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Conformal Yano–Killing tensors

Let Qµν be a skew-symmetric tensor field. Contracting the Weyl tensor Wµνκλ with Qµν we obtain a
natural object which can be integrated over two-surfaces. The result does not depend on the choice of
the surface if Qµν fulfills the following condition introduced by Penrose

Qλ(κ;σ) −Qκ(λ;σ) + ησ[λQκ]
δ
;δ = 0 . (1)

one can rewrite equation (1) in a generalized form for n-dimensional spacetime with metric gµν :

Qλ(κ;σ) −Qκ(λ;σ) +
3

n− 1
gσ[λQκ]

δ
;δ = 0 (2)

or in the equivalent form:

Qλκ;σ + Qσκ;λ =
2

n− 1
(
gσλQν

κ;ν + gκ(λQσ)
µ
;µ

)
. (3)

Let us define

Qλκσ(Q, g) := Qλκ;σ + Qσκ;λ −
2

n− 1
(
gσλQν

κ;ν + gκ(λQσ)
µ
;µ

)
(4)

Definition 1. A skew-symmetric tensor Qµν is a conformal Yano–Killing tensor (or simply CYK
tensor) for the metric g iff Qλκσ(Q, g) = 0.
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The CYK tensor is a natural generalization of the Yano tensor with respect to the conformal rescalings.
More precisely, for any positive scalar function Ω > 0 and for a given metric gµν we obtain:

Qλκσ(Q, g) = Ω−3Qλκσ(Ω3Q, Ω2g) . (5)

The formula (5) and the above definition of CYK tensor gives the following
Theorem 1. If Qµν is a CYK tensor for the metric gµν than Ω3Qµν is a CYK tensor for the
conformally rescaled metric Ω2gµν .

It is interesting to notice, that a tensor Aµν — a “square” of the CYK tensor Qµν defined as follows:

Aµν := Qµ
λQλν

fulfills the following equation:

A(µν;κ) = g(µνAκ) with Aκ =
2

n− 1
Qκ

λQλ
δ
;δ (6)

which simply means that the symmetric tensor Aµν is a conformal Killing tensor. This can be also
described by the following
Theorem 2. If Qµν is a skew-symmetric conformal Yano–Killing tensor than Aµν := Qµ

λQλν is a
symmetric conformal Killing tensor.
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Remark CYK tensor is a solution of the following conformally invariant equation:
(
! +

1
6
R

)
Q =

1
2
W (Q, ·) (n=4)

R := Rµνgµν – scalar curvature, Rµν – symmetric Ricci tensor.

Moreover, if Q is a CYK tensor and the metric is Einstein then

Kµ := Qµλ
;λ

is a Killing vector field.

More precisely, one can show

K(µ;ν) =
n− 1
n− 2

Rσ(µQν)
σ

which implies the following
Theorem 3. If gαβ is an Einstein metric, i.e. Rµν = λgµν , then Kµ is a Killing vectorfield.
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Let us restrict ourselves to four-dimensional manifold (n = 4). The Hodge-dual of Qµν defined as
follows

∗Qκλ =
1
2
εκλ

µνQµν .

gives also a two-form. Multiplying CYK equation

Qλκ;σ + Qσκ;λ =
2

n− 1
(
gσλKκ − gκ(λKσ)

)

by 1
2εαβλκ we get:

∗Qαβ;σ =
2
3
gσ[αχβ] +

1
3
εαβσκKκ , (7)

where χµ := ∗Qν
µ;ν and Kµ = Qν

µ;ν . Multiplying the above equality by 1
2εµναβ , we obtain a similar

formula:

Qµν;σ =
2
3
gσ[µKν] −

1
3
εµνσβχβ . (8)

Finally, symmetrization of indices α and σ in (7) gives:

∗Qαβ;σ + ∗Qσβ;α =
2
3

(
gσαχβ − gβ(αχσ)

)
,

which implies the following
Theorem 4. Qµν is a CYK tensor iff ∗Qµν is a CYK tensor.
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Pullback of CYK tensor to submanifold of codimension one

Let N be a differential manifold of dimension n + 1 and
(n+1)
g its metric tensor (the signature of the

metric plays no role). Moreover, we assume that there exists a coordinate system (xA), where

A = 0, . . . , n, in which
(n+1)
g takes the following form:

(n+1)
g = f(u)h + sdu2, (9)

where s is equal to 1 or −1, u ≡ xn, f is a certain function, and h is a certain tensor, which does not
depend on u. The metric (9) possesses a conformal Killing vector field

√
f∂u. Tensor f(u)h is a

metric tensor on a submanifold M := {u = const.}. We will denote it by
(n)
g. We will distinguish all

objects associated with the metric
(n)
g by writing (n) above their symbols. Similar notation will be used

for objects associated with the metric
(n+1)
g .

It turns out that:
Theorem 5. If Q is a CYK tensor of the metric

(n+1)
g in N , then its pullback to the submanifold M is a

CYK tensor of the metric
(n)
g.
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Theorem 5 we apply to (anti-)de Sitter spacetime:

Let N be a five-dimensional differential manifold with a global coordinate system (yA). We define the
metric tensor η on the manifold N by the formula:

η = ηABdyA ⊗ dyB = (10)

sdy0 ⊗ dy0 + dy1 ⊗ dy1 + dy2 ⊗ dy2 + dy3 ⊗ dy3 − dy4 ⊗ dy4

Let M̃ be a submanifold of N defined by:

ηAByAyB = sl2. (11)

The metric η restricted to M̃ is just the (anti-)de Sitter metric.
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For s = 1 a parametrization of M̃ takes the following form:

y0 = l
√

1− r̄2 cosh t̄, (12)

y1 = lr̄ sin θ cos φ, (13)

y2 = lr̄ sin θ sin φ, (14)

y3 = lr̄ cos θ, (15)

y4 = l
√

1− r̄2 sinh t̄. (16)

If s = −1, the analogous formulae are the following:

y0 = l
√

1 + r̄2 cos t̄, (17)

y1 = lr̄ sin θ cos φ, (18)

y2 = lr̄ sin θ sinφ, (19)

y3 = lr̄ cos θ, (20)

y4 = l
√

1 + r̄2 sin t̄. (21)

Let us notice that functions l, t̄, r̄, θ and φ can be considered as the local coordinate system on N .
Substituting formulae (12)–(16) or (17)–(21) into definition (10) of the metric η we get:

η = sdl2 + l2
[
(−1 + sr̄2)dt̄2 +

1
1− sr̄2

dr̄2 + r̄2dΩ2

]
. (22)
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Identifying the (anti-)de Sitter spacetime with the submanifold M̃ enables one to find all Killing vector
fields of the metric g̃. The vector fields

LAB := yA
∂

∂yB
− yB

∂

∂yA

(where yA := ηAByB) are the Killing fields of the metric η.
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For s = 1 we get:

L40 = − ∂

∂ t̄
, (23)

Li4 =
xi

√
1− r̄2

cosh t̄
∂

∂ t̄
+

√
1− r̄2 sinh t̄

∂

∂xi
, (24)

Li0 = − xi

√
1− r̄2

sinh t̄
∂

∂ t̄
−

√
1− r̄2 cosh t̄

∂

∂xi
, (25)

Lij = xi ∂

∂xj
− xj ∂

∂xi
, (26)

where in the coordinate system on N instead of spherical coordinates r̄, θ, φ we use Cartesian
xk := yk

l = r̄nk, k = 1, 2, 3.
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If s = −1 in coordinate system (l, t̄, xk) we have:

L40 =
∂

∂ t̄
, (27)

Li4 =
xi

√
1 + r̄2

cos t̄
∂

∂ t̄
+

√
1 + r̄2 sin t̄

∂

∂xi
, (28)

Li0 = − xi

√
1 + r̄2

sin t̄
∂

∂ t̄
+

√
1 + r̄2 cos t̄

∂

∂xi
, (29)

Lij = xi ∂

∂xj
− xj ∂

∂xi
. (30)

It is easy to notice that those fields are tangent to M̃ and therefore their restrictions to the submanifold
are Killing fields of the induced metric. The fields defined on N as well as their restrictions to M̃ will
be denoted by the same symbol LAB . Restricting the fields LAB to M̃ we get 10 linearly independent
Killing fields of the metric g̃. This is the maximum number of the independent Killing fields the
four-dimensional metric can have, so LAB span the space of the Killing fields of the metric g̃.
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Asymptotic anti-de Sitter spacetime

For asymptotic analysis let us change the radial coordinate in the anti-de Sitter metric as follows

z :=
l

r +
√

r2 + l2
, r̄ =

r

l
=

1− z2

2z
,

which implies that

g̃AdS =
l2

z2

[
dz2 −

(
1 + z2

2

)2

dt̄2 +
(

1− z2

2

)2

dΩ2

]
. (31)

The above particular form of g̃AdS is well adopted to the so-called conformal compactification. More
precisely, the metric g on the interior M̃ of a compact manifold M with boundary ∂M is said to be
conformally compact if g ≡ Ω2g̃ extends continuously (or with some degree of smoothness) as a
metric to M , where Ω is a defining function for the scri I = ∂M , i.e. Ω > 0 on M̃ and Ω = 0,
dΩ &= 0 on ∂M . In the case of AdS metric (31) we have

gAdS = Ω2g̃AdS, where Ω :=
z

l
.
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Four-dimensional asymptotic AdS spacetime metric g̃ assumes in canonical coordinates the following
form:

g̃ = g̃µνdzµ ⊗ dzν =
l2

z2

(
dz ⊗ dz + habdza ⊗ dzb

)
(32)

and the three-metric h obeys the following asymptotic condition:

h = habdza ⊗ dzb =
(0)

h + z2
(2)

h + z3χ + O(z4) . (33)

Let us observe that the term χ vanishes for the pure AdS given by (31). Moreover, the terms
(0)

h and
(2)

h
have the standard form

(0)

h =
1
4
(dΩ2 − dt̄2) , (34)

(2)

h = −1
2
(dΩ2 + dt̄2) . (35)
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For generalized (asymptotically locally) anti-de Sitter spacetimes tensors
(0)

h and
(2)

h need not to be
conformally “trivial”, i.e. in the form (34) and (35) respectively. Such more general situation has been
considered e.g. by Anderson, Chruściel, Graham, Skenderis. Let us stress that in the general case only

the induced metric
(0)

h may be changed freely beyond the conformal class,
(2)

h is always given by

(2)

h ab =
1
4

(0)

h abR
(

(0)

h

)
−Rab

(
(0)

h

)
. (36)

Moreover,
(0)

h and χ form a symplectic structure on conformal boundary.
However, we assume the standard asymptotic AdS: The induced metric h on I is in the conformal
class of the “Einstein static universe”, i.e.

(0)

h = exp(ω)(dΩ2 − dt̄2) (37)

for some smooth function ω. This implies that our I is a timelike boundary.
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Functions yA given by equations (17–21) and restricted to M̃ can be expressed in coordinate system
(zµ) ≡ (z0, z1, z2, z3) ≡ (t̄, θ,φ, z) as follows

y0 = Ω−1 1 + z2

2
cos t̄ , (38)

yk = Ω−1 1− z2

2
nk , (39)

y4 = Ω−1 1 + z2

2
sin t̄ , (40)

where k = 1, 2, 3, and

n :=





sin θ cos φ

sin θ sin φ

cos θ





is a radial unit normal in Euclidean three-space (identified with a point on a unit sphere parameterized
by coordinates (θ,φ)).
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Let us denote a (constant in ambient space) CYK tensor in AdS spacetime by

[AB]Q̃ := ldyA ∧ dyB .

Coordinates yA restricted to M̃ , given by equations (38–40), lead to the following explicit formulae for
two-forms [AB]Q̃:

[04]Q̃ =
1
4
Ω−3(1− z4)dt̄ ∧ dz , (41)

[jk]Q̃ =
1
4
Ω−3

[
(1− z4)(njdnk − nkdnj) ∧ dz (42)

+ z(1− z2)2dnj ∧ dnk
]
,

[0k]Q̃ =
1
4
Ω−3

[
(1− z2)2 cos t̄dnk ∧ dz + nk(1 + z2)2 sin t̄dt̄ ∧ dz (43)

+ z(1− z4) sin t̄dnk ∧ dt̄
]
,

[4k]Q̃ =
1
4
Ω−3

[
(1− z2)2 sin t̄dnk ∧ dz − nk(1 + z2)2 cos t̄dt̄ ∧ dz (44)

− z(1− z4) cos t̄dnk ∧ dt̄
]
.
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Finally, for the dual two-forms ∗Q̃ we have

∗[04]Q̃ =
(

1− z2

2Ω

)3

sin θdθ ∧ dφ , (45)

∗[jk]Q̃ =
1 + z2

2Ω3
dt̄ ∧

[
znldz − 1− z4

4
dnl

]
εjkl , (46)

∗[0i]Q̃ =
1− z2

2Ω3

[(
1− z4

4
cos t̄dt̄ + z sin t̄dz

)
∧ njdnk (47)

− 1− z4

8
sin t̄dnj ∧ dnk

]
εijk ,

∗[4i]Q̃ =
1− z2

2Ω3

[
z cos t̄ njdnk ∧ dz − sin t̄

(
1− z4

4

)
njdnk ∧ dt̄ (48)

+cos t̄

(
1− z4

8

)
dnj ∧ dnk

]
εijk ,

where

εijk :=






+1 if ijk is an even permutation of 1, 2, 3

−1 if ijk is an odd permutation of 1, 2, 3

0 in any other cases

.
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According to Theorem 1 for conformally rescaled metric gAdS we get conformally related CYK tensors
Q := Ω−3Q̃. Their boundary values at conformal infinity I := {z = 0} take the following form:

[04]Q
∣∣
z=0

=
1
4
dt̄ ∧ dz , (49)

[jk]Q
∣∣
z=0

=
1
4
(njdnk − nkdnj) ∧ dz , (50)

[0k]Q
∣∣
z=0

=
1
4

(
cos t̄dnk ∧ dz + nk sin t̄dt̄ ∧ dz

)
, (51)

[4k]Q
∣∣
z=0

=
1
4

(
sin t̄dnk ∧ dz − nk cos t̄dt̄ ∧ dz

)
. (52)

When we define charges associated with CYK tensors, it will be clear that (49) corresponds to the total energy
and (50) to the angular momentum. From this point of view CYK tensors (51-52) correspond to the linear
momentum and static moment.
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Similarly, for dual conformally related CYK tensors ∗Q := Ω−3 ∗ Q̃ we obtain the following boundary
values at conformal infinity:

∗[04]Q
∣∣
z=0

=
1
8

sin θdθ ∧ dφ , (53)

∗[jk]Q
∣∣
z=0

=
1
8
εjkidni ∧ dt̄ , (54)

∗[0i]Q
∣∣
z=0

=
1
8
εijk

[
cos t̄dt̄ ∧ njdnk − 1

2
sin t̄dnj ∧ dnk

]
, (55)

∗[4i]Q
∣∣
z=0

=
1
8
εijk

[
1
2

cos t̄dnj ∧ dnk − sin t̄ njdnk ∧ dt̄

]
. (56)
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We denote by (zM ) the coordinates on a unit sphere (M = 1, 2, z1 = θ, z2 = φ) and by γMN the
round metric on a unit sphere:

dΩ2 = γMNdzMdzN = dθ2 + sin2 θdφ2 .

Let us also denote by εMN a two-dimensional skew-symmetric tensor on S2 such that sin θεθφ = 1.
Boundary values for Killing vector fields LAB at I are:

L40

∣∣
z=0

=
∂

∂ t̄
, Ljk

∣∣
z=0

= εjklε
NMnl

,M
∂

∂zN
, L12

∣∣
z=0

=
∂

∂φ
, (57)

Li0

∣∣
z=0

= cos t̄γ−1(dni)− sin t̄ni ∂

∂ t̄
, (58)

Li4

∣∣
z=0

= sin t̄γ−1(dni) + cos t̄ni ∂

∂ t̄
. (59)

Together with (49-52) and (31) they lead to the following universal formula:

[AB]Q =
(0)

h (LAB) ∧ dz , (60)

where LAB := ηACηBDLCD. Similarly,

∗[AB]Q = LAB(vol(
(0)

h ) , (61)

where vol(
(0)

h ) :=

√
−det

(0)

h dt̄ ∧ dθ ∧ dφ is a canonical volume three-form on I .
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We have constructed all solutions to CYK equation in AdS (and de-Sitter) spacetime
via pullback technique from five-dimensional flat ambient space.

The relation between Killing vector fields L and CYK tensors Q has been examined.
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CYK

tensor

Q

!!
!
!
!

conformal Killing

vector

K

!!

spin-2

field
W """"""

Maxwell

field
F ""

energy-

momentum

tensor

T "" conserved

current

closed

two-form

F∗F

closed

three-form

two-surface

integral

!!

three-surface

integral

!!

electric & magnetic

charge

energy & momentum

on initial surface

LINEAR BILINEAR
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Let us define the following quantity:

H(Q) :=
l

32π

∫

C
Ω−1Fµν(Q)dSµν . (62)

For ACYK tensor Q̃ in asymptotic AdS spacetime the corresponding quantity H(Q) is conserved, i.e.
does not depend on the choice of spherical cut C. In particular, for the conformal Killing vector field L

and Q(L) given by (60) the conserved charge H(Q(L)) may be expressed in terms of electric part of
Weyl tensor and takes the following form Ashtekar:

H(Q(L)) = − l

16π

∫

C
Ω−1Ea

bL
bdSa . (63)

In the Schwarzschild-AdS spacetime

ds2 = −
(

r2

l2
+ 1− 2m

r

)
dt2 +

(
r2

l2
+ 1− 2m

r

)−1

dr2 + r2dΩ2 (64)

for the Killing vector

L =
∂

∂t
= l−1 ∂

∂ t̄
= l−1∂0 (65)

definition (62) gives (minus) mass:

H(Q(L)) = − 1
16π

∫

C
Ω−1Ea

0dSa =
3l

16π

∫

C
χ0

0

√
−det

(0)

h dθdφ = −m. (66)
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Obviously, the same value −m we obtain for Kerr-AdS metric. Moreover, in the Kerr-AdS spacetime
for L = ∂

∂φ we obtain the angular momentum:

H(Q(L)) = − l

16π

∫

C
Ω−1Ea

φdSa =
3l2

16π

∫

C
χ0

φ

√
−det

(0)

h dθdφ = ma . (67)

Let us observe that our conserved quantity H(Q(L)) in terms of the symplectic momenta πab at I

takes the following form:

H(Q(L)) = − 1
16π

∫

C
π0

bL
bdθdφ , (68)

which is in the same A.D.M. form as the usual linear or angular momentum at spatial infinity in
asymptotically flat spacetime.

Remark: In general case, when
(0)

h is not conformally flat, it may happen that one obtains asymptotic
charge which is no longer conserved — Bondi-like phenomena.
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The “topological” charge one can try to define as follows:

H(∗Q(L)) =
l

32π

∫

S2
Ω−1Fµν(∗Q)dSµν = − l

16π

∫

S2
Ω−1Ba

bL
bdSa .

We want to stress that, in general, we can meet problems with finding spherical cuts of I . Hence the
choice of a domain of integration for the corresponding two-form Ω−1Fµν(∗Q)dSµν has to be
carefully analyzed. In NUT-AdS spacetime a conformal boundary I equipped with the metric

(0)

h =
1
4

[
dΩ2 −

(
dt̄− 4l̄ sin2 θ

2
dφ

)2
]

(69)

is a non-trivial bundle over S2 – two-dimensional sphere. However, for L given by (65), when the
above formula pretends to define “dual mass” charge, we have

−Ω−1Ba
bL

bdSa = −1
l
Ω−1Ba

0dSa (70)

=
1
2

√
−det

(0)

h
[
β0

0dθ ∧ dφ + dt̄ ∧ (βφ
0dθ − βθ

0dφ)
]

= 2l̄ sin θdθ ∧ dφ . (71)

Let us notice that the resulting two-form projects uniquely on the base manifold which is a
two-dimensional sphere.
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Finally we have

2H(∗Q(L)) =
l

16π

∫

S2
4l̄ sin θdθdφ = ll̄ = l

which confirms that we can interpret the NUT parameter l as a dual mass charge.

The construction of global charges in General Relativity has a long history. In the case of
asymptotically flat spacetime (asymptotically Minkowskian) the concept of asymptotic CYK tensor led
to the strong asymptotic flatness condition at spatial infinity and to the construction of charges in terms
of the Weyl tensor which are free from supertranslation ambiguity contrary to the ”superpotentials”
based on asymptotic Killing vector fields. There might be similar phenomena for the case of
asymptotic AdS. In particular, formulae (60-61) give a hint – the relation between asymptotic KVF and
asymptotic CYK tensor which is used to define conserved quantity. Moreover, the universal definition
(62) may survive for weaker asymptotics (like in the asymptotically flat case) and for the case when
the constructed charge is no longer conserved similarily to Bondi-like phenomena at null infinity.
Moreover, CYK tensor enables one to introduce topological charge (magnetic one) which is
gravitational analog(ue) of magnetic monopole in electrodynamics.
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