Global Aspects of F-theory Compactification

Kang Sin Choi
Kyoto University

with Tae-Won Ha (Bonn)

String Pheno 09, Warsaw
16 June 2009

F-theory

IIB string has $S L(2, \mathbb{Z})$ symmetry
axion-dilaton $\tau \equiv$ complex structure of a torus

- 1 more complex dimension:

Elliptic equation, with one section

$$
y^{2}=x^{3}+f x+g
$$

$\operatorname{dim} 2-1$, genus 1: torus.

- In total 12 real dimensions:

Calabi-Yau manifold, with more compact base space B^{\prime}

$$
f \sim K_{B^{\prime}}^{-4}, \quad g \sim K_{B^{\prime}}^{-6}
$$

f, g are holomorphic polynomials of degrees 8,12 on B^{\prime}, resp.

F-theory

IIB string has $S L(2, \mathbb{Z})$ symmetry

$$
\text { axion-dilaton } \tau \equiv \text { complex structure of a torus }
$$

- 1 more complex dimension:

Elliptic equation, with one section

$$
y^{2}=x^{3}+f x+g
$$

$\operatorname{dim} 2-1$, genus 1 : torus.

- In total 12 real dimensions:

Calabi-Yau manifold, with more compact base space B^{\prime}

$$
f \sim K_{B^{\prime}}^{-4}, \quad g \sim K_{B^{\prime}}^{-6}
$$

f, g are holomorphic polynomials of degrees 8,12 on B^{\prime}, resp.

- Fibered: τ vary on B^{\prime}

$$
j(\tau)=f^{3} / \Delta, \quad \Delta=4 f^{3}+27 g^{2} \sim K_{B^{\prime}}^{-12}
$$

- Going close to $\Delta=0$ surface, fiber singular.

F-theory

IIB string has $S L(2, \mathbb{Z})$ symmetry

$$
\text { axion-dilaton } \tau \equiv \text { complex structure of a torus }
$$

- Elliptic equation, with one section

$$
y^{2}=x^{3}+f x+g
$$

$\operatorname{dim} 2-1$, genus 1: torus.

- To be Calabi-Yau manifold

$$
f \in H \frac{0}{\partial}\left(B,-4 K_{B}\right), \quad g \in H \frac{0}{\partial}\left(B,-6 K_{B}\right)
$$

f, g are resp. holomorphic polynomials of orders 8,12 on B.

- Fibered: τ vary on B

$$
j(\tau)=f^{3} / \Delta, \quad \Delta=4 f^{3}+27 g^{2}
$$

- Going close to $\Delta=0$ surface, fiber singular.
- Gauge symmetry: how singular the fiber is ord (f, g, Δ).
- Identification: Kodaira Table.
- Equation: Tate's algorithm. [Bershadsky et al].

In general Δ is reducible. How to reduce?

Gauge symmetry

Singularity of the fiber

- gauge symmetry of the same name.

Matter fields

- off-diagonal component of the adjoint. [Katz Vafa] cf. Bifundamentals at the intersections of branes.
Ex. $U(m+n) \rightarrow U(m) \times U(n)$

ord f	ord g	ord Δ	name
0	0	n	A_{n-1}
2	≥ 3	$n+6$	D_{n+4}
≥ 2	3	$n+6$	D_{n+4}
≥ 3	4	8	E_{6}
3	≥ 5	9	E_{7}
≥ 4	5	10	E_{8}

Gauge symmetry

Singularity of the fiber

- gauge symmetry of the same name.

Matter fields

- off-diagonal component of the adjoint. [Katz Vafa] cf. Bifundamentals at the intersections of branes.

Ex. $U(m+n) \rightarrow U(m) \times U(n)$

ord f	ord g	ord Δ	name
0	0	n	A_{n-1}
2	≥ 3	$n+6$	D_{n+4}
≥ 2	3	$n+6$	D_{n+4}
≥ 3	4	8	E_{6}
3	≥ 5	9	E_{7}
≥ 4	5	10	E_{8}

$$
y^{2}=x^{2}+\left(z-u\left(z^{\prime}\right)\right)^{m}\left(z-t\left(z^{\prime}\right)\right)^{n}
$$

- If $u=t$ the symmetry is enhanced to $U(m+n)$.
- Even $u \neq t$ at $\{z=u\} \cap\{z=t\}$, local symmetry enhancement.
- Branching

$$
(\mathbf{m}+\mathbf{n})^{\mathbf{2}} \rightarrow\left(\mathbf{m}^{2}, \mathbf{1}\right)+\left(\mathbf{1}, \mathbf{n}^{2}\right)+(\mathbf{1}, \mathbf{1})+(\mathbf{m}, \mathbf{n})+(\overline{\mathbf{m}}, \overline{\mathbf{n}}) .
$$

Chiral fields are localized

$(\overline{\mathbf{m}}, \overline{\mathbf{n}}): C P T$ conjugate.

Intersection and divisors

Divisor

- Codimension one subspace specified by an equation
- Ex. $\left(x-a_{0}\right)^{2}\left(x-a_{1}\right)\left(x-a_{2}\right)^{-3}=0$.

$$
D=2 P_{0}+P_{1}-3 P_{2}
$$

- Extended to higher dimension

Intersection and divisors

Divisor

- Codimension one subspace specified by an equation
- Ex. $\left(x-a_{0}\right)^{2}\left(x-a_{1}\right)\left(x-a_{2}\right)^{-3}=0$.

$$
D=2 P_{0}+P_{1}-3 P_{2}
$$

- Extended to higher dimension

Intersection number

- A natural product between homological cycles
- Ex. On T^{2}, two one-cycles C_{1} and C_{2},

- Curves: the net number of intersections (topological quantity).
- Surfaces: the intersection divisors (higher codimension object).

Matter curves

Ex. $U(m+n) \rightarrow U(m) \times U(n)$

$$
\begin{gathered}
y^{2}=x^{2}+(z-u)^{m}(z-t)^{n} \\
C_{1}=\left\{z=u\left(z^{\prime}\right)\right\}, \quad C_{2}=\left\{z=t\left(z^{\prime}\right)\right\} .
\end{gathered}
$$

Matter curves

Ex. $U(m+n) \rightarrow U(m) \times U(n)$

$$
\begin{gathered}
y^{2}=x^{2}+(z-u)^{m}(z-t)^{n} \\
C_{1}=\left\{z=u\left(z^{\prime}\right)\right\}, \quad C_{2}=\left\{z=t\left(z^{\prime}\right)\right\} .
\end{gathered}
$$

$$
(\mathbf{m}+\mathbf{n})^{\mathbf{2}} \rightarrow\left(\mathbf{m}^{2}, \mathbf{1}\right) \oplus\left(\mathbf{1}, \mathbf{n}^{\mathbf{2}}\right) \oplus(\mathbf{1}, \mathbf{1})+(\mathbf{m}, \mathbf{n})+(\overline{\mathbf{m}}, \overline{\mathbf{n}}) .
$$

Under the reduction

- $u=t: D=(m+n) C$.
- $u \neq t: D=m C_{1}+n C_{2}$.
(\mathbf{m}, \mathbf{n}) is localized at

$$
C_{1} \cdot C_{2}=\left\{z=u\left(z^{\prime}\right)\right\} \cap\left\{z=t\left(z^{\prime}\right)\right\}=\sum m_{a} P_{a} .
$$

Matter curves [Katz, Vafa] [Beasley, Heckman, Vafa]

Calabi-Yau manifold

12D with 32 SUSY: On Calabi-Yau 4-fold, we have $\mathcal{N}=1$ SUSY in 4D.

| direction | 0123 | 4567 | 89 | 1011 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $M^{1,3}$ | Calabi-Yau 4-fold | | |
| definition of F-theory | $\prime \prime$ | B_{3}^{\prime} | | T |
| F-theory on K3 = heterotic on T | $\prime \prime$ | B_{2} | K 3 | |
| K3 $=T$ fiber over \mathbb{P}^{1} | $\prime \prime$ | B_{2} | $\mathbb{P}^{1}=S^{2}$ | T |

General structure: B_{3}^{\prime} is a \mathbb{P}^{1} fibration over B_{2}.

Calabi-Yau manifold

12D with 32 SUSY: On Calabi-Yau 4-fold, we have $\mathcal{N}=1$ SUSY in 4D.

| direction | 0123 | 4567 | 89 | 1011 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $M^{1,3}$ | Calabi-Yau 4-fold | | |
| definition of F-theory | $\prime \prime$ | B_{3}^{\prime} | | T |
| F-theory on K3 = heterotic on T | $" \prime$ | B_{2} | K 3 | |
| K3 $=T$ fiber over \mathbb{P}^{1} | ${ }^{\prime \prime}$ | B_{2} | $\mathbb{P}^{1}=S^{2}$ | T |

General structure: B_{3}^{\prime} is a \mathbb{P}^{1} fibration over B_{2}.
\mathbb{P}^{1} described by two line bundles r (base) and $t\left(\mathcal{O}_{B_{2}}(1)\right.$ fiber) satisfying $r \cdot(r+t)=0$. [Friedan, Morgan, Witten]

Calabi-Yau manifold

12D with 32 SUSY: On Calabi-Yau 4-fold, we have $\mathcal{N}=1$ SUSY in 4D.

direction	0123	4567	89	1011
	$M^{1,3}$	Calabi-Yau 4-fold		
definition of F-theory	$\prime \prime$	B_{3}^{\prime}		T
F-theory on K3 = heterotic on T	$\prime \prime$	B_{2}	K 3	
K3 $=T$ fiber over \mathbb{P}^{1}	$\prime \prime$	B_{2}	$\mathbb{P}^{1}=S^{2}$	T

General structure: B_{3}^{\prime} is a \mathbb{P}^{1} fibration over B_{2}.
\mathbb{P}^{1} described by two line bundles r (base) and $t\left(\mathcal{O}_{B_{2}}(1)\right.$ fiber) satisfying $r \cdot(r+t)=0$. [Friedan, Morgan, Witten]
Putting the dual gauge group $E_{8} \times E_{8}$ on $r,(r+t)$, resp.

$$
\begin{array}{ccccc}
F=-4 K_{B_{3}^{\prime}} & =4 r+4(r+t) & + & 8 t \\
G= & -6 K_{B_{3}^{\prime}} & =5 r+5(r+t) & + & 2 r+6 c_{1}\left(B_{2}\right)+t \\
D= & -12 K_{B_{3}^{\prime}} & =10 r+10(r+t) & +4 r+12 c_{1}\left(B_{2}\right)+2 t .
\end{array}
$$

Two ends of the interval of heterotic-M-theory [Horava, Witten] [Morrison, Vafa I]
Information on B_{2} is its divisors $\left\{s_{i}\right\} . t, c_{1}\left(B_{2}\right)$ are also expressed in terms of them. Maximal gauge symmetry at r is $E_{8} \times E_{8}+$ zero size instantons (blowing-ups on the base).
cf. two global sections: $\operatorname{Spin}(32) / \mathbb{Z}_{2}$ [Aspinwall, Gross]

Global consistency condition

Ex. Case $B_{1}=\mathbb{P}^{1}$. A \mathbb{P}^{1} fibration over this gives the Hirzebruch surface \mathbb{F}_{n}.

012345	67	89	1011
$M^{1,5}$	Calabi-Yau 3-fold		
${ }^{\prime \prime}$	\mathbb{F}_{n}		T
${ }^{\prime \prime}$	\mathbb{P}^{1}	\mathbb{P}^{1}	T

\mathbb{F}_{n} is generated by two divisors C_{0}, f such that $C_{0} \cdot\left(C_{0}+n f\right)=0, C_{0}^{2}=-n, f^{2}=0$.

Global consistency condition

Ex. Case $B_{1}=\mathbb{P}^{1}$. A \mathbb{P}^{1} fibration over this gives the Hirzebruch surface \mathbb{F}_{n}.

012345	67	89	1011
$M^{1,5}$	Calabi-Yau 3-fold		
${ }^{\prime \prime}$	\mathbb{F}_{n}		T
${ }^{\prime \prime}$	\mathbb{P}^{1}	\mathbb{P}^{1}	T

\mathbb{F}_{n} is generated by two divisors C_{0}, f such that $C_{0} \cdot\left(C_{0}+n f\right)=0, C_{0}^{2}=-n, f^{2}=0$. $E_{8} \times E_{8}$ located at C_{0} and $\left(C_{0}+n f\right)$,

$$
\begin{aligned}
& F=-4 K_{B_{2}}=4 C_{0}+4\left(C_{0}+n f\right)+5\left(C_{0}+n f\right)+\underbrace{}_{D^{\prime}}+2 C_{0}+(12+n) f \\
& G=-6 K_{B_{2}}=-12 K_{B_{2}}=10 C_{0}+10\left(C_{0}+n f\right)+\underbrace{4 C_{0}+(24+2 n) f}_{D_{0}} \\
& D=
\end{aligned}
$$

Induced 6-dimensional objects

$$
C_{0} \cdot D^{\prime}=2(12-n), \quad\left(C_{0}+n f\right) \cdot D^{\prime}=2(12+n) \quad \text { cf. } \mathbb{Z}_{2} \text { monodromy. }
$$

Bianchi identity on the heterotic side with backgroud bundles $\mathcal{V}_{1}, \mathcal{V}_{2}$.

$$
c_{2}\left(\mathcal{V}_{1}\right)+c_{2}\left(\mathcal{V}_{2}\right)+\delta n_{3}=c_{2}(\mathrm{~K} 3)=24
$$

Global consistency condition

Ex. Case $B_{1}=\mathbb{P}^{1}$. A \mathbb{P}^{1} fibration over this gives the Hirzebruch surface \mathbb{F}_{n}.

012345	67	89	1011
$M^{1,5}$	Calabi-Yau 3-fold		
${ }^{\prime \prime}$	\mathbb{F}_{n}		T
${ }^{\prime \prime}$	\mathbb{P}^{1}	\mathbb{P}^{1}	T

\mathbb{F}_{n} is generated by two divisors C_{0}, f such that $C_{0} \cdot\left(C_{0}+n f\right)=0, C_{0}^{2}=-n, f^{2}=0$. $E_{8} \times E_{8}$ located at C_{0} and $\left(C_{0}+n f\right)$,

$$
\begin{aligned}
& F=-4 K_{B_{2}}=4 C_{0}+4\left(C_{0}+n f\right)+5 C_{0}+5 f, \\
& \left.G=-6 K_{B_{2}}=5 C_{0}+n f\right)+\underbrace{2 C_{0}+(12+n) f}_{D^{\prime}} \\
& D=-12 K_{B_{2}}=10 C_{0}+10\left(C_{0}+n f\right)
\end{aligned}
$$

Induced 6-dimensional objects

$$
C_{0} \cdot D^{\prime}=2(12-n), \quad\left(C_{0}+n f\right) \cdot D^{\prime}=2(12+n) \quad \text { cf. } \mathbb{Z}_{2} \text { monodromy. }
$$

Bianchi identity on the heterotic side with backgroud bundles $\mathcal{V}_{1}, \mathcal{V}_{2}$.

$$
c_{2}\left(\mathcal{V}_{1}\right)+c_{2}\left(\mathcal{V}_{2}\right)+\delta n_{3}=c_{2}(\mathrm{~K} 3)=24
$$

Some of 24 points are blown-up. 4D compactification: missing part

$$
\frac{\chi\left(X_{4}\right)}{24}=n_{3}+\frac{1}{2} \int_{X_{4}} G_{4} \wedge G_{4}
$$

Sufficiently smooth Calabi-Yau condition $=$ 'charge conservation' of 'branes'
Symmetry breaking preserving this form.

Symmetry breaking

Along $\Delta=0$, gauge theory on the 8 D worldvolume.
Field contents

direction	0123	4567	89	1011
geometry	$M^{1,3}$	B	\mathbb{P}^{1}	T^{2}
fields	A_{μ}	A_{m}	φ_{89}	(τ)

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

Symmetry breaking

Along $\Delta=0$, gauge theory on the 8 D worldvolume.
Field contents

direction	0123	4567	89	1011
geometry	$M^{1,3}$	B	\mathbb{P}^{1}	T^{2}
fields	A_{μ}	A_{m}	φ_{89}	(τ)

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

1. $\phi_{89} \sim K_{B} \otimes \operatorname{adj} G$

- adjoint Higgs
- parameterizes the normal direction to the base 'brane'
- nonconstant profile: intersecting branes
- tuning the parameters of $\Delta=$ re-decomposing D

Symmetry breaking

Along $\Delta=0$, gauge theory on the 8 D worldvolume.
Field contents

direction	0123	4567	89	1011
geometry	$M^{1,3}$	B	\mathbb{P}^{1}	T^{2}
fields	A_{μ}	A_{m}	φ_{89}	(τ)

Internal index is uniquely determined by twisted SUSY. [Beasly Heckman Vafa] Two ways of gauge symmetry breaking

1. $\phi_{89} \sim K_{B} \otimes \operatorname{adj} G$

- adjoint Higgs
- parameterizes the normal direction to the base 'brane'
- nonconstant profile: intersecting branes
- tuning the parameters of $\Delta=$ re-decomposing D

2. $A_{m} \sim \Omega_{B} \otimes \operatorname{adj} G$

- HYM equation with DUY condition: instanton solution
- background gauge field on the brane
- analogous to magnetized brane
- blowing up some intersection of $\Delta=$ replacing the divisors

Reduction of the discriminant locus Δ

Reduction of discriminant locus

A nontrivial scalar profile $\langle\varphi\rangle$ gives rise the reduction. $\varphi \sim K_{B} \otimes \operatorname{adj} G_{S}$ We re-decompose D within $E_{8} \times E_{8}$.
Ex. $E_{8} \rightarrow E_{6} \times U(2)$

\[

\]

Reduction of discriminant locus

A nontrivial scalar profile $\langle\varphi\rangle$ gives rise the reduction. $\varphi \sim K_{B} \otimes \operatorname{adj} G_{S}$ We re-decompose D within $E_{8} \times E_{8}$.
Ex. $E_{8} \rightarrow E_{6} \times U(2)$

$$
\begin{aligned}
& F=4 r+4(r+t)+8 t \\
& G=5 r+5(r+t)+2 r+6 c_{1}\left(B_{2}\right)+t, \\
& D=10 r+10(r+t)+4 r+12 c_{1}\left(B_{2}\right)+2 t \text {. } \\
& \Downarrow \\
& \begin{array}{lccc}
F= & 3 S_{1}+0 S_{2}+1 S_{3}+ & 4(r+t) & + \\
G=4 S_{1}+0 S_{2}+1 S_{3}+ & 5(r+t) & + & 2 r+6 c_{1}\left(B_{2}\right)+t \\
D= & 8 S_{1}+2 S_{2}+0 S_{3}+ & 10(r+t) & + \\
D r+12 c_{1}\left(B_{2}\right)+2 t .
\end{array}
\end{aligned}
$$

- 7-brane charge preserved, if

Reduction of discriminant locus

A nontrivial scalar profile $\langle\varphi\rangle$ gives rise the reduction. $\varphi \sim K_{B} \otimes \operatorname{adj} G_{S}$
We re-decompose D within $E_{8} \times E_{8}$.
Ex. $E_{8} \rightarrow E_{6} \times U(2)$

$$
\begin{aligned}
& F=4 r+4(r+t)+8 t \\
& G=5 r+5(r+t) \quad+\quad 2 r+6 c_{1}\left(B_{2}\right)+t, \\
& D=10 r+10(r+t)+4 r+12 c_{1}\left(B_{2}\right)+2 t \text {. } \\
& \Downarrow \\
& \begin{array}{lccc}
F= & 3 S_{1}+0 S_{2}+1 S_{3}+ & 4(r+t) & + \\
G=4 S_{1}+0 S_{2}+1 S_{3}+ & 5(r+t) & + & 2 r+6 c_{1}\left(B_{2}\right)+t \\
D= & 8 S_{1}+2 S_{2}+0 S_{3}+ & 10(r+t) & + \\
D r+12 c_{1}\left(B_{2}\right)+2 t .
\end{array}
\end{aligned}
$$

- 7-brane charge preserved, if

$$
\begin{array}{llll}
4 r= & 3 S_{1}+ & 0 S_{2}+ & 1 S_{3} \\
5 r= & 4 S_{1}+ & 0 S_{2}+ & 1 S_{3} \\
10 r & 8 S_{1}+ & 2 S_{2}+ & 0 S_{3}
\end{array}
$$

cf. S_{3} plays no role in gauge theory.

- Instanton number untouched

$$
\mathbf{2 4 8} \rightarrow(\mathbf{3}, \mathbf{1})+\langle(\mathbf{1}, \mathbf{1})\rangle+(\mathbf{1}, \mathbf{7 8})+(\mathbf{2}, \mathbf{1})_{3}+(\mathbf{1}, \mathbf{2 7})_{2}+(\mathbf{2}, \mathbf{2 7})_{1}+C P T \text { conj, }
$$

'Off-diagonal' matters are localized along the matter curves

$$
S_{1} \cdot S_{2}=\sum m_{a} \Sigma_{12}^{a}
$$

Matter curves

Line bundle background
: 'off-diagonal' components with different $U(1)$ charges.

ex. $E_{8} \rightarrow S U(2) \times E_{6}$ in 6 D , we had $10 r \rightarrow 2 C_{1}+6 C_{2}$.

Matter curves

Line bundle background
: 'off-diagonal' components with different $U(1)$ charges.

ex. $E_{8} \rightarrow S U(2) \times E_{6}$ in 6D, we had $10 r \rightarrow 2 C_{1}+6 C_{2}$.

- $C \sim C_{i} \sim C_{j}$

$$
\begin{gathered}
10 r \rightarrow 2 r+6 r \\
C_{1} \cdot C_{2}=r^{2}=-n .
\end{gathered}
$$

Not allowed unless the base is blown-up.

Matter curves

Line bundle background
: 'off-diagonal' components with different $U(1)$ charges.

ex. $E_{8} \rightarrow S U(2) \times E_{6}$ in 6 D , we had $10 r \rightarrow 2 C_{1}+6 C_{2}$.

- $C \sim C_{i} \sim C_{j}$

$$
\begin{gathered}
10 r \rightarrow 2 r+6 r \\
C_{1} \cdot C_{2}=r^{2}=-n .
\end{gathered}
$$

Not allowed unless the base is blown-up.

- $C_{i} \nsucc C_{j}$

$$
\begin{gathered}
10 r \rightarrow 2(r+6 t)+6(r-2 t) \\
C_{1} \cdot C_{2}=(r+6 t) \cdot(r-2 t)=4-n
\end{gathered}
$$

if $n \leq 4$, we have $(4-n)(\mathbf{2}, \mathbf{2 7})$ s.
$n=4$ 'parallel separtaion'
cf. If $n>4$, the minimal gauge group should be bigger than E_{7}. [Morison, Vafa]

Spectrum

We have obtained

1. Gauge surfaces $D=\sum$ ord $\Delta_{i} S_{i}+D^{\prime}$
by the decomposition preserving the $E_{8} \times E_{8}$ structure
2. Matter curves $S_{i} \cdot S_{j}=\sum m_{a} \Sigma_{i j}^{a}$
from the intersections
We can also turn on the background gauge bundle $\left\langle A_{m}\right\rangle \rightarrow \mathcal{V}$ Multiplicity: index theorem

$$
\chi\left(S_{i}, \mathcal{V}_{i}\right)=\int_{S_{i}} \operatorname{ch}\left(\mathcal{V}_{i}\right) \operatorname{Td}\left(S_{i}\right)
$$

Conclusion

We studied global issues of F-theory compactification. The important problem is decomposition of the discriminant locus

- Intersection theory is useful for enumerative operation among geometric objects.
- The adjoint scalar φ normal to the base B parameterizes the geometry of discriminant locus.
$\langle\varphi\rangle \neq 0$ corresponding to reducing the discriminant locus.
- Preserving the charges of discriminant locus: susy conditions, 'brane charges', instanton no are preserved.
We also need 3-branes.
- We have analogous phenomena of parallel separtaion and recombination in the D-brane picture.
- Chiral fermions emerge as 'off-diagonal' component of the adjoint during the reduction. We can calculate their matter curve and localization
- With background gauge field, we obtain the spectrum using the index theorem.

