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F-theory

IIB string hasSL(2, Z) symmetry

axion-dilatonτ ≡ complex structure of a torus

◮ 1 more complex dimension:
Elliptic equation, with one section

y2 = x3 + f x + g

dim 2− 1, genus 1: torus.

◮ In total 12 real dimensions:
Calabi–Yau manifold, with more compact base spaceB′

f ∼ K−4
B′

, g ∼ K−6
B′

.

f , g are holomorphic polynomials of degrees 8, 12 onB′,
resp.
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F-theory
IIB string hasSL(2, Z) symmetry

axion-dilatonτ ≡ complex structure of a torus

◮ Elliptic equation, with one section

y2 = x3 + f x + g

dim 2− 1, genus 1: torus.

◮ To be Calabi–Yau manifold

f∈ H0
∂
(B, − 4KB), g∈ H0

∂
(B, − 6KB)

f , g are resp. holomorphic polynomials of orders 8, 12
on B.

◮ Fibered:τ vary onB

j(τ) = f 3/∆, ∆ = 4f 3 + 27g2

◮ Going close to∆ = 0 surface, fiber singular.

◮ Gauge symmetry: how singular the fiber is ord(f , g, ∆).
◮ Identification: Kodaira Table.
◮ Equation: Tate’s algorithm.[Bershadsky et al].

ord f ordg ord∆ name
0 0 n An−1

2 ≥ 3 n+6 Dn+4

≥ 2 3 n+6 Dn+4

≥ 3 4 8 E6

3 ≥ 5 9 E7

≥ 4 5 10 E8
[Kodaira]

In general∆ is reducible. How to reduce?



Gauge symmetry
Singularity of the fiber

◮ gauge symmetry of the same name.

Matter fields

◮ off-diagonal component of the adjoint.[Katz Vafa]

cf. Bifundamentals at the intersections of branes.

Ex. U(m + n) → U(m) × U(n)
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Gauge symmetry
Singularity of the fiber

◮ gauge symmetry of the same name.

Matter fields

◮ off-diagonal component of the adjoint.[Katz Vafa]

cf. Bifundamentals at the intersections of branes.

Ex. U(m + n) → U(m) × U(n)

ordf ordg ord∆ name
0 0 n An−1

2 ≥ 3 n+6 Dn+4

≥ 2 3 n+6 Dn+4

≥ 3 4 8 E6

3 ≥ 5 9 E7

≥ 4 5 10 E8

y2 = x2 + (z − u(z′))m(z − t(z′))n

◮ If u = t the symmetry is enhanced toU(m + n).

◮ Evenu 6= t at{z = u} ∩ {z = t}, local symmetry enhancement.

◮ Branching

(m + n)2 → (m2, 1) + (1, n2) + (1, 1) + (m, n) + (m, n).

Chiral fields are localized

z = 0

z = u(z′)

z = t(z′)

(m, n)
(m, n)

(m, n)

(m, n)

(m, n) : CPT conjugate.



Intersection and divisors

Divisor

◮ Codimension one subspace specified by an equation

◮ Ex. (x − a0)
2(x − a1)(x − a2)

−3 = 0.

D = 2P0 + P1 − 3P2

◮ Extended to higher dimension



Intersection and divisors

Divisor

◮ Codimension one subspace specified by an equation

◮ Ex. (x − a0)
2(x − a1)(x − a2)

−3 = 0.

D = 2P0 + P1 − 3P2

◮ Extended to higher dimension

Intersection number

◮ A natural product between homological cycles

◮ Ex. OnT2, two one-cyclesC1 andC2,

+1

+1

−1

C1 · C2 = +1.

◮ Curves: thenet number of intersections (topological quantity).

◮ Surfaces: the intersection divisors (higher codimension object).



Matter curves

Ex. U(m + n) → U(m) × U(n)

y2 = x2 + (z − u)m(z − t)n

C1 = {z = u(z′)}, C2 = {z = t(z′)}.



Matter curves

Ex. U(m + n) → U(m) × U(n)

y2 = x2 + (z − u)m(z − t)n

C1 = {z = u(z′)}, C2 = {z = t(z′)}.

(m + n)2 → (m2, 1) ⊕ (1, n2) ⊕ (1, 1) + (m, n) + (m, n).

z = 0

z = ul(z′)

z = tk(z′)

(m, n)
(m, n)

(m, n)

(m, n)

Under the reduction

◮ u = t: D = (m + n)C.

◮ u 6= t: D = mC1 + nC2.
(m, n) is localized at

C1 · C2 = {z = u(z′)} ∩ {z = t(z′)} =
X

maPa.

Matter curves[Katz, Vafa] [Beasley, Heckman, Vafa]



Calabi–Yau manifold
12D with 32 SUSY: On Calabi–Yau 4-fold, we haveN = 1 SUSY in 4D.

direction 0 1 2 3 4 5 6 7 8 9 10 11
M1,3 Calabi–Yau 4-fold

definition of F-theory ′′ B′

3 T
F-theory on K3 = heterotic onT ′′ B2 K3

K3 = T fiber overP1 ′′ B2 P
1 = S2 T

General structure:B′

3 is aP
1 fibration overB2.
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Calabi–Yau manifold
12D with 32 SUSY: On Calabi–Yau 4-fold, we haveN = 1 SUSY in 4D.

direction 0 1 2 3 4 5 6 7 8 9 10 11
M1,3 Calabi–Yau 4-fold

definition of F-theory ′′ B′

3 T
F-theory on K3 = heterotic onT ′′ B2 K3

K3 = T fiber overP1 ′′ B2 P
1 = S2 T

General structure:B′

3 is aP
1 fibration overB2.

P
1 described by two line bundlesr (base) andt (OB2(1) fiber) satisfying

r · (r + t) = 0. [Friedan, Morgan, Witten]

Putting the dual gauge groupE8 × E8 on r, (r + t), resp.

F = −4KB′

3
= 4r + 4(r + t) + 8t

G = −6KB′

3
= 5r + 5(r + t) + 2r + 6c1(B2) + t,

D = −12KB′

3
= 10r + 10(r + t) + 4r + 12c1(B2) + 2t.

E8 E8
t r+t

Two ends of the interval of heterotic-M-theory[Horava, Witten] [Morrison, Vafa I]

Information onB2 is its divisors{si}. t, c1(B2) are also expressed in terms of them.
Maximal gauge symmetry atr is E8 × E8 + zero size instantons (blowing-ups on the base).
cf. two global sections: Spin(32)/Z2 [Aspinwall, Gross]



Global consistency condition
Ex. CaseB1 = P

1. A P
1 fibration over this gives the Hirzebruch surfaceFn.

0 1 2 3 4 5 6 7 8 9 10 11
M1,5 Calabi–Yau 3-fold
′′

Fn T
′′

P
1

P
1 T

Fn is generated by two divisorsC0, f such thatC0 · (C0 + nf ) = 0, C2
0 = −n, f 2 = 0.
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E8 × E8 located atC0 and(C0 + nf ),

F = −4 KB2 = 4C0 + 4(C0 + nf ) + 8f ,
G = −6 KB2 = 5C0 + 5(C0 + nf ) + 2C0 + (12+ n)f ,
D = −12 KB2 = 10C0 + 10(C0 + nf ) + 4C0 + (24+ 2n)f

| {z }

D′

.

Induced 6-dimensional objects

C0 · D′ = 2(12− n), (C0 + nf ) · D′ = 2(12+ n) cf. Z2 monodromy.

Bianchi identity on the heterotic side with backgroud bundlesV1,V2.

c2(V1) + c2(V2) + δn3 = c2(K3) = 24

Some of 24 points are blown-up. 4D compactification: missingpart

χ(X4)

24
= n3 +

1

2

Z

X4

G4 ∧ G4.

Sufficiently smoothCalabi–Yau condition = ‘charge conservation’ of ‘branes’

Symmetry breaking preserving this form.



Symmetry breaking

Along ∆ = 0, gauge theory on the 8D worldvolume.
Field contents

direction 0 1 2 3 4 5 6 7 8 9 10 11
geometry M1,3 B P

1 T2

fields Aµ Am ϕ89 (τ)

Internal index is uniquely determined by twisted SUSY.[Beasly Heckman Vafa]

Two ways of gauge symmetry breaking
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Symmetry breaking

Along ∆ = 0, gauge theory on the 8D worldvolume.
Field contents

direction 0 1 2 3 4 5 6 7 8 9 10 11
geometry M1,3 B P

1 T2

fields Aµ Am ϕ89 (τ)

Internal index is uniquely determined by twisted SUSY.[Beasly Heckman Vafa]

Two ways of gauge symmetry breaking
1. φ89 ∼ KB ⊗ adjG

◮ adjoint Higgs
◮ parameterizes the normal direction to the base ‘brane’
◮ nonconstant profile: intersecting branes
◮ tuning the parameters of∆ = re-decomposingD

2. Am ∼ ΩB ⊗ adjG
◮ HYM equation with DUY condition: instanton solution
◮ background gauge field on the brane
◮ analogous to magnetized brane
◮ blowing up some intersection of∆ = replacing the divisors

Reduction of the discriminant locus∆



Reduction of discriminant locus
A nontrivial scalar profile〈ϕ〉 gives rise the reduction.ϕ ∼ KB ⊗ adjGS

We re-decomposeD within E8 × E8.
Ex. E8 → E6 × U(2)

F = 4r + 4(r + t) + 8t
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Reduction of discriminant locus
A nontrivial scalar profile〈ϕ〉 gives rise the reduction.ϕ ∼ KB ⊗ adjGS

We re-decomposeD within E8 × E8.
Ex. E8 → E6 × U(2)

F = 4r + 4(r + t) + 8t
G = 5r + 5(r + t) + 2r + 6c1(B2) + t,
D = 10r + 10(r + t) + 4r + 12c1(B2) + 2t.

⇓

F = 3S1 + 0S2 + 1S3+ 4(r + t) + 8t
G = 4S1 + 0S2 + 1S3+ 5(r + t) + 2r + 6c1(B2) + t,
D = 8S1 + 2S2 + 0S3+ 10(r + t) + 4r + 12c1(B2) + 2t.

◮ 7-brane charge preserved, if

4r = 3S1+ 0S2+ 1S3

5r = 4S1+ 0S2+ 1S3

10r = 8S1+ 2S2+ 0S3

cf. S3 plays no role in gauge theory.

◮ Instanton number untouched
248 → (3, 1) + 〈(1, 1)〉 + (1, 78) + (2, 1)3 + (1, 27)2 + (2, 27)1 + CPT conj,

‘Off-diagonal’ matters are localized along the matter curves

S1 · S2 =
X

maΣ
a
12



Matter curves

Line bundle background
: ‘off-diagonal’ components with differentU(1) charges.
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Line bundle background
: ‘off-diagonal’ components with differentU(1) charges.

z = 0

z = u(z′)

z = t(z′)

(m, n)
(m, n)

(m, n)

(m, n)

Si · Sj =
X

maΣa
ij

ex.E8 → SU(2) × E6 in 6D, we had 10r → 2C1 + 6C2.

◮ C ∼ Ci ∼ Cj

10r → 2r + 6r

C1 · C2 = r2 = −n.

Not allowed unless the base is blown-up.

◮ Ci 6∼ Cj
10r → 2(r + 6t) + 6(r − 2t)

C1 · C2 = (r + 6t) · (r − 2t) = 4− n

if n ≤ 4, we have(4− n)(2, 27)s.
n = 4 ‘parallel separtaion’
cf. If n > 4, the minimal gauge group should be bigger thanE7. [Morrison, Vafa]



Spectrum

We have obtained

1. Gauge surfacesD =
P

ord∆iSi + D′

by the decomposition preserving theE8 × E8 structure

2. Matter curvesSi · Sj =
P

maΣa
ij

from the intersections

We can also turn on the background gauge bundle〈Am〉 → V
Multiplicity: index theorem

χ(Si,Vi) =

Z

Si

ch(Vi)Td(Si)



Conclusion

We studied global issues of F-theory compactification. The important problem is

decomposition of the discriminant locus

◮ Intersection theory is useful for enumerative operation among geometric objects.

◮ The adjoint scalarϕ normal to the baseB parameterizes the geometry of discriminant
locus.
〈ϕ〉 6= 0 corresponding to reducing the discriminant locus.

◮ Preserving the charges of discriminant locus: susy conditions, ‘brane charges’, instanton
no are preserved.
We also need 3-branes.

◮ We have analogous phenomena of parallel separtaion and recombination in the D-brane
picture.

◮ Chiral fermions emerge as ‘off-diagonal’ component of the adjoint during the reduction.
We can calculate their matter curve and localization

◮ With background gauge field, we obtain the spectrum using theindex theorem.


