An Effective Description of the Landscape

Diego Gallego

Based on hep-th/0812.0369 and hep-th/0904.2537 done in collaboration with M. Serone.

StringPheno09, Warsaw 16 June 2009

Effective Theory

- Effective theories are an important tool for particle physics, leading to reliable simplifications.
- However, even at the classical level, the integration of Hⁱ heavy fields:

$$\mathcal{L}_{eff}(L^{\alpha}) = \mathcal{L}(H^{i}(L^{\alpha}), L^{\alpha}) , \quad \frac{\partial \mathcal{L}}{\partial H^{i}}\Big|_{H^{i}(L^{\alpha})} = 0.$$
(1)

is a very hard task for many interesting systems, e.g., 4*D* fields theories arising from String theory compactifications.

Effective Theory

- Effective theories are an important tool for particle physics, leading to reliable simplifications.
- However, even at the classical level, the integration of *Hⁱ* heavy fields:

$$\mathcal{L}_{eff}(L^{\alpha}) = \mathcal{L}(H^{i}(L^{\alpha}), L^{\alpha}) \ , \quad \frac{\partial \mathcal{L}}{\partial H^{i}} \bigg|_{H^{i}(L^{\alpha})} = 0 \ . \tag{1}$$

is a very hard task for many interesting systems, e.g., 4*D* fields theories arising from String theory compactifications.

A common approach is to study a simplified version

$$\mathcal{L}_{sim}(L^{\alpha}) = \mathcal{L}(H_0^i, L^{\alpha}), \qquad (2)$$

 H_0^i the leading solution for H^i independent of L^{α} .

Freezing complete susy multiplets

The simplified version is described by

$$\begin{array}{lll} \mathcal{K}_{sim}(L^{\alpha},\bar{L}^{\bar{\alpha}}) & = & \mathcal{K}(\mathcal{H}_{0}^{i},\bar{\mathcal{H}}_{0}^{\bar{i}},L^{\alpha},\bar{L}^{\bar{\alpha}}) \ , \ \mathcal{W}_{sim}(L^{\alpha}) = \mathcal{W}(\mathcal{H}_{0}^{i},L^{\alpha}) \ , \\ f_{sim,ab}(L^{\alpha}) & = & f_{ab}(\mathcal{H}_{0}^{i},L^{\alpha}) \ . \end{array}$$

$$(3)$$

Freezing complete susy multiplets

The simplified version is described by

$$\begin{array}{rcl} \mathcal{K}_{sim}(L^{\alpha},\bar{L}^{\tilde{\alpha}}) & = & \mathcal{K}(\mathcal{H}_{0}^{i},\bar{\mathcal{H}}_{0}^{\bar{i}},L^{\alpha},\bar{L}^{\tilde{\alpha}}) \ , \ \mathcal{W}_{sim}(L^{\alpha}) = \mathcal{W}(\mathcal{H}_{0}^{i},L^{\alpha}) \ , \\ f_{sim,ab}(L^{\alpha}) & = & f_{ab}(\mathcal{H}_{0}^{i},L^{\alpha}) \ . \end{array}$$

Moduli stabilization (Two Steps Stabilization)

Flux compactifications, (e.g. KKLT)

$$W(T) = W_{flux}(U_0, S_0) + W_{np}(U_0, S_0, T).$$
(4)

Some works addressing this:

- Extensions to KKLT. K. Choi, et. al. '04
- Conditions on the mass matrix.
- Comments on the proper integration.

H. Abe, T. Higaki & T. Kobayashi '06

S. P. de Alwis '05

(3)

UNDER WHAT CONDITIONS THIS IS A GOOD APPROXIMATION?

That is the Question

We focus on a *particular* class of $\mathcal{N} = 1$ SUSY theories inspired by flux compactifications.

Outline

- Component Approach
- Supersymmetric Approach
- 2 Matter Multiplets and Gauge Interactions
 - $\mathcal{O}(1)$ Yukawa Couplings.
 - Vector Multiplets

4D, $\mathcal{N} = 1$ SUGRA theory described by

$$W(H^i, L^{\alpha}) = W_0(H^i) + \epsilon W_1(H^i, L^{\alpha}),$$

with $\epsilon \sim m_L/m_H$.

We allow arbitrary, but regular, Kähler potential.

• The eigenvalues of $g_{M\bar{N}} = \partial_M \partial_{\bar{N}} K$ are $\mathcal{O}(\epsilon^0)$.

(5)

4D, $\mathcal{N} = 1$ SUGRA theory described by

$$W(H^i, L^{\alpha}) = W_0(H^i) + \epsilon W_1(H^i, L^{\alpha}),$$

with $\epsilon \sim m_L/m_H$.

We allow arbitrary, but regular, Kähler potential.

• The eigenvalues of $g_{M\bar{N}} = \partial_M \partial_{\bar{N}} K$ are $\mathcal{O}(\epsilon^0)$.

The following discussion excludes, then, the LARGE volume compactification scenario. This belongs to the so called *factorizable models*.

(5)

Canonically Normalized Fluctuations

- The eigenvalues of $g_{M\bar{N}} = \partial_M \partial_{\bar{N}} K$ are $\mathcal{O}(1)$.
- Then physical heavy and light modes are uniquely identified by its appearance in the scalar potential:

$$\begin{array}{rcl} \langle g_{M\bar{N}} \rangle &=& [(T^{-1})^{\dagger}(T^{-1})]_{M\bar{N}} & (\text{Cholesky decomposition}) \\ T &=& \begin{pmatrix} (T_{H})_{j}^{i} & 0 \\ (T_{HL})_{j}^{\alpha} & (T_{L})_{\beta}^{\alpha} \end{pmatrix} , \\ \begin{pmatrix} \hat{H} \\ \hat{L} \end{pmatrix} &=& T \cdot \begin{pmatrix} \hat{H}_{c} \\ \hat{L}_{c} \end{pmatrix} .$$
 (6)

The \hat{H}_{c}^{i} are linear combinations of only the \hat{H}^{i} with $\mathcal{O}(1)$ coefficients:

$$V(\langle H \rangle + \hat{H}, \langle L \rangle + \hat{L}) = V(\langle H \rangle + T_H \cdot \hat{H}_c, \langle L \rangle + T_{HL} \cdot \hat{H}_c + T_L \cdot \hat{L}_c).$$
(7)

Canonically Normalized Fluctuations

- The eigenvalues of $g_{M\bar{N}} = \partial_M \partial_{\bar{N}} K$ are $\mathcal{O}(1)$.
- Then physical heavy and light modes are uniquely identified by its appearance in the scalar potential:

$$\begin{array}{rcl} \langle g_{M\bar{N}} \rangle &=& [(T^{-1})^{\dagger}(T^{-1})]_{M\bar{N}} & (\text{Cholesky decomposition}) \\ T &=& \begin{pmatrix} (T_{H})_{j}^{i} & 0 \\ (T_{HL})_{j}^{\alpha} & (T_{L})_{\beta}^{\alpha} \end{pmatrix} , \\ \begin{pmatrix} \hat{H} \\ \hat{L} \end{pmatrix} &=& T \cdot \begin{pmatrix} \hat{H}_{c} \\ \hat{L}_{c} \end{pmatrix} .$$
 (6)

The \hat{H}_{c}^{i} are linear combinations of only the \hat{H}^{i} with $\mathcal{O}(1)$ coefficients:

$$V(\langle H \rangle + \hat{H}, \langle L \rangle + \hat{L}) = V(\langle H \rangle + T_H \cdot \hat{H}_c, \langle L \rangle + T_{HL} \cdot \hat{H}_c + T_L \cdot \hat{L}_c).$$
(7)

The kinetic part and canonical normalization are irrelevant for our discussion, so we can focus in the potential part of the Lagrangian.

Scalar potential and vacuum structure

Scalar potential, $G = K + \ln |W|^2$,

$$V = e^{G} \left(g^{\bar{M}N} \overline{G}_{\bar{M}} G_{N} - 3 \right).$$
(8)

Expanding in ϵ the leading terms are

$$V_0 = \boldsymbol{e}^{K} \left(\boldsymbol{g}^{\bar{M}N} \overline{\boldsymbol{F}}_{0,\bar{M}} \boldsymbol{F}_{0,N} - 3 |\boldsymbol{W}_0|^2 \right), \qquad (9)$$

where $F_{0,i} = \partial_i W_0 + (\partial_i K) W_0$, $F_{0,\alpha} = (\partial_{\alpha} K) W_0$.

Scalar potential and vacuum structure

Scalar potential, $G = K + \ln |W|^2$,

$$V = e^{G} \left(g^{\bar{M}N} \overline{G}_{\bar{M}} G_{N} - 3 \right).$$
(8)

Expanding in ϵ the leading terms are

$$V_0 = e^{K} \left(g^{\bar{M}N} \overline{F}_{0,\bar{M}} F_{0,N} - 3|W_0|^2 \right), \qquad (9)$$

where $F_{0,i} = \partial_i W_0 + (\partial_i K) W_0$, $F_{0,\alpha} = (\partial_\alpha K) W_0$.

• Solutions for $F_{0,i} = 0$ are not decoupled for generic *K*.

Scalar potential and vacuum structure

Scalar potential, $G = K + \ln |W|^2$,

$$V = e^{G} \left(g^{\bar{M}N} \overline{G}_{\bar{M}} G_{N} - 3 \right).$$
(8)

Expanding in ϵ the leading terms are

$$V_0 = e^{K} \left(g^{\overline{M}N} \overline{F}_{0,\overline{M}} F_{0,N} - 3 |W_0|^2 \right), \qquad (9)$$

where $F_{0,i} = \partial_i W_0 + (\partial_i K) W_0$, $F_{0,\alpha} = (\partial_\alpha K) W_0$.

- Solutions for $F_{0,i} = 0$ are not decoupled for generic *K*.
- Decoupling requires $\langle W_0 \rangle \sim \mathcal{O}(\epsilon)$. (This also ensures an $\mathcal{O}(\epsilon)$ hierarchy). With this in mind solve $\partial_M V = 0$, $\phi^M = \phi_0^M + \epsilon \phi_1^M$,
 - *O*(1): decoupling at the SUSY solution ∂_i W₀ = 0, fixing all Hⁱ₀ if all eigenvalues for ∂_i∂_j W₀ are *O*(1).
 - $\mathcal{O}(\epsilon)$: shift in H^i is determined

$$H_1^i = -(\hat{K}^{-1})_{\bar{j}}^i g^{\bar{j}M} \left(\partial_M W_1 + W \partial_M K\right) \,, \text{ where } \hat{K}_j^{\bar{i}} = g^{\bar{j}k} \partial_k \partial_j W_0 \,.$$
 (10)

• At $H^i = H^i_0 + \epsilon H^i_1$: $G_M = \mathcal{O}(1)$, $G^i = \mathcal{O}(\epsilon)$, $G^{\alpha} = \mathcal{O}(1)$.

$$V_{full} = V(\langle H \rangle, L) + V_{int}(\langle H \rangle, L)$$
.

At the Gaussian level,

$$V_{int} = -\frac{1}{2} V_I V^{IJ} V_J|_{H=\langle H \rangle} , \quad I = i, \overline{i} .$$
(11)

$$V_{full} = V(\langle H \rangle, L) + V_{int}(\langle H \rangle, L)$$
.

At the Gaussian level,

$$V_{int} = -\frac{1}{2} V_I V^{IJ} V_J|_{H=\langle H \rangle} , \quad I = i, \overline{i}.$$
(11)

Up to $\mathcal{O}(\epsilon^2)$ we have, $ilde{g}_{ar{i}ar{j}}=(g^{ar{j}i})^{-1}$

$$\frac{\partial_{i}\partial_{\bar{j}}V|_{0} = e^{K}\partial_{\bar{j}}\partial_{\bar{k}}\overline{W}_{0} g^{\bar{k}j} \partial_{i}\partial_{j}W_{0}}{\partial_{i}V|_{1} = e^{G}\partial_{i}\partial_{j}W_{0}G^{j}/\overline{W}} } \right\} \Rightarrow V_{int} = -e^{G}G^{i}\tilde{g}_{i\bar{j}}\overline{G}^{\bar{j}}.$$
(12)

Thus with $\tilde{g}^{\bar{\alpha}\alpha} = (g_{\alpha\bar{\alpha}})^{-1}$, satisfying $\tilde{g}^{\bar{\alpha}\alpha} = g^{\bar{\alpha}\alpha} - g^{\bar{\alpha}i}\tilde{g}_{i\bar{j}}g^{\bar{j}\alpha}$,

$$V_{full} = e^{G} \left[\overline{G}_{\bar{M}} \left(g^{\bar{M}N} - g^{\bar{M}i} \tilde{g}_{i\bar{j}} g^{\bar{j}N} \right) G_{N} - 3 \right] + \mathcal{O}(\epsilon^{3})$$

$$= e^{G} \left(\tilde{g}^{\bar{\alpha}\alpha} G_{\alpha} \overline{G}_{\bar{\alpha}} - 3 \right) + \mathcal{O}(\epsilon^{3}) = (1 + \mathcal{O}(\epsilon)) V_{sim}.$$
(13)

E.o.m. and two derivative truncation L. Brizi, M. Gómez-Reino & C. Scrucca '09 Exploit the fact we are working with a SUSY theory.

$$\mathcal{L} = \int d\theta^4 (-3e^{-K/3}\bar{\Phi}\Phi) + \left(\int d\theta^2 W + h.c.\right).$$
(14)

The e.o.m. for a H^i chiral multiplet is

$$\partial_{i}W - \frac{1}{4}\overline{D}^{2}\left(e^{-K/3}\overline{\Phi}\partial_{i}K\right)\Phi^{-2} = 0 \stackrel{\text{two derivatives}}{\Longrightarrow} \partial_{i}W = 0.$$
(15)

The resulting effective theory is exact up to leading order in ∂^{μ}/m_{H} , $\psi^{\alpha}/m_{H}^{3/2}$, F^{α}/m_{H}^{2} and F^{Φ}/m_{H} .

The two descriptions then differ at $(F^{\alpha})^3$, $(F^{\alpha})^2 F^{\Phi}$, $F^{\alpha}(F^{\Phi})^2$ and $(F^{\Phi})^3$, where

$$F^{\Phi} = \frac{1}{3} K_M F^M - e^{K/2} \overline{W} \,. \tag{16}$$

With $\langle W_0 \rangle \sim \mathcal{O}(\epsilon)$ all these extra terms are $\mathcal{O}(\epsilon^3)$.

Solvin expanding in ϵ , $H^i = H^i_0 + \epsilon H^i_1$ (now as a chiral multiplet!)

$$\partial_i W_0(H_0^i) = 0 , \quad H_1^i = -W_0^{ij} \partial_j W_1|_{H_0^i} .$$
 (17)

So with $W_{sim} = W(H_0^i)$ and $K_{sim} = K(\bar{H}_0^{\bar{i}}, H_0^i)$,

$$W_{full} = W_{sim} + \epsilon^2 \left(\frac{1}{2} \partial_i \partial_j W_0 H_1^i H_1^j + \partial_i W_1 H_1^i \right) + \mathcal{O}(\epsilon^3),$$

$$K_{full} = K_{sim} + \epsilon \left(\partial_i K_{sim} H_1^i + \partial_{\bar{i}} K_{sim} \bar{H}_1^{\bar{i}} \right) + \mathcal{O}(\epsilon^2).$$
(18)

Solvin expanding in ϵ , $H^i = H_0^i + \epsilon H_1^i$ (now as a chiral multiplet!)

$$\partial_i W_0(H_0^i) = 0 , \quad H_1^i = -W_0^{ij} \partial_j W_1|_{H_0^i} .$$
 (17)

So with $W_{sim} = W(H_0^i)$ and $K_{sim} = K(\bar{H}_0^i, H_0^i)$,

$$W_{full} = W_{sim} + \epsilon^2 \left(\frac{1}{2} \partial_i \partial_j W_0 H_1^i H_1^j + \partial_i W_1 H_1^i \right) + \mathcal{O}(\epsilon^3),$$

$$K_{full} = K_{sim} + \epsilon \left(\partial_i K_{sim} H_1^i + \partial_{\bar{i}} K_{sim} \bar{H}_1^{\bar{i}} \right) + \mathcal{O}(\epsilon^2).$$
(18)

These corrections are clearly negligible,

$$V_{full} = (1 + \mathcal{O}(\epsilon)) V_{sim}.$$
(19)

Generalized setup: $\mathcal{O}(1)$ Yukawa couplings

Introducing C^{α} -multiplets with almost vanishing VEV's,

$$\begin{aligned} \mathcal{W} &= \mathcal{W}_{0}(\mathcal{H}^{i}) + \eta \, \widetilde{\mathcal{W}}_{0}(\mathcal{H}^{i}, \mathcal{M}^{\mu}, \mathcal{C}^{\alpha}) + \epsilon \, \mathcal{W}_{1}(\mathcal{H}^{i}, \mathcal{M}^{\mu}, \mathcal{C}^{\alpha}), \\ \mathcal{K} &= \mathcal{K}_{0} + \mathcal{K}_{1,\alpha\bar{\beta}} \mathcal{C}^{\alpha} \bar{\mathcal{C}}^{\bar{\beta}} + (\mathcal{K}_{2,\alpha\beta} \mathcal{C}^{\alpha} \mathcal{C}^{\beta} + c.c.) + \mathcal{O}(\mathcal{C}^{3}), \end{aligned}$$
(20)

 M^{μ} denoting any kind of multiplet with $\mathcal{O}(1)$, VEV.

$$\begin{aligned} \widetilde{W}_{0} &= Y_{3,\alpha\beta\gamma}(H^{i}, M^{\mu})C^{\alpha}C^{\beta}C^{\gamma} + \mathcal{O}(C^{4}), \\ W_{1} &= \widetilde{W}_{1}(H^{i}, M^{\mu}) + \mu_{2,\alpha\beta}(H^{i}, M^{\mu})C^{\alpha}C^{\beta} + \mathcal{O}(C^{3}). \end{aligned}$$

$$(21)$$

The following analysis can be generalized allowing $\mathcal{O}(1)$ mass terms.

Effective Theory

Solving $\partial_i W = 0$ around $\partial_i W_0(H_0^i) = 0$

$$W_{full} = W_{sim} - \frac{1}{2} \left(\eta \partial_i \widetilde{W}_0 + \partial_i W_1 \right) W_0^{ij} \left(\eta \partial_j \widetilde{W}_0 + \partial_j W_1 \right) + \mathcal{O}(\eta^3, \eta^2 \epsilon, \eta \epsilon^2, \epsilon^3),$$

$$K_{full} = K_{sim} - \eta \left[\partial_i K_{sim} W_0^{ij} \partial_j \widetilde{W}_0 + \partial_{\bar{i}} K_{sim} \overline{W}_0^{\bar{i}j} \partial_{\bar{j}} \overline{\widetilde{W}_0} \right] + \mathcal{O}(\epsilon, \eta^2).$$
(22)

Corrections

In the field-space region $|\mathcal{C}| \lesssim \mathcal{O}(\epsilon)$

C-dependent parts

- W_{sim} and K_{sim} are of $\mathcal{O}(\epsilon^3)$ and $\mathcal{O}(\epsilon^2)$ respectively.
- With $W_0 = \mathcal{O}(\epsilon)$ these induce $\mathcal{O}(\epsilon^4)$ terms in *V*.
- The induced couplings in *W_{full}* and *K_{full}* are at most of *O*(ε⁴) and *O*(ε³) respectively., then

$$V(\mathcal{C})_{\mathit{full}} = (1 + \mathcal{O}(\epsilon)) \, V(\mathcal{C})_{\mathit{sim}}$$
 .

(23)

Corrections

In the field-space region $|\mathcal{C}| \lesssim \mathcal{O}(\epsilon)$

C-dependent parts

- W_{sim} and K_{sim} are of $\mathcal{O}(\epsilon^3)$ and $\mathcal{O}(\epsilon^2)$ respectively.
- With $W_0 = \mathcal{O}(\epsilon)$ these induce $\mathcal{O}(\epsilon^4)$ terms in *V*.
- The induced couplings in W_{full} and K_{full} are at most of O(ε⁴) and O(ε³) respectively., then

$$V(C)_{full} = (1 + \mathcal{O}(\epsilon)) V(C)_{sim}.$$
(23)

Non-trustable operators

Schematically if $W \supset Y_N C^N$:

$$\delta W \supset \frac{1}{m_H} Y_{N_i} Y_{N_j} C^{N_i + N_j} , \quad \delta K \supset \frac{1}{m_H} \partial_i K_{sim} Y_{N_i} C^{N_i} + h.c.$$
(24)

• Gauging an isometry group *G* generated by holomorphic Killing vectors *X*_A:

$$\delta_{\lambda}\phi^{M} = \lambda^{A}X^{M}_{A}, \quad \delta_{\lambda}\bar{\phi}^{\bar{M}} = \bar{\lambda}^{A}\bar{X}^{\bar{M}}_{A}.$$
(25)

With holomorphic gauge kinetic functions

$$f_{AB} = \delta_{AB} f_A(H^i, M^\mu, C^\alpha) , \quad \mathcal{R}e(f_A) = g_A^{-2} .$$
(26)

D-term potential

$$V_D = \frac{1}{2} \sum_A g_A^2 D_A^2$$
, with $D_A = i X_A^M G_M$. (27)

Gauging an isometry group G generated by holomorphic Killing vectors X_A:

$$\delta_{\lambda}\phi^{M} = \lambda^{A}X^{M}_{A}, \quad \delta_{\lambda}\bar{\phi}^{\bar{M}} = \bar{\lambda}^{A}\bar{X}^{\bar{M}}_{A}.$$
(25)

With holomorphic gauge kinetic functions

$$f_{AB} = \delta_{AB} f_A(H^i, M^\mu, C^\alpha) , \quad \mathcal{R}e(f_A) = g_A^{-2} . \tag{26}$$

D-term potential

$$V_D = \frac{1}{2} \sum_A g_A^2 D_A^2$$
, with $D_A = i X_A^M G_M$. (27)

Comments on freezing

• Gauge invariance of W_0 , relates the e.o.m.'s $X_A^i \partial_i W_0 = 0$.

 Gauging an isometry group G generated by holomorphic Killing vectors X_A:

$$\delta_{\lambda}\phi^{M} = \lambda^{A}X^{M}_{A}, \quad \delta_{\lambda}\bar{\phi}^{\bar{M}} = \bar{\lambda}^{A}\bar{X}^{\bar{M}}_{A}.$$
(25)

With holomorphic gauge kinetic functions

$$f_{AB} = \delta_{AB} f_A(H^i, M^\mu, C^\alpha) , \quad \mathcal{R}e(f_A) = g_A^{-2} . \tag{26}$$

D-term potential

$$V_D = \frac{1}{2} \sum_A g_A^2 D_A^2$$
, with $D_A = i X_A^M G_M$. (27)

Comments on freezing

- Gauge invariance of W_0 , relates the e.o.m.'s $X_A^i \partial_i W_0 = 0$.
- Is not a meaningful gauge invariant statement for charged fields.

We impose

$$X_{A}^{i}=0$$
 .

(28)

Unbroken Symmetry (No charged M^{μ})

The solution to $\partial_i W = 0$, H^i , now further induces

$$f_{AB,full} = f_{AB,sim} - \partial_i f_{AB} W_0^{ij} \partial_j \widetilde{W}_0 + \mathcal{O}(\epsilon, \eta^2).$$
⁽²⁹⁾

New terms in the scalar potential

$$\delta V_D \supset \frac{g_A^2 Y_{N_i}}{m_H} C^{N_i+4} + \frac{\epsilon g_A^2 \mu_{M_i}}{m_H} C^{M_i+4} \,. \tag{30}$$

Taking $C \sim \epsilon$ these are again negligible.

Comments

- Even at two derivative level neglecting the covariant derivatives misses *FD* and *D*² terms.
- In particular this approach cannot lead to g_A^4 terms.

Unbroken Symmetry (No charged M^{μ})

The solution to $\partial_i W = 0$, H^i , now further induces

$$f_{AB,full} = f_{AB,sim} - \partial_i f_{AB} W_0^{ij} \partial_j \widetilde{W}_0 + \mathcal{O}(\epsilon, \eta^2).$$
⁽²⁹⁾

New terms in the scalar potential

$$\delta V_D \supset \frac{g_A^2 Y_{N_i}}{m_H} C^{N_i+4} + \frac{\epsilon g_A^2 \mu_{M_i}}{m_H} C^{M_i+4} + \frac{(g_A^2)^2}{m_H^2} \partial_i K_{1,2} C^8 .$$
(30)

Taking $C \sim \epsilon$ these are again negligible.

Comments

- Even at two derivative level neglecting the covariant derivatives misses FD and D² terms.
- In particular this approach cannot lead to g_A^4 terms.
- These are suppressed by powers of m_H.

Broken symmetry (Charged M^{μ})

- \mathcal{G} spontaneously broken to \mathcal{H} : $\hat{a} \in \mathcal{G}/\mathcal{H}$, and $a \in \mathcal{H}$.
 - Extra heavy chiral multiplets: eaten by the Vector multiplet.
 - These cannot be frozen being stabilized by *D*-term dynamics.
 - The full massive Vector multiplet should be properly integrated out.

Broken symmetry (Charged M^{μ})

 \mathcal{G} spontaneously broken to \mathcal{H} : $\hat{a} \in \mathcal{G}/\mathcal{H}$, and $a \in \mathcal{H}$.

- Extra heavy chiral multiplets: eaten by the Vector multiplet.
- These cannot be frozen being stabilized by *D*-term dynamics.
- The full massive Vector multiplet should be properly integrated out.

SUSY integration of the Vector multiplet

Arkani-Hamed, Dine, Martin & Martin '98

• E.o.m. neglecting covariant derivatives, $\langle D \rangle / m_V^2 \ll 1$,

$$\partial_{V_{\hat{a}}}K = 0. \tag{31}$$

- Gauge fixing: $M^{\hat{\mu}} = \langle M^{\hat{\mu}} \rangle = M_0^{\hat{\mu}}$, $M^{\hat{\mu}}$ such that $\langle \chi_{\hat{a},\hat{\mu}} \rangle \neq 0$, i.e., non-vanishin component in the would-be Goldstone direction.
- Denoting L^{A'} the remaining chiral fields and V⁰_â(L^{A'}) the solutions, the effective theory is described by

$$K' = K(M_0^{\hat{\mu}}, L^{\mathcal{A}'}, V_{\hat{a}}^0(L^{\mathcal{A}'}), V_a)$$
(32)

The new theory is described by

$$K', \quad W' = W_0(H^i) + \epsilon W_1(H^i, M_0^{\hat{\mu}}, L^{\alpha'}), \quad f'_a = f(M_0^{\hat{\mu}}, L^{\mathcal{A}'}), \quad (33)$$

and

- Gauge symmetry is un-broken.
- Is possible to define a simplified theory

$$K'_{sim} = K'(H_0^i, \bar{H}_0^{\bar{i}}), \quad W'_{sim} = W'(H_0^i), \quad f'_{a,sim} = f'_a(H_0^i), \quad (34)$$

and re-do our previous analysis for the matching.

The new theory is described by

$$K', \quad W' = W_0(H^i) + \epsilon W_1(H^i, M_0^{\hat{\mu}}, L^{\alpha'}), \quad f'_a = f(M_0^{\hat{\mu}}, L^{\mathcal{A}'}), \quad (33)$$

and

- Gauge symmetry is un-broken.
- Is possible to define a simplified theory

$$K'_{sim} = K'(H_0^i, \bar{H}_0^{\bar{i}}), \quad W'_{sim} = W'(H_0^i), \quad f'_{a,sim} = f'_a(H_0^i), \quad (34)$$

and re-do our previous analysis for the matching.

• This simplified theory coincide with the one obtained from,

$$K_{sim} = K(H_0^i, \bar{H}_0^{\bar{i}}), \quad W_{sim} = W(H_0^i), \quad f_{A,sim} = f_A(H_0^i), \quad (35)$$

after the integration of the heavy vector multiplet using the very same gauge fixing.

Summary

In systems where the superpotential for the "moduli" is of the form

$$W = W_0(H^i) + \epsilon W_1(H^i, M^\mu), \qquad (36)$$

with *arbitrary* sufficiently regular Kähler potential, freezing of the H chiral multiplets is a reliable approach provided that these are neutral and at H_0^i

$$\langle W_0 \rangle \sim \mathcal{O}(\epsilon) , \ \partial_i W_0 \sim \mathcal{O}(\epsilon) , \ \partial_i \partial_j W_0 \sim \mathcal{O}(1) .$$
 (37)

 Higher order couplings not described by the simple description are due to the presence of O(1) couplings in the matter sector. W ⊃ Y_MC^M:

$$\delta W \supset Y_{M_1} Y_{M_2} C^{M_1 + M_2} , \quad \delta K \supset Y_M C^M .$$

The End

Thanks!