Global Aspects of F-theory Compactification

Kang Sin Choi Kyoto University

with Tae-Won Ha (Bonn)

String Pheno 09, Warsaw 16 June 2009

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

F-theory

IIB string has $SL(2, \mathbb{Z})$ symmetry

axion-dilaton $\tau \equiv$ complex structure of a torus

 1 more complex dimension: Elliptic equation, with one section

$$y^2 = x^3 + fx + g$$

dim 2 - 1, genus 1: torus.

 In total 12 real dimensions: Calabi–Yau manifold, with more compact base space B'

$$\boldsymbol{f} \sim \boldsymbol{K}_{B'}^{-4}, \quad \boldsymbol{g} \sim \boldsymbol{K}_{B'}^{-6}.$$

f, g are holomorphic polynomials of degrees 8, 12 on B', resp.

F-theory

IIB string has $SL(2, \mathbb{Z})$ symmetry

axion-dilaton $\tau \equiv$ complex structure of a torus

 1 more complex dimension: Elliptic equation, with one section

$$y^2 = x^3 + fx + g$$

dim 2 - 1, genus 1: torus.

In total 12 real dimensions: Calabi–Yau manifold, with more compact base space B'

$$f \sim K_{B'}^{-4}, \quad g \sim K_{B'}^{-6}.$$

f, g are holomorphic polynomials of degrees 8, 12 on B', resp.

▶ Fibered: \(\tau\) vary on B'

$$j(\tau) = f^3 / \Delta, \quad \Delta = 4f^3 + 27g^2 \sim K_{B'}^{-12}$$

• Going close to $\Delta = 0$ surface, fiber singular.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

F-theory

IIB string has $SL(2, \mathbb{Z})$ symmetry

axion-dilaton $\tau \equiv$ complex structure of a torus

Elliptic equation, with one section

$$y^2 = x^3 + fx + g$$

dim 2 - 1, genus 1: torus.

To be Calabi–Yau manifold

$$f \in H^0_{\overline{\partial}}(B, -4K_B), \quad g \in H^0_{\overline{\partial}}(B, -6K_B)$$

f, g are resp. holomorphic polynomials of orders 8, 12 on B.

Fibered: τ vary on B

$$j(\tau) = f^3 / \Delta, \quad \Delta = 4f^3 + 27g^2$$

- Going close to $\Delta = 0$ surface, fiber singular.
- Gauge symmetry: how singular the fiber is ord (f, g, Δ) .
 - Identification: Kodaira Table.
 - Equation: Tate's algorithm. [Bershadsky et al].

In general Δ is reducible. How to reduce?

ord f	ord g	ord Δ	name
0	0	п	A_{n-1}
2	≥ 3	<i>n</i> +6	D_{n+4}
≥ 2	3	<i>n</i> +6	D_{n+4}
≥ 3	4	8	E_6
3	≥ 5	9	E_7
≥ 4	5	10	E_8

[Kodaira]

Gauge symmetry

Singularity of the fiber

gauge symmetry of the same name.

Matter fields

off-diagonal component of the adjoint. [Katz Vafa]
 cf. Bifundamentals at the intersections of branes.

Ex. $U(m+n) \rightarrow U(m) \times U(n)$

ord f	ord g	ord Δ	name
0	0	п	A_{n-1}
2	≥ 3	<i>n</i> +6	D_{n+4}
≥ 2	3	<i>n</i> +6	D_{n+4}
≥ 3	4	8	E_6
3	≥ 5	9	E_7
≥ 4	5	10	E_8

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Gauge symmetry

Singularity of the fiber

gauge symmetry of the same name.

Matter fields

off-diagonal component of the adjoint. [Katz Vafa]
 cf. Bifundamentals at the intersections of branes.

Ex.
$$U(m+n) \rightarrow U(m) \times U(n)$$

$$y^{2} = x^{2} + (z - u(z'))^{m}(z - t(z'))^{n}$$

ord ord g ord Δ name A_{n-1} n $2 \ge 2 \\ \ge 3 \\ 3$ ≥ 3 n+6 D_{n+4} 34 ≥ 5 n+6 D_{n+4} E_6 8 9 E_7 E_8

- If u = t the symmetry is enhanced to U(m + n).
- Even $u \neq t$ at $\{z = u\} \cap \{z = t\}$, local symmetry enhancement.

Branching

 $(m+n)^2 \rightarrow (m^2,1) + (1,n^2) + (1,1) + (m,n) + (\overline{m},\overline{n}).$

Chiral fields are localized

Intersection and divisors

Divisor

Codimension one subspace specified by an equation

• Ex.
$$(x - a_0)^2 (x - a_1)(x - a_2)^{-3} = 0.$$

$$D = 2P_0 + P_1 - 3P_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Extended to higher dimension

Intersection and divisors

Divisor

Codimension one subspace specified by an equation

• Ex.
$$(x - a_0)^2 (x - a_1)(x - a_2)^{-3} = 0$$

$$D = 2P_0 + P_1 - 3P_2$$

Extended to higher dimension

Intersection number

- A natural product between homological cycles
- Ex. On T^2 , two one-cycles C_1 and C_2 ,

- Curves: the net number of intersections (topological quantity).
- Surfaces: the intersection divisors (higher codimension object).

Ex.
$$U(m+n) \to U(m) \times U(n)$$

 $y^2 = x^2 + (z-u)^m (z-t)^n$
 $C_1 = \{z = u(z')\}, \quad C_2 = \{z = t(z')\}.$

Under the reduction

- ▶ u = t: D = (m + n)C.
- $u \neq t$: $D = mC_1 + nC_2$. (**m**, **n**) is localized at

$$C_1 \cdot C_2 = \{z = u(z')\} \cap \{z = t(z')\} = \sum m_a P_a.$$

Matter curves [Katz, Vafa] [Beasley, Heckman, Vafa]

Calabi-Yau manifold

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

direction	0123	4567	89	10 11
	$M^{1,3}$	Cal	abi–Yau 4-fo	old
definition of F-theory	//	B'_3		Т
F-theory on $K3$ = heterotic on T	//	B_2	K3	
$K3 = T$ fiber over \mathbb{P}^1	//	B_2	$\mathbb{P}^1 = S^2$	Т

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Calabi-Yau manifold

direction	0123	4567	89	10 11
	$M^{1,3}$	Cal	abi–Yau 4-fo	old
definition of F-theory	//		B'_3	Т
F-theory on $K3$ = heterotic on T	//	B_2	K3	
$K3 = T$ fiber over \mathbb{P}^1	//	B_2	$\mathbb{P}^1 = S^2$	Т

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2 .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

 \mathbb{P}^1 described by two line bundles r (base) and t ($\mathcal{O}_{B_2}(1)$ fiber) satisfying $r \cdot (r+t) = 0$. [Friedan, Morgan, Witten]

Calabi-Yau manifold

direction	0123	4567	89	10 11
	$M^{1,3}$	Cal	abi–Yau 4-fo	old
definition of F-theory	//		B'_3	Т
F-theory on $K3$ = heterotic on T	//	B_2	K3	
$K3 = T$ fiber over \mathbb{P}^1	//	B_2	$\mathbb{P}^1 = S^2$	Т

12D with 32 SUSY: On Calabi–Yau 4-fold, we have $\mathcal{N} = 1$ SUSY in 4D.

General structure: B'_3 is a \mathbb{P}^1 fibration over B_2 .

 \mathbb{P}^1 described by two line bundles r (base) and t ($\mathcal{O}_{B_2}(1)$ fiber) satisfying $r \cdot (r+t) = 0$. [Friedan, Morgan, Witten] Putting the dual gauge group $E_8 \times E_8$ on r, (r+t), resp.

Two ends of the interval of heterotic-M-theory [Horava, Witten] [Morrison, Vafa I] Information on B_2 is its divisors $\{s_i\}$. $t, c_1(B_2)$ are also expressed in terms of them. Maximal gauge symmetry at r is $E_8 \times E_8$ + zero size instantons (blowing-ups on the base). cf. two global sections: Spin(32)/ \mathbb{Z}_2 [Aspinvall, Gross]

Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n .

012345	67	89	10 11				
$M^{1,5}$	Calabi-Yau 3-fold				Calabi–Yau 3-		
//	\mathbb{F}_n		Т				
//	\mathbb{P}^1	\mathbb{P}^1	Т				

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

 \mathbb{F}_n is generated by two divisors C_0, f such that $C_0 \cdot (C_0 + nf) = 0, C_0^2 = -n, f^2 = 0.$

Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n .

012345	67	89	10 11
$M^{1,5}$	Calabi-Yau 3-fold		
//	\mathbb{F}_n		Т
//	\mathbb{P}^1	\mathbb{P}^1	Т

 \mathbb{F}_n is generated by two divisors C_0, f such that $C_0 \cdot (C_0 + nf) = 0, C_0^2 = -n, f^2 = 0$. $E_8 \times E_8$ located at C_0 and $(C_0 + nf)$,

$$\begin{array}{rcrcrcrcrcrc} F = & -4 \, K_{B_2} & = & 4C_0 & + & 4(C_0 + nf) & + & 8f, \\ G = & -6 \, K_{B_2} & = & 5C_0 & + & 5(C_0 + nf) & + & 2C_0 + (12 + n)f, \\ D = & -12 \, K_{B_2} & = & 10C_0 & + & 10(C_0 + nf) & + & \underbrace{4C_0 + (24 + 2n)f}_{D'}, \end{array}$$

Induced 6-dimensional objects

 $C_0 \cdot D' = 2(12 - n), \quad (C_0 + nf) \cdot D' = 2(12 + n) \quad \text{cf. } \mathbb{Z}_2 \text{ monodromy.}$

Bianchi identity on the heterotic side with backgroud bundles V_1, V_2 .

$$c_2(\mathcal{V}_1) + c_2(\mathcal{V}_2) + \delta n_3 = c_2(K3) = 24$$

Global consistency condition

Ex. Case $B_1 = \mathbb{P}^1$. A \mathbb{P}^1 fibration over this gives the Hirzebruch surface \mathbb{F}_n .

012345	67	89	10 11			
$M^{1,5}$	Calabi-Yau 3-fold				Calabi–Yau	
//	\mathbb{F}_n		Т			
//	\mathbb{P}^1	\mathbb{P}^1	Т			

 \mathbb{F}_n is generated by two divisors C_0, f such that $C_0 \cdot (C_0 + nf) = 0, C_0^2 = -n, f^2 = 0$. $E_8 \times E_8$ located at C_0 and $(C_0 + nf)$,

$$\begin{array}{rcrcrcrcrcrc} F = & -4 \, K_{B_2} & = & 4C_0 & + & 4(C_0 + nf) & + & 8f, \\ G = & -6 \, K_{B_2} & = & 5C_0 & + & 5(C_0 + nf) & + & 2C_0 + (12 + n)f, \\ D = & -12 \, K_{B_2} & = & 10C_0 & + & 10(C_0 + nf) & + & \underbrace{4C_0 + (24 + 2n)f}_{D'}, \end{array}$$

Induced 6-dimensional objects

 $C_0 \cdot D' = 2(12 - n), \quad (C_0 + nf) \cdot D' = 2(12 + n) \quad \text{cf. } \mathbb{Z}_2 \text{ monodromy.}$

Bianchi identity on the heterotic side with backgroud bundles V_1, V_2 .

$$c_2(\mathcal{V}_1) + c_2(\mathcal{V}_2) + \delta n_3 = c_2(K3) = 24$$

Some of 24 points are blown-up. 4D compactification: missing part

$$\frac{\chi(X_4)}{24} = n_3 + \frac{1}{2} \int_{X_4} G_4 \wedge G_4.$$

Sufficiently smooth Calabi-Yau condition = 'charge conservation' of 'branes'

Symmetry breaking preserving this form.

Symmetry breaking

Along $\Delta=0,$ gauge theory on the 8D worldvolume. Field contents

direction	0123	4567	89	10 11
geometry	$M^{1,3}$	В	\mathbb{P}^1	T^2
fields	A_{μ}	A_m	φ_{89}	(au)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

Symmetry breaking

Along $\Delta=0,$ gauge theory on the 8D worldvolume. Field contents

direction	0123	4567	89	10 11
geometry	$M^{1,3}$	В	\mathbb{P}^1	T^2
fields	A_{μ}	A_m	$arphi_{89}$	(au)

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

- 1. $\phi_{89} \sim K_B \otimes \mathrm{adj}G$
 - adjoint Higgs
 - parameterizes the normal direction to the base 'brane'
 - nonconstant profile: intersecting branes
 - tuning the parameters of Δ = re-decomposing D

Symmetry breaking

Along $\Delta=0,$ gauge theory on the 8D worldvolume. Field contents

direction	0123	4567	89	10 11
geometry	$M^{1,3}$	В	\mathbb{P}^1	T^2
fields	A_{μ}	A_m	φ_{89}	(au)

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

- 1. $\phi_{89} \sim K_B \otimes \operatorname{adj} G$
 - adjoint Higgs
 - parameterizes the normal direction to the base 'brane'
 - nonconstant profile: intersecting branes
 - tuning the parameters of Δ = re-decomposing D
- 2. $A_m \sim \Omega_B \otimes \operatorname{adj} G$
 - HYM equation with DUY condition: instanton solution
 - background gauge field on the brane
 - analogous to magnetized brane
 - blowing up some intersection of Δ = replacing the divisors

Reduction of the discriminant locus Δ

▲日▶▲□▶▲□▶▲□▶ □ のQ@

Reduction of discriminant locus

A nontrivial scalar profile $\langle \varphi \rangle$ gives rise the reduction. $\varphi \sim K_B \otimes adjG_S$ We re-decompose *D* within $E_8 \times E_8$. Ex. $E_8 \rightarrow E_6 \times U(2)$

∜

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 - 釣�(♡

Reduction of discriminant locus

A nontrivial scalar profile $\langle \varphi \rangle$ gives rise the reduction. $\varphi \sim K_B \otimes adjG_S$ We re-decompose *D* within $E_8 \times E_8$. Ex. $E_8 \rightarrow E_6 \times U(2)$

► 7-brane charge preserved, if

Reduction of discriminant locus

A nontrivial scalar profile $\langle \varphi \rangle$ gives rise the reduction. $\varphi \sim K_B \otimes adjG_S$ We re-decompose *D* within $E_8 \times E_8$. Ex. $E_8 \rightarrow E_6 \times U(2)$

$$F = 4r + 4(r+t) + 8t$$

$$G = 5r + 5(r+t) + 2r + 6c_1(B_2) + t,$$

$$D = 10r + 10(r+t) + 4r + 12c_1(B_2) + 2t.$$

$$\Downarrow$$

$$F = 3S_1 + 0S_2 + 1S_2 + 4(r+t) + 8t$$

$$\begin{array}{rcl} T &=& 501 + 502 + 153 + & +(r+r) & + & 2r \\ G &=& 4S_1 + 0S_2 + 1S_3 + & 5(r+t) & + & 2r + 6c_1(B_2) + t, \\ D &=& 8S_1 + 2S_2 + 0S_3 + & 10(r+t) & + & 4r + 12c_1(B_2) + 2t. \end{array}$$

7-brane charge preserved, if

4r =	$3S_1 +$	$0S_2 +$	$1S_3$
5r =	$4S_1 +$	$0S_2 +$	$1S_3$
10r =	$8S_1 +$	$2S_2 +$	$0S_3$

cf. S_3 plays no role in gauge theory.

Instanton number untouched

 $\mathbf{248} \rightarrow \ \left(\mathbf{3},\mathbf{1}\right) + \left\langle \left(\mathbf{1},\mathbf{1}\right)\right\rangle + \left(\mathbf{1},\mathbf{78}\right) + \left(\mathbf{2},\mathbf{1}\right)_3 + \left(\mathbf{1},\mathbf{27}\right)_2 + \left(\mathbf{2},\mathbf{27}\right)_1 + \textit{CPT}\,\textit{conj},$

'Off-diagonal' matters are localized along the matter curves

$$S_1 \cdot S_2 = \sum m_a \Sigma_{12}^a$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

Line bundle background

: 'off-diagonal' components with different U(1) charges.

• □ > • (□) + (□) + (□) + (□)

3

ex. $E_8 \rightarrow SU(2) \times E_6$ in 6D, we had $10r \rightarrow 2C_1 + 6C_2$.

Line bundle background

: 'off-diagonal' components with different U(1) charges.

ex. $E_8 \rightarrow SU(2) \times E_6$ in 6D, we had $10r \rightarrow 2C_1 + 6C_2$. $C \sim C_i \sim C_j$

 $10r \to 2r + 6r$ $C_1 \cdot C_2 = r^2 = -n.$

Not allowed unless the base is blown-up.

Line bundle background

: 'off-diagonal' components with different U(1) charges.

ex. $E_8 \rightarrow SU(2) \times E_6$ in 6D, we had $10r \rightarrow 2C_1 + 6C_2$.

 $C \sim C_i \sim C_j$ $10r \rightarrow 2r + 6r$ $C_1 \cdot C_2 = r^2 = -n.$

Not allowed unless the base is blown-up.

► $C_i \not\sim C_j$ $10r \rightarrow 2(r+6t) + 6(r-2t)$ $C_1 \cdot C_2 = (r+6t) \cdot (r-2t) = 4-n$ if $n \leq 4$, we have (4-n)(2, 27)s. n = 4 'parallel separation' of If $r \geq 4$ the minimum sequence aroun should be biaser than F.

cf. If n > 4, the minimal gauge group should be bigger than E_7 . [Morrison, Vafa]

Spectrum

We have obtained

- 1. Gauge surfaces $D = \sum \text{ ord } \Delta_i S_i + D'$ by the decomposition preserving the $E_8 \times E_8$ structure
- 2. Matter curves $S_i \cdot S_j = \sum m_a \Sigma_{ij}^a$ from the intersections

We can also turn on the background gauge bundle $\langle A_m \rangle \to \mathcal{V}$ Multiplicity: index theorem

$$\chi(S_i, \mathcal{V}_i) = \int_{S_i} \operatorname{ch}(\mathcal{V}_i) \operatorname{Td}(S_i)$$

Conclusion

We studied global issues of F-theory compactification. The important problem is

decomposition of the discriminant locus

- ► Intersection theory is useful for enumerative operation among geometric objects.
- The adjoint scalar φ normal to the base *B* parameterizes the geometry of discriminant locus.
 - $\langle \varphi \rangle \neq 0$ corresponding to reducing the discriminant locus.
- Preserving the charges of discriminant locus: susy conditions, 'brane charges', instanton no are preserved.
 We also need 3-branes.
- We have analogous phenomena of parallel separtaion and recombination in the D-brane picture.
- Chiral fermions emerge as 'off-diagonal' component of the adjoint during the reduction. We can calculate their matter curve and localization

▶ With background gauge field, we obtain the spectrum using the index theorem.