^{2},$$

$$a_{4} = p_{(4,1)} \tilde{w}^{3}, \quad a_{6} = p_{(6,1)} \tilde{w}^{5}$$

- E_7 on curve $\tilde{w} = p_{3,1} = 0$: 27 matter
- E_8 at point $\tilde{w} = p_{3,1} = p_{4,1} = 0$: **27**³ Yukawa
- Q: Can one also realize 16 of SO(10) and Yukawa 10105_H of SU(5)?
- A: No, as $\tilde{w} = p_{2,1} = 0$ is in the Stanley-Reisner ideal!

Consider now: $Q_2^{(dP_7)^2}$ with exchange involution $(h_{1,1}^- = 1)$: $\sigma: v_1 \leftrightarrow v_2, w_1 \leftrightarrow w_2$ and O7-plane: $v_1v_2 - w_1w_2 = 0$

Define 2 - 1 map: $(u_i, v_1, v_2, w_1, w_2) \mapsto (u_i, v_1 v_2, w_1 w_2, v_1 w_1 + v_2 w_2) \equiv (u_i, v, w, h)$

toric data:

	u_1	u_2	u_3	v	h	w	<i>p</i>
Q_1	1	1	1	2	1	0	5
Q_2	0	0	0	1	1	1	2
class	Ρ	Ρ	Ρ	2P+X	P+X	Х	5P+2X

We have lost one divisor and one equivalence relation.

Spinors of SO(10)

Spinors of SO(10)

- *B* is non-Fano, as there exists a singular curve on O7
- In the Tate form, a₁ and a₂ can have more terms a₁ = c_h h + p₁(**u**) w a₂ = c₀ v w + c_{h²} h² + q₁(**u**) h w + p₂(**u**) w². Orientifold uplift: b₂ = η(h² − 4v w) ⇒ restricts a₂.
- SO(10) enhancement on divisor D_w : $a_1 = p_{(1,0)} \tilde{w}, \quad a_2 = p_{(2,1)} \tilde{w}, \quad a_3 = p_{(3,1)} \tilde{w}^2,$ $a_4 = p_{(4,1)} \tilde{w}^3, \quad a_6 = p_{(6,1)} \tilde{w}^5,$
- E₆ enhancement over g = 1 curve w = p_(2,1) = 0: spinors 16 of SO(10)
- SO(12) enhancement on g = 4 curve $\{w = p_{(3,1)} = 0\}$: Higgs fields in the 10 representation
- E_7 enhancement over the 6 points $\{w = p_{(2,1)} = p_{(3,1)} = 0\}$: 161610 Yukawa coupling

Warsaw, 18.06.2009 - p.20/23

SU(5) enhancement

SU(5) enhancement

SU(5) GUTs (away from IIB limit):

- SU(5) enhancement over w = 0: $a_1 = p_{(1,1)}, \quad a_2 = p_{(2,1)}w, \quad a_3 = p_{(3,1)}, w^2,$ $a_4 = p_{(4,1)}w^3, \quad a_6 = p_{(5,0)}w^6$
- SO(10) enhancement over curve $\{w = p_{(1,1)} = 0\}$: matter in **10**
- SU(6) enhancement over curve $\{w = p_{(3,1)} = 0\}$: matter in $\overline{\mathbf{5}}$
- SO(12) enhancement over the point $\{w = p_{(1,1)} = p_{(3,1)} = 0\}$: Yukawa $\mathbf{10}\,\overline{\mathbf{5}}\,\overline{\mathbf{5}}$
- E_6 enhancement over $\{w = p_{(1,1)} = p_{(2,1)} = 0\}$: Yukawa 10105_H, but: X(P + X)(2P + X) = 0

Conclusions

Conclusions

F-theory/IIB orientifold compactifications provide new and very promising string theory realizations of SU(5) GUTs:

- Better understanding of CY 4-folds and its degenerations \rightarrow F-theory uplift of orientifold models
- Uplifted orientifold geometries can lead to E_8 structures on general F-theory moduli space. Challenge: $10\,10\,5_{\rm H}$ Yukawa
- Systematic searches for global GUTs, include G_4 flux in F-theory
- Include moduli stabilization in the construction, susy breaking (see F. Quevedo's talk)
- Implications for the so-called landscape of string vacua \rightarrow deconstruction of landscape philosophy?

Reminder

Reminder

You are all welcome to apply for (deadline June 15!)

 KITP workshop: Strings at the LHC and in the early Universe: R. Blumenhagen, M. Cvetic, P. Langacker, H. Verlinde, Santa Barbara, March 8 - May 14, 2010

