Integrability methods in AdS/CFT

Romuald A. Janik
Jagiellonian University
Krakow

Z. Bajnok, RJ: 0807.0499
Z. Bajnok, RJ, T. Łukowski: 0811.4448
Z. Bajnok, A. Hegedus, RJ, T. Łukowski: 0906.????
(1) Motivation
(2) The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$
(3) Spectrum on a cylinder
4. The gauge theory side
(5) Computation of Konishi anomalous dimension from strings in $\operatorname{AdS} S_{5} \times S^{5}$
(6) Generalizations: twist two operators
(7) Generalizations: 5-loop Konishi
(8) Conclusions

Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

- The gravity/string side is 'easy' at strong coupling
- conventional supergravity description
- strings are classical/semiclassical
- α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
- Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

- The gravity/string side is 'easy' at strong coupling
- conventional supergravity description
- strings are classical/semiclassical
- α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
- Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

- The gravity/string side is 'easy' at strong coupling - conventional supergravity description

[^0]
Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

- The gravity/string side is 'easy' at strong coupling
- conventional supergravity description
- strings are classical/semiclassical
- α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
- Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

Parameters

string scale
$\alpha_{e f f}^{\prime} \propto \frac{1}{\sqrt{\lambda}}$ (keeping $R_{A d S}=1$)
string coupling
$g_{s} \propto \frac{1}{N_{c}}$ (keeping λ fixed)

- The gravity/string side is 'easy' at strong coupling
- conventional supergravity description
- strings are classical/semiclassical
- α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
- Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

Motivation

$$
\mathcal{N}=4 \text { Super Yang-Mills theory } \equiv \text { Superstrings on } A d S_{5} \times S^{5}
$$

Parameters

't Hooft coupling

$$
\lambda=g_{Y M}^{2} N_{c}
$$

number of colours

$$
N_{c}
$$

Parameters

string scale
$\alpha_{\text {eff }}^{\prime} \propto \frac{1}{\sqrt{\lambda}}$ (keeping $R_{A d S}=1$)
string coupling
$g_{s} \propto \frac{1}{N_{c}}$ (keeping λ fixed)

- The gravity/string side is 'easy' at strong coupling
- conventional supergravity description
- strings are classical/semiclassical
- α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
- Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

Integrability program:

> Goal: Solve exactly $\mathcal{N}=4$ SYM or superstrings in $A d S_{5} \times S^{5}$ in the large N_{c} limit for any value of the coupling $\lambda=g_{Y M}^{2} N_{c}$

what do we mean by 'solve'?

Integrability program:
Goal: Solve exactly $\mathcal{N}=4 \mathrm{SYM}$ or superstrings in $A d S_{5} \times S^{5}$ in the large N_{c} limit for any value of the coupling $\lambda=g_{Y M}^{2} N_{c}$

Integrability program:
Goal: Solve exactly $\mathcal{N}=4 \mathrm{SYM}$ or superstrings in $A d S_{5} \times S^{5}$ in the large N_{c} limit for any value of the coupling $\lambda=g_{Y M}^{2} N_{c}$
... what do we mean by 'solve'?

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring in fact these questions coincide

Basic questions

Gauge theory side:

- $\mathcal{N}=4$ is an exact CFT
- Find the spectrum of the dilatation operator
- Equivalently, find the anomalous dimensions of all operators in $\mathcal{N}=4$ SYM as a function of the coupling constant $g^{2}=\lambda / 16 \pi^{2}$

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

String theory side:

- Find energy states of a superstring in $A d S_{5} \times S^{5}$
- I.e. find the energy levels of quantized worldsheet QFT of the superstring
... in fact these questions coincide

AdS/CFT dictionary

Operators in $\mathcal{N}=4 \mathrm{SYM}$ \longleftrightarrow (quantized) string states in $A d S_{5} \times S^{5}$
Single trace operators \longleftrightarrow single string states
Multitrace operators\longleftrightarrow multistring states
Large N_{c} limit \longleftrightarrow
suffices to consider single string states
Operator dimension
\longleftrightarrow Energy of a string state in $A d S_{5} \times S^{5}$

AdS/CFT dictionary

Operators in $\mathcal{N}=4$ SYM $\longleftrightarrow \quad$ (quantized) string states in $A d S_{5} \times S^{5}$
Single trace operators
$\longleftrightarrow \quad$ single string states
Multitrace operators
\longleftrightarrow multistring states
Large N_{c} limit
Operator dimension
$\longleftrightarrow \quad$ suffices to consider single string states
\longleftrightarrow Energy of a string state in $A d S_{5} \times S^{5}$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet - this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Consider the worldsheet theory of the string in $A d S_{5} \times S^{5}$ in a (generalized) light cone gauge
- Worldsheet hamiltonian corresponds to translations in global AdS time
- One $U(1)_{R}$ charge is uniformly spread on the string worldsheet
- this defines the σ coordinate
- identifies the size of the worldsheet cylinder with the charge J of the corresponding state
- One obtains a highly interacting theory
- The theory is not conformal (c.f. BMN limit/pp-wave)
- The theory is not relativistic (in the two-dimensional sense)

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $\operatorname{suc}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave. limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

$$
S_{12} S_{23} S_{13}=S_{13} S_{23} S_{12}
$$

- This fixes the S-matrix up to an overall scalar factor (\equiv 'dressing phase')

$$
S\left(p_{1}, p_{2}\right)=S_{0}\left(p_{1}, p_{2}\right) \cdot\left[\hat{S}_{s u_{c}(2 \mid 2)}\left(p_{1}, p_{2}\right) \otimes \hat{S}_{s_{c}(2 \mid 2)}\left(p_{1}, p_{2}\right)^{7}\right]
$$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

- This fixes the S-matrix up to an overall scalar factor (三'dressing phase')

$$
S\left(p_{1}, p_{2}\right)=S_{0}\left(p_{1}, p_{2}\right) \cdot\left[\hat{S}_{\text {Suc }(2 \mid 2)}\left(p_{1}, p_{2}\right) \otimes \hat{S}_{\text {Suc }(2 \mid 2)}\left(p_{1}, p_{2}\right)\right]
$$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

- This fixes the S-matrix up to an overall scalar factor ($三$ 'dressing phase') $S\left(p_{1}, p_{2}\right)=S_{0}\left(p_{1}, p_{2}\right) \cdot\left[\hat{S}_{\text {SUU }}(2 \mid 2)\left(p_{1}, p_{2}\right) \otimes \hat{S}_{\text {SUU }}(2 \mid 2)\left(p_{1}, p_{2}\right)\right]$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

- This fixes the S-matrix up to an overall scalar factor ($三$ 'dressing phase') $S\left(p_{1}, p_{2}\right)=S_{0}\left(p_{1}, p_{2}\right) \cdot\left[\hat{S}_{\text {SUU }}(2 \mid 2)\left(p_{1}, p_{2}\right) \otimes \hat{S}_{\text {SUU }}(2 \mid 2)\left(p_{1}, p_{2}\right)\right]$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

- This fixes the S-matrix up to an overall scalar factor ($三$ 'dressing phase')

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry $-s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

- This fixes the S-matrix up to an overall scalar factor ($三$ 'dressing phase')

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry
- This fixes the S-matrix up to an overall scalar factor (\equiv 'dressing phase')

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry - $s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

$$
S_{12} S_{23} S_{13}=S_{13} S_{23} S_{12}
$$

- This fixes the S-matrix up to an overall scalar factor (\equiv 'dressing phase')
\square

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Bena, Polchinski, Roiban showed that the worldsheet QFT of the superstring is integrable (on the classical level)
- Assuming quantum integrability one may proceed to solve the theory exactly on an infinite plane (historically this was considered in the spin-chain language [Beisert,Staudacher])
- Identify explicit global symmetry $-s u_{c}(2 \mid 2) \times s u_{c}(2 \mid 2)$
- Guess the set of asymptotic states (using information from pp-wave limit/gauge theory)
- Find the S-matrix between these states which satisfies the Yang-Baxter Equation and has the appropriate global symmetry

$$
S_{12} S_{23} S_{13}=S_{13} S_{23} S_{12}
$$

- This fixes the S-matrix up to an overall scalar factor (\equiv 'dressing phase')

$$
S\left(p_{1}, p_{2}\right)=S_{0}\left(p_{1}, p_{2}\right) \cdot\left[\hat{S}_{s u_{c}(2 \mid 2)}\left(p_{1}, p_{2}\right) \otimes \hat{S}_{s u_{c}(2 \mid 2)}\left(p_{1}, p_{2}\right)\right]
$$

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert Hernandez Ionez] [Beisert Fden Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (ecuivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

```
Caveat: We still have to use this information to find the spec-
trum on a cylinder of finite size
```


The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S -matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

> Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

> Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

> Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

> Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

> Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

The worldsheet QFT of the superstring in $A d S_{5} \times S^{5}$

- Generalize crossing equation for the scalar factor
- [Beisert,Hernandez,Lopez], [Beisert,Eden,Staudacher] found an exact solution of the crossing equation - the S-matrix is currently known exactly
- Poles of the S-matrix lead to an infinite set of bound states labelled by Q. These have to be added to the set of asymptotic states
- The theory is solved in the infinite volume limit!
- The S-matrix is a highly nontrivial function of λ (equivalently α^{\prime}) which incorporates α^{\prime} corrections to all orders!

Caveat: We still have to use this information to find the spectrum on a cylinder of finite size

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} t}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections
- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections

- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections

- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side.

Spectrum on a cylinder

- In general this is a very complicated problem even for integrable QFT's
- Something may be said about large volume behaviour
- The spectrum on a cylinder of large size is given by a Bethe ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

- In fact, it coincides exactly with the Asymptotic Bethe Ansatz of [Beisert, Staudacher]
- But on top of this there are virtual corrections - Lüscher corrections

- Lead to violations of the Bethe Asnatz
- All this has a natural counterpart on the gauge theory side...

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation

 functions$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \triangle}}
$$

Correspond to the Bethe Ansatz

$$
e^{i_{p i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

Correspond to
(1) Lüscher corrections
(2) \ldots and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

Correspond to
(1) Lüscher corrections
© ... and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

Correspond to
(1) Lüscher corrections
© ... and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

Correspond to
(1) Lüscher corrections
© ... and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

Correspond to
(1) Lüscher corrections
(2) \ldots and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

Correspond to
(1) Lüscher corrections
(3) ... and multiple Lüscher corrections

Gauge theory counterpart

In $\mathcal{N}=4$ SYM compute anomalous dimensions from two-point correlation functions

$$
\langle O(x) O(y)\rangle=\frac{\text { const }}{|x-y|^{2 \Delta}}
$$

Correspond to the Bethe Ansatz

$$
e^{i p_{i} L}=\prod_{k \neq i} S\left(p_{i}, p_{k}\right)
$$

Correspond to
(1) Lüscher corrections
(2) ... and multiple Lüscher corrections

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+\ldots
$$

- The true result is

$$
E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E
$$

with $\Delta_{\text {wrapping }} E$ appearing first at 4 loops

- A direct 4-loop perturbative computation was completed by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator
- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 q^{2}-18 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+
$$

- The true result is

$$
E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E
$$

with $\Delta_{\text {wrapping }} E$ appearing first at 4 loops

- A direct 4-loop perturbative computation was completed by F.Fiamberti A.Santambrogio, C.Sieg and D.Zanon

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \quad \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+
$$

- The true result is

$$
E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E
$$

with $\Delta_{\text {wrapping }} E$ appearing first at 4 loops

- A direct 4-loop perturbative computation was completed by F.Fiamberti A.Santambrogio, C.Sieg and D.Zanon

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \quad \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+
$$

- The true result is
$E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E$
with $\triangle_{\text {wrapping }} E$ appearing first at 4 loops
- A direct 4-loop perturbative computation was completed by F.Fiamberti,

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \quad \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+\ldots
$$

- The true result is $E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E$ with $\triangle_{\text {wrapping }} E$ appearing first at 4 loops
- A direct 4-loop perturbative computation was completed by F.Fiamberti

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \quad \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+\ldots
$$

- The true result is

$$
E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E
$$

with $\Delta_{\text {wrapping }} E$ appearing first at 4 loops

- A direct 4-loop perturbative computation was completed by F. Fiamberti,

The Konishi operator

- Simplest operator which is not protected by supersymmetry - the Konishi operator

$$
\operatorname{tr} \Phi_{i}^{2} \longleftrightarrow \operatorname{tr} Z^{2} X^{2}+\ldots \quad \longleftrightarrow \quad \operatorname{tr} Z D^{2} Z+\ldots
$$

- Its anomalous dimension should be given by the ABA exactly up to 3 loops:

$$
E_{\text {Bethe }}=4+12 g^{2}-48 g^{4}+336 g^{6}-(2820+288 \zeta(3)) g^{8}+\ldots
$$

- The true result is

$$
E=E_{\text {Bethe }}+\Delta_{\text {wrapping }} E
$$

with $\Delta_{\text {wrapping }} E$ appearing first at 4 loops

- A direct 4-loop perturbative computation was completed by F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon

$$
W_{B 6}=
$$

Figure C.1: Wrapping diagrams with chiral structure $\chi(1,2,3)$

Figure C.2: Wrapping diagrams with chiral structure $\chi(1,3,2)$

Table C.2: Results of D-algebra for diagrams with structure $\chi(1,3,2)$

Figure C.3: Wrapping diagrams with chiral structure $\chi(2,1,3)$
$W_{E 1}=$

$W_{E 21}=$

$W_{E 22}=$

$W_{E 26}$

 $W_{E 24}=$ s,

Figure C.6: Wrapping diagrams with chiral structure $\chi(1)$ (continued)

$$
I_{1}=J_{1}=\frac{1}{(4 \pi)^{8}}\left(-\frac{1}{24 \varepsilon^{4}}+\frac{1}{4 \varepsilon^{3}}-\frac{19}{24 \varepsilon^{2}}+\frac{5}{4 \varepsilon}\right)
$$

Table C.8: Loop integrals for 4-loop wrapping diagrams. The arrows of the same type indicate contracted spacetime derivatives

Perturbative 4-loop result for the Konishi

- The final result for the anomalous dimension of the Konishi operator is

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\underbrace{(-2496+576 \zeta(3)-1440 \zeta(5)) g^{8}}_{\text {[F.Fiamberti, A. Santambrogio. C. Sieg.D.Zanon] }}
$$

($-2584 \longrightarrow-2496$ after the appearance of our paper)

- The wrapping part is thus

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

Compute the same 4-loop anomalous dimension from string theory

Perturbative 4-loop result for the Konishi

- The final result for the anomalous dimension of the Konishi operator is

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\underbrace{(-2496+576 \zeta(3)-1440 \zeta(5)) g^{8}}_{[\text {F.Fiamberti,A.Santambrogio, C.Sieg, D.Zanon }]}+\ldots
$$

$(-2584 \longrightarrow-2496$ after the appearance of our paper)

- The wrapping part is thus

$$
\triangle_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

Compute the same 4-loop anomalous dimension from string theory

Perturbative 4-loop result for the Konishi

- The final result for the anomalous dimension of the Konishi operator is

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\underbrace{(-2496+576 \zeta(3)-1440 \zeta(5)) g^{8}}_{[\text {F.Fiamberti,A.Santambrogio, C.Sieg,D.Zanon] }}+\ldots
$$

($-2584 \longrightarrow-2496$ after the appearance of our paper)

- The wrapping part is thus

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

Compute the same 4-loop
anomalous dimension from
string theory

Perturbative 4-loop result for the Konishi

- The final result for the anomalous dimension of the Konishi operator is

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\underbrace{(-2496+576 \zeta(3)-1440 \zeta(5)) g^{8}}_{[\text {F.Fiamberti,A.Santambrogio, C.Sieg,D.Zanon] }}+\ldots
$$

($-2584 \longrightarrow-2496$ after the appearance of our paper)

- The wrapping part is thus

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

Compute the same 4-loop anomalous dimension from string theory

Perturbative 4-loop result for the Konishi

- The final result for the anomalous dimension of the Konishi operator is

$$
\Delta=4+12 g^{2}-48 g^{4}+336 g^{6}+\underbrace{(-2496+576 \zeta(3)-1440 \zeta(5)) g^{8}}_{[\text {F.Fiamberti,A.Santambrogio, C.Sieg,D.Zanon }]}+\ldots
$$

($-2584 \longrightarrow-2496$ after the appearance of our paper)

- The wrapping part is thus

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

Compute the same 4-loop anomalous dimension from string theory

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

- What particles should circulate in the loop?
- fundamental magnons $(Q=1)$
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

- What particles should circulate in the loop?
- fundamental magnons $(Q=1)$
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the O-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}$
- What particles should circulate in the loop?
- fundamental magnons $(Q=1)$
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- W/e have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- What particles should circulate in the loop?
- fundamental magnons $(Q=1)$
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- What particles should circulate in the loop?
- fundamental magnons $(Q=1)$
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the O-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- What particles should circulate in the loop?
- fundamental magnons ($Q=1$)
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- What particles should circulate in the loop?
- fundamental magnons ($Q=1$)
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

The Konishi computation

- For the Konishi at 4 loops only the F-term like expression contributes

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- What particles should circulate in the loop?
- fundamental magnons ($Q=1$)
- Q-magnon bound states (in the antisymmetric representation)
- Moreover we should sum over all internal states of these particles $\equiv \sum_{b}$
- We have to derive the S-matrix between the Q-magnon bound state and the fundamental magnon (previously explicitly known only for $Q=1$ and $Q=2$)

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- We have

$$
\left(\frac{z^{-}}{z^{+}}\right)^{2}=\frac{16 g^{4}}{\left(Q^{2}+q^{2}\right)^{2}}+\ldots
$$

- The scalar part gives

- The matrix part (summed over b) evaluates to

- We are left with an integral over q and a summation over Q

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- We have

$$
\left(\frac{z^{-}}{z^{+}}\right)^{2}=\frac{16 g^{4}}{\left(Q^{2}+q^{2}\right)^{2}}+\ldots
$$

- The scalar part gives

- The matrix part (summed over b) evaluates to

- We are left with an integral over q and a summation over Q

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- We have

$$
\left(\frac{z^{-}}{z^{+}}\right)^{2}=\frac{16 g^{4}}{\left(Q^{2}+q^{2}\right)^{2}}+\ldots
$$

- The scalar part gives

$$
\begin{aligned}
S_{Q-1}^{\text {scalar,sl(2) }}= & \frac{3 q^{2}-6 i Q q+6 i q-3 Q^{2}+6 Q-4}{3 q^{2}+6 i Q q-6 i q-3 Q^{2}+6 Q-4} \\
& \frac{16}{9 q^{4}+6(3 Q(Q+2)+2) q^{2}+(3 Q(Q+2)+4)^{2}}
\end{aligned}
$$

- The matrix part (summed over b) evaluates to $S_{Q-1}^{\text {matrix }, S(2)}=$

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- We have

$$
\left(\frac{z^{-}}{z^{+}}\right)^{2}=\frac{16 g^{4}}{\left(Q^{2}+q^{2}\right)^{2}}+\ldots
$$

- The scalar part gives

$$
\begin{aligned}
S_{Q-1}^{\text {scalar,sl(2) }}= & \frac{3 q^{2}-6 i Q q+6 i q-3 Q^{2}+6 Q-4}{3 q^{2}+6 i Q q-6 i q-3 Q^{2}+6 Q-4} . \\
& \frac{16}{9 q^{4}+6(3 Q(Q+2)+2) q^{2}+(3 Q(Q+2)+4)^{2}}
\end{aligned}
$$

- The matrix part (summed over b) evaluates to

$$
S_{Q-1}^{\text {matrix }, s /(2)}=\frac{5184 Q^{2}\left(3 q^{2}+3 Q^{2}-4\right)^{2} g^{4}}{\left(q^{2}+Q^{2}\right)^{2}\left((3 q-3 i Q+3 i)^{2}-3\right)^{2}}
$$

$$
\Delta E=\frac{-1}{2 \pi} \sum_{Q=1}^{\infty} \int_{-\infty}^{\infty} d q\left(\frac{z^{-}}{z^{+}}\right)^{2} \sum_{b}(-1)^{F_{b}}\left[S_{Q-1}\left(z^{ \pm}, x_{i}^{ \pm}\right) S_{Q-1}\left(z^{ \pm}, x_{i i}^{ \pm}\right)\right]_{b(11)}^{b(11)}
$$

- We have

$$
\left(\frac{z^{-}}{z^{+}}\right)^{2}=\frac{16 g^{4}}{\left(Q^{2}+q^{2}\right)^{2}}+\ldots
$$

- The scalar part gives

$$
\begin{aligned}
S_{Q-1}^{\text {scalar,sl(2) }}= & \frac{3 q^{2}-6 i Q q+6 i q-3 Q^{2}+6 Q-4}{3 q^{2}+6 i Q q-6 i q-3 Q^{2}+6 Q-4} \\
& \frac{16}{9 q^{4}+6(3 Q(Q+2)+2) q^{2}+(3 Q(Q+2)+4)^{2}}
\end{aligned}
$$

- The matrix part (summed over b) evaluates to

$$
S_{Q-1}^{\text {matrix }, s /(2)}=\frac{5184 Q^{2}\left(3 q^{2}+3 Q^{2}-4\right)^{2} g^{4}}{\left(q^{2}+Q^{2}\right)^{2}\left((3 q-3 i Q+3 i)^{2}-3\right)^{2}}
$$

- We are left with an integral over q and a summation over Q
- The integral over q can be carried out analytically by residues
- The result is
$\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}$

where

$$
\begin{aligned}
\operatorname{num}(Q)= & 7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right. \\
& \left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
\end{aligned}
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$
- The remaining rational function remarkably sums up to an integer giving finally

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

- Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
- The integral over q can be carried out analytically by residues
- The result is

$$
\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}
$$

where
$\operatorname{num}(Q)=7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right.$

$$
\left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$
- The remaining rational function remarkably sums up to an integer giving finally
$\triangle_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}$
- Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]
- The integral over q can be carried out analytically by residues
- The result is

$$
\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}
$$

where

$$
\begin{aligned}
\operatorname{num}(Q)= & 7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right. \\
& \left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
\end{aligned}
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$
- The remaining rational function remarkably sums up to an integer giving $\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}$
- The integral over q can be carried out analytically by residues
- The result is

$$
\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}
$$

where

$$
\begin{aligned}
\operatorname{num}(Q)= & 7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right. \\
& \left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
\end{aligned}
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$

The remaining rational function remarkably sums up to an integer giving $\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}$

- The integral over q can be carried out analytically by residues
- The result is

$$
\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}
$$

where

$$
\begin{aligned}
\operatorname{num}(Q)= & 7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right. \\
& \left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
\end{aligned}
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$
- The remaining rational function remarkably sums up to an integer giving finally

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

- The integral over q can be carried out analytically by residues
- The result is

$$
\sum_{Q=1}^{\infty}\left\{-\frac{\operatorname{num}(Q)}{\left(9 Q^{4}-3 Q^{2}+1\right)^{4}\left(27 Q^{6}-27 Q^{4}+36 Q^{2}+16\right)}+\frac{864}{Q^{3}}-\frac{1440}{Q^{5}}\right\}
$$

where

$$
\begin{aligned}
\operatorname{num}(Q)= & 7776 Q\left(19683 Q^{18}-78732 Q^{16}+150903 Q^{14}-134865 Q^{12}+\right. \\
& \left.+1458 Q^{10}+48357 Q^{8}-13311 Q^{6}-1053 Q^{4}+369 Q^{2}-10\right)
\end{aligned}
$$

- Two last terms give at once $864 \zeta(3)-1440 \zeta(5)$
- The remaining rational function remarkably sums up to an integer giving finally

$$
\Delta_{\text {wrapping }} E=(324+864 \zeta(3)-1440 \zeta(5)) g^{8}
$$

- Exactly agrees with the 4-loop perturbative computation of [F.Fiamberti, A.Santambrogio, C.Sieg and D.Zanon]

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov,Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej, Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov,Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov,Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej, Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov,Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction (Kotikov, Lipatov, Rej Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,tukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov, Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotih
Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,tukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov, Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej, Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: twist two operators

- We computed the 4-loop wrapping corrections for arbitrary twist two operators

$$
O_{M}=\operatorname{tr} Z D^{M} Z+\ldots
$$

where D is a light-cone derivative and M is any even integer [Bajnok,RJ,Łukowski]

- The Konishi operator is just $O_{M=2}$.
- So far there is no gauge theory perturbative computation for arbitrary M
- The 4-loop correction obeys the maximal transcendentality principle of [Kotikov,Lipatov]
- There is a prediction of the pole structure of the anomalous dimensions analytically continued to $M=-1+\omega$ from BFKL and NLO BFKL equations.
- The non-wrapping part violates this prediction [Kotikov, Lipatov, Rej, Staudacher, Velizhanin]
- The wrapping correction exactly restores agreement

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks..
- The final answer should have a nice transcendentality structure...
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of BA quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear.
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks.
- The final answe should have a nice transcendentality structure.
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of BA quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks.
- The final answer should have a nice transcendentality structure.
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of BA quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks.
- The final answer should have a nice transcendentality structure.
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of BA quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks.
- The final answer should have a nice transcendentality structure.
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of $B A$ quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks.
- The final answer should have a nice transcendentality structure
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of $B A$ quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks...
- The final answer should have a nice transcendentality structure.
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of $B A$ quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks...
- The final answer should have a nice transcendentality structure...
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of $B A$ quantization

Generalizations: 5-loop Konishi (to appear)

- The computation of the Konishi anomalous dimension from multiparticle Lüscher corrections can be extended to 5 loops.
- Several new features appear...
- Due to the special form of kinematics already an infinite set of coefficients of the BES dressing phase starts to contribute
- One has to take into account the modification of the Bethe ansatz quantization due to the virtual particles
- How to check the result?
- Not much hope for a direct perturbative computation but there are other cross-checks...
- The final answer should have a nice transcendentality structure...
- The contribution of dynamical poles (μ-terms) should cancel between the dressing phase contribution and the rest of the expression coming from the matrix part and the modifications of BA quantization

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $\operatorname{AdS}_{5} \times S^{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ
- Use 5-loop Konishi as a testing ground for these formulations...

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT! distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $\operatorname{AdS} 5 \times S^{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ
- Use 5-loop Konishi as a testing ground for these formulations.

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved AdS_{5}
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ
- Use 5-loop Konishi as a testing ground for these formulations.

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved AdS $_{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ
- Use 5-loop Konishi as a testing ground for these formulations.

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $A^{2 d} S_{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any
- Use 5-loop Konishi as a testing ground for these formulations.

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $\operatorname{AdS} S_{5} \times S^{5}$
- Various groups proposed formulations (functional relations/systems of
nonlinear integral equations) which aim to give an exact solution for any
- Use 5-loop Konishi as a testing ground for these formulations.

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $\operatorname{AdS} S_{5} \times S^{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ

Conclusions

- The agreement of the Konishi computation with the 4-loop weak coupling perturbative gauge theory result is an extremely nontrivial test of AdS/CFT!
- The computation of the finite size effects through Lüscher corrections is of a distinctly (2D) quantum field theoretical nature
- The result came from a single diagram - in contrast to direct perturbative computations in gauge theory which are much more complex
- This suggests that one can use string theory methods of AdS/CFT as an efficient calculational tool also at weak coupling
- May be possible to access information on strings in highly curved $\operatorname{AdS} S_{5} \times S^{5}$
- Various groups proposed formulations (functional relations/systems of nonlinear integral equations) which aim to give an exact solution for any λ
- Use 5-loop Konishi as a testing ground for these formulations...

[^0]: - strings are classical/semiclassical
 - α^{\prime} corrections difficult for the string worldsheet theory \longrightarrow Difficult to extend to smaller λ.
 - Integrability: Solve the worldsheet theory exactly for any α^{\prime} (with $g_{s}=0$)

