Local Phenomenological Models in M-Theory and F-Theory

Jacob L. Bourjaily Princeton University & IAS

[arXiv:0905.0142], [arXiv:0901.3785], [arXiv:0706.3364], [arXiv:0804.1132], [arXiv:0704.0445], and [arXiv:0704.0444]

String Phenomenology 2009, Warsaw

16th June 2009

String Phenomenology 2009, Warsaw Local Phenomenological Models in M-Theory and F-Theory

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A 🖻 🕨

Outline

Building Blocks and Global Architecture

- An Engineer's Guide to Model Building in F/M-Theory
- Local Structural Engineering: A Group-Theoretic Classification of Locally-Engineered Effective Theories
- Global Architecture: The Ubiquity and Uniqueness of E_8
- 2 Unfolding The Standard Model Out of E_8
 - Geometric Analogues to Grand Unification
 - Physics from Geometry:
 - Novel Approaches to Model Building
 - Examples with Monodromies: The Diamond Ring of F-Theory
- 3 Conclusions and Future Directions

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

(七日)) (日日)

An Engineer's Toolbox: the Basic Building Blocks

Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities

16th June 2009

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

→ Ξ → → Ξ

< 🗇 🕨

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
 - These singularities are named according to the resulting gauge group, and are of the same structure in F-theory as in M-theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
 - These singularities are named according to the resulting gauge group, and are of the same structure in F-theory as in M-theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
 - These singularities are named according to the resulting gauge group, and are of the same structure in F-theory as in M-theory

An Engineer's Guide to Model Building in F/M-Theory

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
 - These singularities are named according to the resulting gauge group, and are of the same structure in F-theory as in M-theory

along a del-Pezzo 8

ヘロト ヘヨト ヘヨト

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

イロト イポト イヨト イヨト

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
 - These singularities are named according to the resulting gauge group, and are of the same structure in F-theory as in M-theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .

A D b 4 A b

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .

A D b 4 A b

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- F-theory: these are 'curves' (Riemann surfaces) in the co-dim 4 singular surface (think D7-branes)
- only curves with non-vanishing flux generate chiral matter, making 'exotic' matter curves relatively easy to ignore.
 - allows a single curve to support multiple 'generations'
 - allows for a nice solution to doublet-triplet splitting

an E_7 'matter-curve' can support a massless **27** of E_6

Local Phenomenological Models in M-Theory and F-Theory

イロト イポト イヨト イヨト

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- F-theory: these are 'curves' (Riemann surfaces) in the co-dim 4 singular surface (think D7-branes)
- only curves with non-vanishing flux generate chiral matter, making 'exotic' matter curves relatively easy to ignore.
 - allows a single curve to support multiple 'generations'
 - allows for a nice solution to doublet-triplet splitting

an E_7 'matter-curve' can support a massless **27** of E_6

Local Phenomenological Models in M-Theory and F-Theory

・ロト ・ 同ト ・ ヨト ・ ヨト

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- F-theory: these are 'curves' (Riemann surfaces) in the co-dim 4 singular surface (think D7-branes)
- only curves with non-vanishing flux generate chiral matter, making 'exotic' matter curves relatively easy to ignore.
 - allows a single curve to support multiple 'generations'
 - allows for a nice solution to doublet-triplet splitting

an E_7 'matter-curve' can support a massless **27** of E_6

Local Phenomenological Models in M-Theory and F-Theory

イロト イポト イヨト イヨト

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- F-theory: these are 'curves' (Riemann surfaces) in the co-dim 4 singular surface (think D7-branes)
- only curves with non-vanishing flux generate chiral matter, making 'exotic' matter curves relatively easy to ignore.
 - allows a single curve to support multiple 'generations'
 - allows for a nice solution to doublet-triplet splitting

an E_7 'matter-curve' can support a massless **27** of E_6

 < □ > < □ > < □ > < ≡ > < ≡ ><</td>
 Ξ

 Local Phenomenological Models in M-Theory and F-Theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- F-theory: these are 'curves' (Riemann surfaces) in the co-dim 4 singular surface (think D7-branes)
- only curves with non-vanishing flux generate chiral matter, making 'exotic' matter curves relatively easy to ignore.
 - allows a single curve to support multiple 'generations'
 - allows for a nice solution to doublet-triplet splitting

an E_7 'matter-curve' can support a massless **27** of E_6

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- M-theory: these are isolated points along the co-dim 4 singular surface (think D6-branes)
- every such conical singularity gives rise to ±1 chiral multiplet, making 'exotic' matter much harder to ignore
 - makes M-theory models relatively more constrained (and hence predictive)
 - softens flavour problems

イロト イポト イヨト イヨト

a conical E_7 -singularity can support a massless **27** of E_6

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- M-theory: these are isolated points along the co-dim 4 singular surface (think D6-branes)
- every such conical singularity gives rise to ±1 chiral multiplet, making 'exotic' matter much harder to ignore
 - makes M-theory models relatively more constrained (and hence predictive)
 - softens flavour problems

a conical E_7 -singularity can support a massless **27** of E_6

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- M-theory: these are isolated points along the co-dim 4 singular surface (think D6-branes)
- every such conical singularity gives rise to ± 1 chiral multiplet, making 'exotic' matter much harder to ignore
 - makes M-theory models relatively more constrained (and hence predictive)
 - softens flavour problems

a conical E_7 -singularity can support a massless **27** of E_6

Local Phenomenological Models in M-Theory and F-Theory

(日) (同) (日) (日)

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- M-theory: these are isolated points along the co-dim 4 singular surface (think D6-branes)
- every such conical singularity gives rise to ±1 chiral multiplet, making 'exotic' matter much harder to ignore
 - makes M-theory models relatively more constrained (and hence predictive)
 - softens flavour problems

イロト イポト イヨト イヨ

a conical E_7 -singularity can support a massless **27** of E_6

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
 - For example, a 27 of E_6 can be supported wherever a co-dim 4 E_6 -singularity is enhanced to E_7 .
- M-theory: these are isolated points along the co-dim 4 singular surface (think D6-branes)
- every such conical singularity gives rise to ±1 chiral multiplet, making 'exotic' matter much harder to ignore
 - makes M-theory models relatively more constrained (and hence predictive)
 - softens flavour problems

a conical E_7 -singularity can support a massless **27** of E_6

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities

A D b 4 A b

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities
- F-theory: these are tripleintersections of matter-curves
- M-theory: these are supersymmetric three-cycles supporting multiple conical singularities
 - notice that both structures appear topologically nongeneric, but they are in fact additional in ALE-florations

イロト イポト イヨト イヨト

origin of a 27 27 27 coupling in F-theory.

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities
- F-theory: these are tripleintersections of matter-curves
- M-theory: these are supersymmetric three-cycles supporting multiple conical singularities
 - notice that both structures appear topologically nongeneric, but they are in fact ubiquitous in ALE-fibrations

・ロト ・ 同ト ・ ヨト ・ ヨト

origin of a 27 27 27 coupling in M-theory.

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities
- F-theory: these are tripleintersections of matter-curves
- M-theory: these are supersymmetric three-cycles supporting multiple conical singularities
 - notice that both structures appear topologically nongeneric, but they are in fact ubiquitous in ALE-fibrations

イロト イポト イヨト イヨ

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities
- F-theory: these are tripleintersections of matter-curves
- M-theory: these are supersymmetric three-cycles supporting multiple conical singularities
 - notice that both structures appear topologically nongeneric, but they are in fact ubiquitous in ALE-fibrations, and for the same reasons

ヘロト ヘアト ヘビト ヘ

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities
- F-theory: these are tripleintersections of matter-curves
- M-theory: these are supersymmetric three-cycles supporting multiple conical singularities
 - notice that both structures appear topologically nongeneric, but they are in fact ubiquitous in ALE-fibrations, and for the same reasons

ヘロト ヘアト ヘヨト ヘ

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities

Notice some very generic features of any such superpotential:

- sparse
 - ubiquitous U₁'s: think of the extra 'flavour-branes' which must intersect along each matter-curve;
- hierarchical
 - coefficients are typically exponentially suppressed

ヘロト ヘアト ヘビト ヘビト

ъ

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities

Notice some very generic features of any such superpotential:

- sparse
 - ubiquitous U₁'s: think of the extra 'flavour-branes' which must intersect along each matter-curve;
- hierarchical
 - coefficients are typically exponentially suppressed

イロト イポト イヨト イヨト

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

An Engineer's Toolbox: the Basic Building Blocks

- Gauge symmetries arise via co-dim 4 'ADE'-type orbifold singularities
- Charged, chiral matter from local enhancements of ADE singularities
- Superpotential interactions from structures connecting disparate matter-singularities

Notice some very generic features of any such superpotential:

- sparse
 - ubiquitous U₁'s: think of the extra 'flavour-branes' which must intersect along each matter-curve;
- hierarchical
 - coefficients are typically exponentially suppressed

ヘロト ヘアト ヘヨト ヘ

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

Correspondence of Local Geometries for F-Theory and M-Theory

• For any local model, the most important topological data to have is:

- a list of all (potentially-massless-)matter-supporting singularities, and
- the selection rules which determine how matter living along these singularities can interact in the theory
- This data can be encoded in F-theory by a cartoon-collection of mutuallyintersecting matter-curves

- These models are constructed explicitly as ALE-fibrations over an appropriate base W, e.g. $\widehat{E_8}(a(W), b(W), 0, 0, 0, 0, 0, 0)$
- Any local geometry constructed in this way for F-theory can be immediately translated into a corresponding geometry for M-theory, with the same matter-singularities and interactions
- It is not hard to classify all possible 'cartoons' that can arise from a local ALE-fibration leading to an extremely small landscape of possibilities

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

イロト イポト イヨト イヨト

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group G then leads to the following:
 - A generic * G
 -fibred Calabi-Yau four-fold or G
 -fibred G₂ manifold for which the typical fibre has a singularity of type H ⊂ G will have one matter-singularity for each vector-like representation in the branching:

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

イロト イポト イヨト イヨト

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \hat{G} -fibred Calabi-Yau four-fold or \hat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{array}{c} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,\,1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{\,1,\,2} \oplus \mathbf{1}_{\,2,\,1} \oplus \mathbf{1}_{\,1,\text{-}1} \\ & \oplus \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{\,1,\,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\text{-}1,\,1} \end{array}$
An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{aligned} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,1} \oplus \mathbf{27}_{-1,-1} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,1} \oplus \mathbf{1}_{1,-1} \\ \oplus \mathbf{\overline{27}}_{-1,0} \oplus \mathbf{\overline{27}}_{0,-1} \oplus \mathbf{\overline{27}}_{1,1} \oplus \mathbf{1}_{-1,-2} \oplus \mathbf{1}_{-2,-1} \oplus \mathbf{1}_{-1,-1} \end{aligned}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{aligned} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,1} \oplus \mathbf{27}_{-1,-1} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,1} \oplus \mathbf{1}_{1,-1} \\ & \oplus \overline{\mathbf{27}}_{-1,0} \oplus \overline{\mathbf{27}}_{0,-1} \oplus \overline{\mathbf{27}}_{1,1} \oplus \mathbf{1}_{-1,-2} \oplus \mathbf{1}_{-2,-1} \oplus \mathbf{1}_{-1,-1} \end{aligned}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{array}{c} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,1} \oplus \mathbf{27}_{-1,-1} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,1} \oplus \mathbf{1}_{1,-1} \\ & \oplus \overline{\mathbf{27}}_{-1,0} \oplus \overline{\mathbf{27}}_{0,-1} \oplus \overline{\mathbf{27}}_{1,1} \oplus \mathbf{1}_{-1,-2} \oplus \mathbf{1}_{-2,-1} \oplus \mathbf{1}_{-1,1} \end{array}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{array}{c} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,\,1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{\,1,\,2} \oplus \mathbf{1}_{\,2,\,1} \oplus \mathbf{1}_{\,1,\text{-}1} \\ & \oplus \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{\,1,\,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\,1,\,1} \end{array}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{array}{c} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{1,2} \oplus \mathbf{1}_{2,1} \oplus \mathbf{1}_{1,\text{-}1} \\ \oplus \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{1,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\text{-}1,1} \end{array}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\begin{array}{c} \mathbf{248} = & \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,\,1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{\,1,\,2} \oplus \mathbf{1}_{\,2,\,1} \oplus \mathbf{1}_{\,1,\text{-}1} \\ \oplus \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{\,1,\,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\text{-}1,\,1} \end{array}$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

・ロト ・ 同ト ・ ヨト ・ ヨト

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\mathbf{248} = \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,\ 1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{1,\ 2} \oplus \mathbf{1}_{2,\ 1} \oplus \mathbf{1}_{1,\text{-}1}$

 $\oplus \, \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{1,\,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\text{-}1,\,1}$

* Singularities of representations with charges belonging to any subspace of \vec{q} 's can be excluded together

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

Group-Theoretic Classification of Local Fibrations

- Recall that the new light degrees of freedom arising from an ALE-fibration are due to 2-branes wrapping vanishing cycles within the ALE-fibres.
- The correspondence between two-cycles in the ALE-space \widehat{G} and the root lattice of the ADE-group *G* then leads to the following:
 - A generic * \widehat{G} -fibred Calabi-Yau four-fold or \widehat{G} -fibred G_2 manifold for which the typical fibre has a singularity of type $H \subset G$ will have one matter-singularity for each vector-like representation in the branching:

$$\operatorname{adj}(G) = \operatorname{adj}\left(H \times \prod_{i=1}^{k} U_{1}\right) \bigoplus \left(\mathbf{R}_{\vec{q}} \oplus \overline{\mathbf{R}}_{-\vec{q}}\right).$$

for example, $E_8 \supset E_6 \times U_1^a \times U_1^b$:

 $\mathbf{248} = \mathbf{78}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{1}_{0,0} \oplus \mathbf{27}_{1,0} \oplus \mathbf{27}_{0,\ 1} \oplus \mathbf{27}_{\text{-}1,\text{-}1} \oplus \mathbf{1}_{1,\ 2} \oplus \mathbf{1}_{2,\ 1} \oplus \mathbf{1}_{1,\text{-}1}$

 $\oplus \, \overline{\mathbf{27}}_{\text{-}1,0} \oplus \overline{\mathbf{27}}_{0,\text{-}1} \oplus \overline{\mathbf{27}}_{1,\,1} \oplus \mathbf{1}_{\text{-}1,\text{-}2} \oplus \mathbf{1}_{\text{-}2,\text{-}1} \oplus \mathbf{1}_{\text{-}1,\,1}$

- ★ Singularities of representations with charges belonging to any subspace of \vec{q} 's can be excluded together
- \star It is also possible to take any quotient of the space of \vec{q} 's.

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G(f₁(W),..., f_n(W)) that is capable of (typically*) giving the interactions of even a single family?

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

· < 프 > < 프 >

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G(f₁(W),..., f_n(W)) that is capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G(f₁(W),..., f_n(W)) that is capable of (typically*) giving the interactions of even a single family?

Spectrum of Matter-Curves

(日)

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

イロト イポト イヨト イヨ

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G(f₁(W),..., f_n(W)) that is capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G(f₁(W),..., f_n(W)) that is capable of (typically*) giving the interactions of even a single family?

$$\frac{\mathbf{10}}{T} \quad \frac{\overline{\mathbf{5}}}{M}$$

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

Spectrum of Matter-Curves

Local Phenomenological Models in M-Theory and F-Theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

Spectrum of Matter-Curves

Local Phenomenological Models in M-Theory and F-Theory

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

10	$\overline{5}$	5	$\overline{5}$	_1_	_1_	_1_
T_1	M_1	H_1^u	H_1^d	ν_1^c	S_1	N_1
T_2	M_2					

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

10	$\overline{5}$	5	$\overline{5}$	_1_	_1_	_1_
T_1	M_1	H_1^u	H_1^d	ν_1^c	S_1	N_1
T_2	M_2		H_2^d			

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

10	$\overline{5}$	_5	5	_1_	_1_	_1_	
T_1	M_1	H_1^u	H_1^d	ν_1^c	S_1	N_1	
T_2	M_2	H_2^u	H_2^d	ν_2^c	S_2	N_2	
T_3	M_3						
T_X	-						
			F	l₀→SI	$\mathcal{I}_{E} \cap$	Т	
		_			$^{\circ}$ 1	- -	_
		<u>O</u> -	-)-0	-0-	-0
		H^d	M				H^u
							~ ~

An Engineer's Guide to Model Building in F/M-Theory Local Structural Engineering: Effective Theories of Local Models Global Architecture: The Ubiquity and Uniqueness of E_8

The *Minimality* of E_8 and the Origin of Three Families

- Because the structure of ALE-fibres plays such a critical role in phenomenology, we are naturally led to ask:
 - What is the lowest-rank ALE-fibrtation G

 G(f₁(W),..., f_n(W)) that is
 capable of (typically*) giving the interactions of even a single family?

Spectrum of Matter-Curves

10	$\overline{5}$	5	$\overline{5}$	_1_	_1_	_1_	
T_1	M_1	H_1^u	H_1^d	ν_1^c	S_1	N_1	
T_2	M_2	H_2^u	H_2^d	ν_2^c	S_2	N_2	
T_3	M_3	H_3^u	H_3^d	ν_3^c	S_3	N_3	
T_X	M_X	Ŭ	ν_X^c	, in the second s			
T_X^c							
			E	$C_8 \rightarrow SU$	$U_5 O$	T	
		\sim	\sim	Š	Ĭ		\sim
			-			-0-	-
		Π^{a}	IVI				П

Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	$E_6 \times$	$U_1^a \times$	U_1^b
T_1	27	1	1
T_2	27	1	-1
T_3	27	-2	0
S_1	1	3	$^{-1}$
S_3	1	3	1
S_2	1	0	2

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$				
T_1	16	1	1	-1
T_2	16	1	-1	-1
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$				
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	$^{-1}$	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	$^{-1}$	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

16th June 2009

Local Phenomenological Models in M-Theory and F-Theory

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$					
T_1	16	1	1	-1	
T_2	16	1	-1	$^{-1}$	
T_3	16	-2	0	$^{-1}$	
T_X^c	$\overline{16}$	0	0	-3	
H	10	1	1	2	
Y_a	10	-1	1	-2	
Y_b	10	2	0	-2	
X_1	1	-1	-1	4	
X_2	1	-1	1	4	
N_2^c	1	-2	0	-4	
N_3^c	1	3	-1	0	
S_1	1	3	1	0	
S_2	1	0	2	0	

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$				
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

16th June 2009

▲ 므 ▷ ▲ 문 ▷ ▲ 로 ▷ ▷ ▲ 로 ∽ Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	SO_{10}	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	-1
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	$^{-1}$	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0
Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

	00	***	* * * h	TTC
	SO_{10}	$_0 \times U_1^u$	$\times U_1^0$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	-1
T_3	16	-2	0	-1
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

16th June 2009

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_1	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	$^{-1}$
T_3	16	-2	0	$^{-1}$
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	$^{-1}$	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
$N_3^{\overline{c}}$	1	3	$^{-1}$	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$						
T_1	16	1	1	-1		
T_2	16	1	-1	-1		
T_3	16	-2	0	-1		
T_X^c	$\overline{16}$	0	0	-3		
H	10	1	1	2		
Y_a	10	-1	1	-2		
Y_b	10	2	0	-2		
X_1	1	-1	-1	4		
X_2	1	-1	1	4		
N_2^c	1	-2	0	-4		
N_3^c	1	3	-1	0		
S_1	1	3	1	0		
S_2	1	0	2	0		

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$						
T_1	16	1	1	-1		
T_2	16	1	-1	-1		
T_3	16	-2	0	-1		
T_X^c	$\overline{16}$	0	0	-3		
H	10	1	1	2		
Y_a	10	-1	1	-2		
Y_b	10	2	0	-2		
X_1	1	-1	-1	4		
X_2	1	-1	1	4		
N_2^c	1	-2	0	-4		
N_3^c	1	3	-1	0		
S_1	1	3	1	0		
S_2	1	0	2	0		

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$						
T_1	16	1	1	-1		
T_2	16	1	-1	-1		
T_3	16	-2	0	-1		
T_X^c	$\overline{16}$	0	0	-3		
H	10	1	1	2		
Y_a	10	-1	1	-2		
Y_b	10	2	0	-2		
X_1	1	-1	-1	4		
X_2	1	-1	1	4		
N_2^c	1	-2	0	-4		
N_3^c	1	3	-1	0		
S_1	1	3	1	0		
S_2	1	0	2	0		

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$						
T_1	16	1	1	-1		
T_2	16	1	-1	-1		
T_3	16	-2	0	-1		
T_X^c	$\overline{16}$	0	0	-3		
H	10	1	1	2		
Y_a	10	-1	1	-2		
Y_b	10	2	0	-2		
X_1	1	-1	-1	4		
X_2	1	-1	1	4		
N_2^c	1	-2	0	-4		
N_3^c	1	3	-1	0		
S_1	1	3	1	0		
S_2	1	0	2	0		

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

$SO_{10} \times U_1^a \times U_1^b \times U_1^c$						
T_1	16	1	1	-1		
T_2	16	1	-1	-1		
T_3	16	-2	0	-1		
T_X^c	$\overline{16}$	0	0	-3		
H	10	1	1	2		
Y_a	10	-1	1	-2		
Y_b	10	2	0	-2		
X_1	1	-1	-1	4		
X_2	1	-1	1	4		
N_2^c	1	-2	0	-4		
N_3^c	1	3	-1	0		
S_1	1	3	1	0		
S_2	1	0	2	0		

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_{10}	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	-1
T_3	16	-2	0	-1
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_{10}	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	-1
T_3	16	-2	0	-1
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SO_{10}	$_0 \times U_1^a$	$\times U_1^b$	$\times U_1^c$
T_1	16	1	1	-1
T_2	16	1	-1	-1
T_3	16	-2	0	-1
T_X^c	$\overline{16}$	0	0	-3
H	10	1	1	2
Y_a	10	-1	1	-2
Y_b	10	2	0	-2
X_1	1	-1	-1	4
X_2	1	-1	1	4
N_2^c	1	-2	0	-4
N_3^c	1	3	-1	0
S_1	1	3	1	0
S_2	1	0	2	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2^{1}	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_2^{c}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_{2}^{c}	1	3	$^{-1}$	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

			1		
	SU_5	$\times U_1^a \times$	$U_1^o \times$	$U_1^c \times$	U_1^a
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	$^{-1}$	$^{-1}$	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2^{\perp}	5	2	0	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_2^{c}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^t	1	$^{-2}$	0	-4	0
N_3^c	1	3	-1	0	0
$T_{\mathbf{x}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SUE	$\times U_{*}^{a} \times$	$U_{4}^{b} \times$	$U^{c}_{4} \times$	U^d_{\star}
T_1	10	1	1	-1	-1
T_{0}^{1}	10	1	-1	_1	_1
T_{0}^{12}	10	_2	¹	_1	_1
13 M.	ŧ	ĩ	1	_1	3
Ma	F	1	_1	_1	3
M	문	1	-1	-1	
1113	2	-2	1	-1	3
H	<u> </u>	1	1	2	2
H^{u}	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	$^{-2}$	-2
Y_2	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	$^{-1}$	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_{2}^{c}	1	-2	0	-1	-5
N_1^{e}	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_{2}^{c}	1	3	-1	0	0
T_{v}^{c}	10	0	0	$^{-3}$	1
T_{Y}^{Λ}	10	0	0	0	4
M_{Y}^{c}	5	Ő	Ó	-3	-3
S_1	1	3	ĩ	ŏ	ŏ
S_2^1	1	Ő	2	Ó	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\bar{2}$	2
Y_{c}^{1}	5	2	0	-2^{-2}	-2
Y_2	5	2	ŏ	$-\bar{2}$	2
V_{c}^{2}	5	-1	ĩ	-2	-2
X_{1}^{2}	1	-1	-1	4	õ
X_2	ĩ	-1	î	4	ŏ
12 Z	ĩ	î	1	-1	$-\tilde{5}$
ve	1	1	-1	-1	$-\tilde{5}$
ν_{0}^{c}	ī	-2	õ	-1	$-\tilde{5}$
N_1^{e}	1	0	0	-3	5
N_2^{t}	1	-2	0	$^{-4}$	0
N_2^{ϵ}	1	3	-1	0	0
T_{v}^{c}	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
$M_{\mathbf{Y}}^{\hat{c}}$	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2^{\uparrow}	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_{2}^{1}	5	1	$^{-1}$	-1	3
M_2	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	_2
Y_1	5	-1	1	$-\tilde{2}$	2
Y_{i}^{c}	5	2	Ō	-2^{-2}	-2
Y_2	5	2	ŏ	$-\bar{2}$	2
V_c^2	5	-1	ĩ	-2	_2
X_{1}^{2}	1	-1	-1	4	õ
Xa	ĩ	-1	1	4	ŏ
11 2 V.C	ĩ	î	1	-1	-5
"t	ĩ	î	-1	-1	-5
ν_{0}^{c}	ī	-2	õ	-1	$-\tilde{5}$
N_1^{e}	1	0	0	-3	5
N_2^{t}	1	-2	0	$^{-4}$	0
N_2^{ϵ}	1	3	-1	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
$M_{\mathbf{y}}^{\hat{c}}$	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	õ	-2^{-2}	2
Y_{c}^{c}	5	-1	ĩ	-2	-2
X_1^2	1	-1	$-\hat{1}$	4	õ
X_2	1	-1	1	4	õ
$\nu_1^{\hat{c}}$	1	1	1	-1	$-\tilde{5}$
ve	1	1	-1	-1	$-\tilde{5}$
ν_{0}^{c}	ī	-2	õ	-1	$-\tilde{5}$
N_1^{e}	1	0	0	-3	5
N_2^t	1	-2	0	-4	0
N_2^{ϵ}	1	3	-1	0	0
T_{v}^{c}	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
$M_{\mathbf{Y}}^{\hat{c}}$	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

The matter content of a general E_8 -fibred geometry can be derived by thinking in terms of sequential 'unfoldings':

Unfolding $SO_{10} \rightarrow SU_5$

	SU_5	$\times U_1^a \times$	$U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	î	$-\overline{2}$	$\overline{2}$
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	õ	-2^{-2}	2
Y_{0}^{c}	5	-1	1	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_2^{c}	1	-2	0	$^{-1}$	-5
N_1^c	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_X^c	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	$^{-1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^{d}	5	1	1	2	_2
V_1	5	_1	1	$-\tilde{2}$	2
V^{c}	Ĕ	2	0	_2	_2
V_{2}^{1}	5	2	0	-2	2
V^{c}	F	1	1	-2	2
V_{1}^{1}	1	-1	1	-2	-2
X 1	1	-1	1	4	0
22	1	1	1	1	5
μt	1	1	1	-1	-5
22	1	_2	-1	_1	-5
N2	1	-2	0	-1	-5
Nt	1	2	0	-3	0
N2	1	-2	_1	-4	0
	10	0	-1	2	1
$T_T^{I}X$	10	0	0	-3	1
1 X	10	0	0	0	4
^{IVI} X	ə 1	2	1	-3	-3
51	1	3	1	0	0
s_2	T	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a$	$\langle U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a$	$\langle U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	$^{-2}$	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a$	$\langle U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	$^{-2}$	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a$	$\langle U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	$^{-2}$	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

'Unfolding' Three Generations out of E_8

	SU_5	$\times U_1^a$	$\langle U_1^b \times$	U_1^c	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	$^{-2}$	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	$^{-1}$	-5
ν_{2}^{t}	1	1	-1	$^{-1}$	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
$N_3^{\tilde{c}}$	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	$^{-1}$	-5
ν_{2}^{t}	1	1	-1	$^{-1}$	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
$N_3^{\tilde{c}}$	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	$^{-1}$	-5
ν_{2}^{t}	1	1	-1	$^{-1}$	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
$N_3^{\tilde{c}}$	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	$^{-1}$	-5
ν_{2}^{t}	1	1	-1	$^{-1}$	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
$N_3^{\tilde{c}}$	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	$^{-1}$	-5
ν_{2}^{t}	1	1	-1	$^{-1}$	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
$N_3^{\tilde{c}}$	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

- The freedom to 'conjugate' fields is quite unusual in traditional unified model building, but leads to powerful new phenomenological mechanisms.
- For any non-trivial choice of fluxes, there are always anomalous *U*₁-symmetries, which become Higgsed by the Green-Schwarz mechanism, which also generates mass-terms for some fields: 'vacuum realignment.'
- By choosing fluxes appropriately, one can find models that are surprisingly realistic in both M-Theory and F-Theory.

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\bar{2}$	2
Y.C	5	2	0	-2^{-2}	-2
Y_2	5	2	ŏ	$-\bar{2}$	2
V_{c}^{2}	5	-1	ĭ	-2	_2
X_{1}^{2}	1	-1	-1	4	õ
Xa	ĩ	-1	1	4	ŏ
$\nu_1^{\hat{c}}$	1	1	1	-1	-5
ve	1	1	-1	-1	-5
ν_{0}^{c}	ī	-2	õ	-1	$-\tilde{5}$
N_1^{e}	1	0	0	-3	5
N_{2}^{t}	1	-2	0	$^{-4}$	0
N_{2}^{c}	1	3	-1	0	0
T_{V}^{c}	10	0	0	-3	1
T_{Y}^{Λ}	10	0	0	0	4
M_{Y}^{c}	5	Ő	Ó	-3	-3
S_1	1	3	í	Ő	0
S_2^1	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

- The freedom to 'conjugate' fields is quite unusual in traditional unified model building, but leads to powerful new phenomenological mechanisms.
- For any non-trivial choice of fluxes, there are always anomalous *U*₁-symmetries, which become Higgsed by the Green-Schwarz mechanism, which also generates mass-terms for some fields: 'vacuum realignment.'
- By choosing fluxes appropriately, one can find models that are surprisingly realistic in both M-Theory and F-Theory.

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	$^{-1}$	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	õ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	-1	4	0
X_2^{1}	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_{2}^{t}	1	1	$^{-1}$	-1	-5
ν_2^{c}	1	-2	0	-1	-5
N_1^2	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_{2}^{τ}	1	3	-1	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Realistic Examples of Phenomenology

- The freedom to 'conjugate' fields is quite unusual in traditional unified model building, but leads to powerful new phenomenological mechanisms.
- For any non-trivial choice of fluxes, there are always anomalous *U*₁-symmetries, which become Higgsed by the Green-Schwarz mechanism, which also generates mass-terms for some fields: 'vacuum realignment.'
- By choosing fluxes appropriately, one can find models that are surprisingly realistic in both M-Theory and F-Theory.

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	$^{-1}$	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	$^{-2}$	-2
Y_2^1	5	2	0	-2	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	$\overline{4}$	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_3^{t}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_X^c	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0
Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

• The choice of fluxes listed in the table on the right would generate a superpotential of the form:

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	-1	-1^{-1}
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
$Y_1^{\hat{c}}$	5	2	0	-2	-2
Y_2^1	5	2	0	$^{-2}$	2
$Y_2^{\tilde{c}}$	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_{3}^{t}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
(T_X^c)	$\overline{10}$	0	0	$^{-3}$	1)
(T_X)	10	0	0	0	4)
(M_X^c)	5	0	0	$^{-3}$	-3)
$(S_1$	1	3	1	0	0)
$(S_2$	1	0	2	0	0)

< 🗇 🕨

- - E - N

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

• The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	$^{-2}$	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^c	1	1	-1	-1	-5
$\nu_3^{\overline{c}}$	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
(T_X^c)	10	0	0	$^{-3}$	1)
(T_X)	10	0	0	0	4)
(M_X^c)	5	0	0	$^{-3}$	-3)
$(S_1$	1	3	1	0	0)
$(S_2$	1	0	2	0	0)

< 🗇 🕨

- - E - N

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

 The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d$$

+ $H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c$
+ $X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c$
+ $X_2 N_2^c N_3^c$.

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

• The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d$$

+ $H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c$
+ $X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c$
+ $X_2 N_2^c N_3^c$.

Notice that T_1 and M_1 do not appear in the superpotential at all!

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

• The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

Notice that T_1 and M_1 do not appear in the superpotential at all!

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c >$	$\langle U_1^d$
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	$^{-1}$	-1	3
M_3	5	-2	0	-1	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	$^{-2}$	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_{2}^{t}	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	$^{-1}$	0	0
$ (T_X^c)$	10	0	0	$^{-3}$	1)
(T_X^A)	10	0	0	0	4)
(M_X^c)	5	0	0	$^{-3}$	-3)
$(S_1$	1	3	1	0	0)
$(S_2$	1	0	2	0	0)

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

 The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

Consider the operator $T_1 T_1 H^u$, it has charges (3, 3, 0, 0) under $U_1^a \times U_1^b \times U_1^c \times U_1^d$.

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
$Y_1^{\hat{c}}$	5	2	0	$^{-2}$	-2
Y_2^1	5	2	0	$^{-2}$	2
$Y_2^{\tilde{c}}$	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	$^{-1}$	-5
$\nu_3^{\overline{c}}$	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	$^{-1}$	0	0
(T_X^c)	10	0	0	-3	1)
(T_X)	10	0	0	0	(4)
(M_X^c)	5	0	0	$^{-3}$	-3)
$(S_1$	1	3	1	0	0)
$(S_2$	1	0	2	0	0)

э

イロト イポト イヨト イヨト

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

Re-Folding the Geometry to Enforce Couplings

 The choice of fluxes listed in the table on the right would generate a superpotential of the form:

$$W = T_2 T_3 H^u + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

Consider the operator $T_1 T_1 H^u$, it has charges (3,3,0,0) under $U_1^a \times U_1^b \times U_1^c \times U_1^d$.

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	$^{-2}$	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
$Y_1^{\hat{c}}$	5	2	0	$^{-2}$	-2
Y_2^1	5	2	0	$^{-2}$	2
$Y_2^{\tilde{c}}$	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	$^{-1}$	-5
ν_2^t	1	1	$^{-1}$	-1	-5
$\nu_3^{\overline{c}}$	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
(T_X^c)	$\overline{10}$	0	0	$^{-3}$	1)
(T_X)	10	0	0	0	4)
(M_X^c)	5	0	0	$^{-3}$	-3)
$(S_1$	1	3	1	0	0)
$(S_2$	1	0	2	0	0)

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_{2}^{t}	1	1	-1	-1	-5
$\nu_2^{\hat{c}}$	1	-2	0	-1	-5
N_1^c	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	-1	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

 < □ > < □ > < □ > < ≡ > < ≡ > < ≡ > < ≡ < ○</td>

 Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	-2	$^{-2}$
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	$^{-2}$
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	$^{-1}$	-5
ν_2^t	1	1	-1	$^{-1}$	-5
ν_3^{t}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	$^{-1}$	0	0
T_X^c	$\overline{10}$	0	0	-3	1
T_X	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	$^{-1}$	-5
ν_2^t	1	1	-1	$^{-1}$	-5
ν_3^{t}	1	-2	0	-1	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	-4	0
N_3^c	1	3	$^{-1}$	0	0
T_X^c	$\overline{10}$	0	0	-3	1
T_X	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	$^{-1}$	-5
ν_2^t	1	1	-1	$^{-1}$	-5
ν_3^{t}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	$^{-1}$	0	0
T_X^c	$\overline{10}$	0	0	-3	1
T_X	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	-2	$^{-2}$
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	$^{-2}$
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	$^{-1}$	-5
ν_2^t	1	1	-1	$^{-1}$	-5
ν_3^{t}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^c	1	-2	0	-4	0
N_3^c	1	3	$^{-1}$	0	0
T_X^c	$\overline{10}$	0	0	-3	1
T_X	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	î	$-\bar{2}$	2
Y^{c}	5	2	0	-2^{-2}	-2
Y_2	5	2	ŏ	-2^{-2}	2
V_{c}^{2}	<u> </u>	-1	ĩ	-2	-2
X_{1}^{2}	1	-1	-1	4	õ
Xa	ĩ	-1	î	4	ŏ
<i>V</i> ^C	ĩ	1	î	-1	$-\tilde{5}$
ve	ĩ	1	-1	-1	-5
ν_{c}^{c}	ĩ	-2^{-1}	ō	$-\hat{1}$	$-\tilde{5}$
N_1^c	1	0	ŏ	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_{2}^{ϵ}	1	3	-1	0	0
T_{V}^{c}	10	0	0	-3	1
$T_{\mathbf{Y}}^{X}$	10	Ő	Ó	Ó	4
$M_{\mathbf{v}}^{c}$	5	Ő	Ó	-3	-3
S_1	1	3	í	Ó	0
S_2	1	0	2	Ó	0
$\stackrel{S_1}{S_2}$	î	0	2	0	0

Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SUr	$\times U^a_* \times$	$U_{*}^{b} \times$	$U_{4}^{c} \times$	U^d_{\star}
T_1	10	1	1	-1	-1
T_{2}	10	1	-1	-1	-1
T_2^2	10	-2^{-1}	ō	-1	-1
M_1	Ē	1	ĩ	-1	3
Mo	ğ	1	-1	_1	3
Mo	5	_2	0	_1	3
H^{u}	5	ĩ	1	2	2
IId	÷	1	1	2	2
N.	- Э Б	1	1	2	-2
I1 VC	글	-1	1	-2	4
Y1	5	2	0	-2	-2
Y2	<u>-</u>	2	0	-2	2
Y_2	5	-1	1	-2	-2
A1 V	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_{\tilde{1}}$	1	1	1	-1	-5
$\nu_{\tilde{2}}$	1	1	-1	-1	-5
$\nu_{\tilde{3}}$	1	-2	0	-1	-5
NL	1	0	0	-3	5
N ₂	1	-2	0	-4	0
N 3	1	3	-1	0	0
T_X	10	0	0	-3	1
T_X	10	0	0	0	4
$M_{\alpha X}^{\circ}$	Б	0	0	-3	-3
S_1	T	3	1	0	U
S_2	T	0	2	0	U

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\bar{2}$	2
Y_1^c	5	2	0	-2^{-2}	-2
Y_2	5	2	õ	-2^{-2}	2
Y_{0}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	$-\hat{1}$	$-\hat{1}$	4	õ
X_2^{1}	1	-1	1	4	0
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_{2}^{t}	1	1	$^{-1}$	-1	-5
ν_{2}^{c}	1	-2	0	-1	-5
N_1^c	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_{2}^{τ}	1	3	-1	0	0
$T_{\mathbf{Y}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	an		T T b	T.T.C	r.d.
	SU_5	$\times U_1 \times$	$U_1 \times$	$U_1 \times$	U_1^{-}
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	$^{-1}$	$^{-1}$	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_2^{c}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{τ}	1	3	$^{-1}$	0	0
T_{Y}^{c}	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Local Phenomenological Models in M-Theory and F-Theory

イロト イポト イヨト イヨト

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	î	$-\hat{1}$	-1
T_2	10	1	$^{-1}$	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	$^{-1}$	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	0	-2	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1^2	1	-1	-1	$\overline{4}$	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_3^{t}	1	$^{-2}$	0	$^{-1}$	-5
N_1^e	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_{X}^{c}	$\overline{10}$	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	-3	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0
S_1 S_2	5 1 1	0 3 0		$-3 \\ 0 \\ 0$	$-3 \\ 0 \\ 0$

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	CIL	, ITA V	TTP Y	TTC V	$T^{T}d$
	505	× 0 ₁ ×	U ₁ ×	U ₁ ×	v_1
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	$^{-1}$	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2^1	5	2	ŏ	-2^{-2}	2
Y_{c}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	-1	$-\hat{1}$	4	õ
X_2	1	-1	1	4	õ
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_{0}^{t}	1	1	-1	-1	-5
ν_{0}^{t}	1	-2	0	-1	-5
N_1^2	1	0	0	-3	5
N_2^{t}	1	-2	0	-4	0
N_{2}^{c}	1	3	-1	0	0
T_{v}^{c}	10	0	0	$^{-3}$	1
T_{Y}^{Λ}	10	0	0	0	4
M_{V}^{c}	5	Ó	Ó	-3	-3
S1	1	3	ĭ	õ	ŏ
S_2^1	1	õ	2	ő	ŏ

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	CII	v tra v	TTP V	ITC V	IId
	505	<u>× 0₁ ×</u>	U1X	$U_1 \times$	v_1
T_1	10	1	1	$^{-1}$	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\tilde{2}$	2
V_{c}^{1}	Ē	2	ō	-2	-2
V_0^{11}	5	2	ŏ	-2	2
V^{c}	Ĕ	_1	1	_2	_2
X^{1}	1	_1	_1	-2	-2
X 1	1	_1	-1	4	0
20	1	1	1	_1	-5
ž	1	1	1	-1	5
22	1	_2	-1	_1	-5
N2	1	-2	0	- 3	-5
w.t	1	2	0	-3	0
N2	1	-2	_1	-4	0
	10	0	-1	2	1
$T^{I}X$	10	0	0	-3	1
1 X	10	0	0	2	4
$M_{C}X$	- D - 1	9	1	-3	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

イロト イポト イヨト イヨト

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2^{-2}	2
Y_1^c	5	2	0	-2	-2
Y_2^{\perp}	5	2	0	-2	2
Y_{0}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	-1	-5
ν_2^{c}	1	-2	0	$^{-1}$	-5
N_1^{e}	1	0	0	$^{-3}$	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_X^c	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

イロト イポト イヨト イヨト

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SUr	$\times U^a_* \times$	$U_{4}^{b} \times$	$U^{c}_{\star} \times$	U^d_{*}
T_1	10	1	1	-1	-1
T_0	10	1	_1	-1	_1
T_{0}^{12}	10	_2	¹	_1	_1
13 M.	Ē	1	1	1	2
Ma	Ĕ	1	_1	_1	3
M	문	1	-1	-1	3
1113	5	-2	1	-1	3
п d	<u>-</u>	1	1	4	4
H^{u}	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	$^{-2}$	-2
Y_2	5	2	0	-2	2
Y_2^c	5	-1	1	$^{-2}$	-2
X_1	1	-1	-1	4	0
X_2	1	-1	1	4	0
ν_1^c	1	1	1	-1	-5
ν_2^c	1	1	$^{-1}$	$^{-1}$	-5
ν_3^c	1	-2	0	-1	-5
N_1^c	1	0	0	-3	5
N_2^c	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_X^c	$\overline{10}$	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	-3	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SUL	V U ^a V	$U^b \times$	UC V	U^d
T	10	<u>^ 01 ^</u>	1	1	1
I_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	-1	3
M_3	5	-2	0	-1	3
H^{u}	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	-2	2
Y_1^c	5	2	0	-2	-2
Y_2^{\dagger}	5	2	0	-2	2
Y_2^c	5	-1	1	-2	-2
X_1	1	-1	-1	4	0
X_2	1	-1	1	4	0
ν_1^c	1	1	1	$^{-1}$	-5
ν_2^t	1	1	-1	-1	-5
ν_{q}^{τ}	1	-2	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{c}	1	3	$^{-1}$	0	0
T_{X}^{c}	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2^{\uparrow}	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	$^{-1}$	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\bar{2}$	2
Y^c	5	2	0	-2^{-2}	-2
Y_2	5	2	ŏ	$-\bar{2}$	2
V_{c}^{2}	5	-1	ĩ	-2	-2
X_{1}^{2}	1	-1	-1	4	õ
X_2	1	-1	1	4	õ
$\nu_1^{\hat{c}}$	1	1	1	-1	$-\tilde{5}$
,t	1	1	-1	-1	$-\tilde{5}$
ν_{c}^{c}	î	-2^{-1}	ō	$-\hat{1}$	$-\tilde{5}$
N_1^{e}	1	0	õ	-3	5
Nt	1	-2	õ	-4	õ
N_{0}^{c}	ī	3	-1	Ō	ŏ
T_{V}^{c}	10	0	0	-3	1
T_{Y}^{X}	10	Ő	Ó	Ó	4
M_{Y}^{c}	5	Ő	Ó	-3	-3
S_1	1	3	ĭ	ŏ	ŏ
S_2^1	1	0	2	Ó	0
- 4			-	,	-

< < >> < </>

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	ĩ	$-\bar{2}$	2
Y^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{c}^{c}	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	ō
X_2	1	-1	1	4	ŏ
$\nu_1^{\tilde{c}}$	1	1	1	-1	-5
ν_{2}^{t}	1	1	-1	-1	-5
ν_{2}^{c}	1	-2	0	-1	-5
N_1^2	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^{c}	1	3	$^{-1}$	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
$M_{\mathbf{Y}}^{c}$	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

< < >> < </>

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\overline{2}$	2
Y_1^c	5	2	0	-2	-2
Y_2	5	2	ŏ	-2^{-2}	2
Y_{c}^{c}	5	-1	ĩ	-2^{-2}	-2
X_1^2	1	$-\hat{1}$	$-\hat{1}$	4	ō
X_2	1	-1	1	4	õ
$\nu_1^{\hat{c}}$	1	1	1	-1	$-\tilde{5}$
ν_{2}^{t}	1	1	-1	-1	-5
ν_{2}^{c}	1	-2	0	-1	-5
N_1^2	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_2^{c}	1	3	-1	0	0
$T_{\mathbf{v}}^{c}$	10	0	0	-3	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	-3	-3
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	$^{-1}$	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_{2}	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$-\tilde{2}$	2
V_{c}^{c}	5	2	ō	-2	-2
V_0^{11}	5	2	ő	-2	2
V^{c}	Ĕ	_1	1	_2	_2
X^{1}	1	-1	_1	-2	-2
X ₁	1	-1	1	4	0
12	1	1	1	_1	-5
ž	1	1	1	1	5
22	1	_2	-1	_1	-5
N2	1	-2	0	- 3	-5
NE	1	_2	0	-4	0
N^2	1	- 2	-1	-4	ő
TC	10	0	0	_3	1
T^{1}_{T}	10	0	0	-3	1
MC	10	0	0	2	2
^{WI} _S X	1	3	1	-3	-3
S1 S2	1	0	2	0	ő
\mathcal{S}_2	т	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	-1	3
M_2	5	1	$^{-1}$	-1	3
M_3	5	-2	0	-1	3
$H^{\breve{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	$-\hat{1}$	î	$-\bar{2}$	2
V_{c}^{c}	5	2	ō	-2	-2
V_0^{11}	5	2	ő	-2	2
V^{c}	Ĕ	_1	1	_2	_2
X_1^2	1	-1	-1	-2	-2
Xo	1	-1	1	4	ő
12	1	1	1	-1	-5
~t	1	1	-1	_1	-5
, e	1	_2	ň	-1	-5
N^{c}	î	ō	ŏ	-3	5
Nt	1	-2	ő	-4	ő
NC	î	3	-1	Ō	ŏ
T^{c}	$\frac{-}{10}$	ő	Ō	-3	ĩ
T_{U}^{T}	10	ő	ő	ő	4
M^{1}	5	0	0	-3	_3
S_1	1	3	1	0	ŏ
Sa	ĩ	õ	2	ő	ŏ
52	-	0		0	0

Local Phenomenological Models in M-Theory and F-Theory

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

			h		and
	SU_5	$\times U_1^u \times$	$U_1^0 \times$	$U_1^{c} \times$	U_1^u
T_1	10	1	1	-1	-1
T_2	10	1	-1	-1	-1
T_3	10	-2	0	-1	-1
M_1	5	1	1	-1	3
M_2	5	1	-1	-1	3
M_2	5	-2	0	-1	3
$H^{\widetilde{u}}$	5	1	ĩ	2	2
H^{d}	Ē	1	1	2	_2
V.	E E	_1	1	-2	-2
V^{c}	E	-1	0	-2	2
V^{I_1}	2 2	2	0	-2	-2
12 VC		2	1	-2	4
$\frac{Y_2}{V^2}$	Ð	-1	1	-2	-2
X_1	1	-1	-1	4	0
X_{2}	1	-1	1	4	0
ν_1^{\vee}	1	1	1	-1	-5
ν_2^{c}	1	1	-1	-1	-5
ν_3^c	1	-2	0	$^{-1}$	-5
N_1^c	1	0	0	-3	5
N_2^c	1	-2	0	-4	0
N_3^c	1	3	-1	0	0
T_X^c	10	0	0	$^{-3}$	1
T_X^{α}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	$^{-3}$
S_1^{Λ}	1	3	1	0	0
S_2	1	0	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$ Constraining the Moduli Space

	SU_5	$\times U_1^a \times$	$U_1^b \times$	$U_1^c \times$	U_1^d
T_1	10	1	1	-1	-1
T_2	10	1	$^{-1}$	$^{-1}$	-1
T_3	10	-2	0	$^{-1}$	-1
M_1	5	1	1	$^{-1}$	3
M_2	5	1	-1	$^{-1}$	3
M_3	5	-2	0	-1	3
$H^{\vec{u}}$	5	1	1	2	2
H^d	5	1	1	2	-2
Y_1	5	-1	1	$^{-2}$	2
Y_1^{c}	5	2	0	-2	-2
Y_2^1	5	2	0	$^{-2}$	2
Y_2^c	5	-1	1	-2	-2
X_1^2	1	-1	-1	4	0
X_2	1	-1	1	4	0
$\nu_1^{\overline{c}}$	1	1	1	-1	-5
ν_2^t	1	1	-1	$^{-1}$	-5
ν_{3}^{t}	1	$^{-2}$	0	$^{-1}$	-5
N_1^e	1	0	0	-3	5
N_2^t	1	-2	0	$^{-4}$	0
N_3^c	1	3	-1	0	0
T_X^c	10	0	0	$^{-3}$	1
T_X^{Λ}	10	0	0	0	4
M_X^c	5	0	0	$^{-3}$	-3
S_1	1	3	1	0	0
S_2	1	0	2	0	0

A D b 4 A b

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	-2	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	-2	-1	3			
$H^{\vec{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2	2			
Y_1^c	5	2	-2	-2			
Y_2^{\perp}	5	2	-2	2			
$Y_2^{\tilde{c}}$	5	-2	$^{-2}$	-2			
X_1^2	1	0	4	0			
X_2	1	-2	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_X^c	10	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	-2	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	-2	-1	3			
$H^{\vec{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2	2			
Y_1^c	5	2	-2	-2			
Y_2^{\perp}	5	2	-2	2			
$Y_2^{\tilde{c}}$	5	-2	$^{-2}$	-2			
X_1^2	1	0	4	0			
X_2	1	-2	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_X^c	10	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	-2	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	-2	-1	3			
$H^{\vec{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2	2			
Y_1^c	5	2	-2	-2			
Y_2^{\perp}	5	2	-2	2			
$Y_2^{\tilde{c}}$	5	-2	$^{-2}$	-2			
X_1^2	1	0	4	0			
X_2	1	-2	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_X^c	10	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	-2	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	-2	-1	3			
$H^{\vec{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2	2			
Y_1^c	5	2	-2	-2			
Y_2^{\perp}	5	2	-2	2			
$Y_2^{\tilde{c}}$	5	-2	$^{-2}$	-2			
X_1^2	1	0	4	0			
X_2	1	-2	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_X^c	10	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	$^{-2}$	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	$^{-2}$	-1	3			
$H^{\breve{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2^{-2}	2			
Y_1^c	5	2	$^{-2}$	-2			
Y_2^{\perp}	5	2	$^{-2}$	2			
$Y_2^{\tilde{c}}$	5	$^{-2}$	-2	-2			
X_1^2	1	0	4	0			
X_2	1	$^{-2}$	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_{X}^{c}	$\overline{10}$	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

$SU_5 \times U_1^a \times U_1^c \times U_1^d$							
T_1	10	0	-1	-1			
T_2	10	2	-1	-1			
T_3	10	$^{-2}$	-1	-1			
M_1	5	0	-1	3			
M_2	5	2	-1	3			
M_3	5	$^{-2}$	-1	3			
$H^{\breve{u}}$	5	0	2	2			
H^d	5	0	2	-2			
Y_1	5	-2	-2^{-2}	2			
Y_1^c	5	2	-2	-2			
Y_2^{\perp}	5	2	-2	2			
$Y_2^{\tilde{c}}$	5	$^{-2}$	-2	-2			
X_1^2	1	0	4	0			
X_2	1	$^{-2}$	4	0			
$\nu_1^{\overline{c}}$	1	0	-1	-5			
ν_2^t	1	2	-1	-5			
ν_3^{t}	1	$^{-2}$	-1	-5			
N_1^e	1	0	-3	5			
N_2^t	1	$^{-2}$	-4	0			
N_3^c	1	4	0	0			
T_{X}^{c}	$\overline{10}$	0	-3	1			
T_X^{Λ}	10	0	0	4			
M_X^c	5	0	-3	-3			
S_1	1	2	0	0			

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Once this condition is imposed, we obtain the following superpotential,

 $W = T_1 T_1 H^u + T_2 T_3 H^u + T_1 M_1 H^d$ $+ T_2 M_3 H^d + T_3 M_2 H^d + H^u M_1 \nu_1^c$ $+ H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c$ $+ X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c$ $+ X_2 N_2^c N_3^c.$

	SU_5	$\times U_1^a$	$\times U_1^c$	$\times U_1^d$
T_1	10	0	-1	-1
T_2	10	2	-1	-1
T_3	10	$^{-2}$	-1	-1
M_1	5	0	-1	3
M_2	5	2	-1	3
M_3	5	$^{-2}$	-1	3
$H^{\breve{u}}$	5	0	2	2
H^d	5	0	2	-2
Y_1	5	-2	-2	2
Y_1^c	5	2	$^{-2}$	-2
Y_2^{\perp}	5	2	$^{-2}$	2
Y_2^c	5	$^{-2}$	$^{-2}$	-2
X_1^2	1	0	4	0
X_2	1	-2	4	0
$\nu_1^{\overline{c}}$	1	0	-1	-5
ν_2^t	1	2	-1	-5
ν_3^c	1	$^{-2}$	-1	-5
N_1^{c}	1	0	-3	5
N_2^c	1	$^{-2}$	-4	0
N_3^c	1	4	0	0
T_X^c	10	0	-3	1
T_X^{α}	10	0	0	4
M_X^c	5	0	$^{-3}$	-3
S_1	1	2	0	0

< 🗇 🕨
Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Once this condition is imposed, we obtain the following superpotential,

$$W = T_1 T_1 H^u + T_2 T_3 H^u + T_1 M_1 H^d + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_1 \nu_1^c + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

	SU_5	$\times U_1^a$	$\times U_1^c$	$\times U_1^d$
T_1	10	0	-1	-1
T_2	10	2	-1	-1
T_3	10	-2	-1	-1
M_1	5	0	-1	3
M_2	5	2	-1	3
M_3	5	-2	-1	3
$H^{\breve{u}}$	5	0	2	2
H^d	5	0	2	-2
Y_1	5	-2	$^{-2}$	2
Y_1^c	5	2	$^{-2}$	-2
Y_2^{\perp}	5	2	$^{-2}$	2
Y_2^c	5	-2	$^{-2}$	-2
X_1^2	1	0	4	0
X_2	1	-2	4	0
$\nu_1^{\overline{c}}$	1	0	-1	-5
ν_2^t	1	2	-1	-5
ν_{2}^{t}	1	$^{-2}$	-1	-5
N_1^e	1	0	-3	5
N_2^t	1	-2	$^{-4}$	0
N_3^{τ}	1	4	0	0
T_X^c	10	0	-3	1
T_X^{Λ}	10	0	0	4
M_X^c	5	0	-3	-3
S_1	1	2	0	0

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Once this condition is imposed, we obtain the following superpotential,

 $W = T_1 T_1 H^u + T_2 T_3 H^u + T_1 M_1 H^d$ + $T_2 M_3 H^d + T_3 M_2 H^d + H^u M_1 \nu_1^c$ + $H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c$ + $X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c$ + $X_2 N_2^c N_3^c$.

ヘロン 人間 とくほ とくほ とう

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Once this condition is imposed, we obtain the following superpotential,

$$W = T_1 T_1 H^u + T_2 T_3 H^u + T_1 M_1 H^d + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_1 \nu_1^c + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

Geometric Analogues to Grand Unification Physics from Geometry: Novel Approaches to Model Building Examples with Monodromies: The Diamond Ring of F-Theory

A Local Diamond Ring in F-Theory

To enforce the gauge-invariance of $T_1 T_1 H^u$, we should impose the **geometric** condition b = -a: $E_8(c+d, 2a+c+d, -3c+d, -4d, 0, 0, 0, 0)$

Once this condition is imposed, we obtain the following superpotential,

$$W = T_1 T_1 H^u + T_2 T_3 H^u + T_1 M_1 H^d + T_2 M_3 H^d + T_3 M_2 H^d + H^u M_1 \nu_1^c + H^u M_2 \nu_3^c + H^u M_3 \nu_2^c + X_1 Y_1 Y_1^c + X_1 Y_2 Y_2^c + X_1 N_1^c \nu_1^c + X_2 N_1^c \nu_2^c + X_2 N_2^c N_3^c.$$

Notice that the operator $X_1^{\dagger} H^u H^d$ is gauge invariant.

	SU_5	$\times U_1^a$	$\times U_1^c$	$\times U_1^d$
T_1	10	0	-1	-1
T_2	10	2	-1	-1
T_3	10	-2	-1	-1
M_1	5	0	-1	3
M_2	5	2	-1	3
M_{2}	5	$^{-2}$	-1	3
$H^{\breve{u}}$	5	0	2	2
H^d	5	0	2	-2
Y_1	5	$-\tilde{2}$	-2	2
Y_1^c	5	2	-2	-2
Y_2^1	5	2	-2	2
Y_2^c	5	$^{-2}$	-2	-2
X_1^2	1	0	4	0
X_2^{\uparrow}	1	-2	4	0
$\nu_1^{\overline{c}}$	1	0	-1	-5
ν_2^t	1	2	-1	-5
ν_3^{t}	1	-2	-1	-5
N_1^e	1	0	-3	5
N_2^t	1	-2	$^{-4}$	0
N_3^c	1	4	0	0
$T_{\mathbf{x}}^{c}$	10	0	-3	1
T_X^{Λ}	10	0	0	4
M_X^c	5	0	-3	-3
S_1	1	2	0	0

Conclusions and Future Directions

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?
- . . .

ヘロト ヘアト ヘビト ヘビト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?
- . . .

ヘロト ヘアト ヘビト ヘビト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?
- . . .

ヘロト ヘワト ヘビト ヘビト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?

• How many assumptions are required in each case?

 What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?

• . . .

ヘロア 人間 アメヨア 人口 ア

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?
- . . .

ヘロト ヘワト ヘビト ヘビト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?

• . . .

イロト イポト イヨト イヨト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?

• . . .

ヘロト ヘワト ヘビト ヘビト

- We have seen that explicit, purely local phenomenological models with three generations exist in both F-theory and M-theory, but only just-so.
- These models are 'in principle' explicit enough to be exhaustively studied, and even make falsifiable predictions for low-energy physics.
 - To what extent is this claim true in both F-theory and M-theory?
 - How many assumptions are required in each case?
- What about moduli stabilization? Are there compact manifolds with these local patches? How is the locally continuous landscape of fibrations quantized by compactification?
- . . .

ヘロト ヘアト ヘビト ヘビ