$$
\begin{aligned}
& \text { String Phenomenology '09 } \\
& \text { Warsaw, 15-19 June } 2009
\end{aligned}
$$

On mass hierarchies in Orientifolds

Elias Kiritsis

University of Crete

Collaborators

Work done in collaboration with P. Anastasopoulos and A. Lionetto (U. of Roma II)

- On mass hierarchies in orientifold vacua.: e-Print: arXiv:0905.3044 [hepth]

Introduction

- The most obvious puzzle in the Standard model is associated with the masses and mixings of fermions.
- The masses span 15 orders of magnitude (from the lightest neutrino to the top quark).
- The mixings tend to decrease with rising masses.
- Their origin (and overall scale) is linked to the Higgs (or whatever breaks the electroweak symmetry) except maybe neutrinos.
- The ratios are unexplained so far.
- Their specific pattern is crucially linked to the richness of the physics as we observe it.

The Goal

- To investigate which mechanisms can provide a mass hierarchy in orientifolds
- To establish, what type of SM embedding can accommodate such mechanisms

Mechanisms for mass hierarchies

- Several mechanisms have been proposed to explain (parts of) the mass hierarchy of the SM.
- Radiative mechanisms

Weinberg 1972, Zee 1980

- Texture zeros

Fritsch 1977, Weiberg 1977, Wilczek+Zee 1978,Ramond+Roberts+Ross 1993

- Family symmetries

Harari+Haut+Wengers 1978, Froggat+Nielsen 1979, Ibanez+Ross 1994

- Seesaw mechanism
© Mechanisms are not easy always to separate: for example texture zeros \leftrightarrow family symmetries

Can the mechanisms work in string theory?

Little is known, as rarely the issue of the determination of masses is taken up.

- They include making a generation heavier by using high order couplings in the potential for the rest.

Antoniadis+Leontaris+Rizos 1990, Farangi 1992, Antoniadis+Rizos+Tamvakis 1992

- The use of anomalous $U(1)$'s was advocated at the field theory context

Irges + Lavignac + Ramond 1998

- A form of Froggat-Nielsen mechanism was implemented recently in Ftheory
- The see-saw mechanism was implemented in the heterotic case

Antoniadis+Rizos+Tamvakis 1992, Giedt+Kane+Langacker+Nelson 2005

- New mechanisms have been advocated using (world-sheet) instantons to influence masses

Cremades+Ibanez+Marchesano 2003

- and small neutrino masses by mixing with large-dimension $K K$ states Antoniadis+Kiritsis+Rizos+Tomaras 2002

Bottom-up SM model building and orientifolds

- Orientifolds have been an ideal arena for the implementation of bottomup approaches to model building

Anroniadis+Kiritsis+Tomaras 2000, Aldazabal+Ibanez+Quevedo+Uranga 2000

- They allow a modular and algorithmic search/construction procedure that is well tuned to obtain desired features of spectra.
- They contain relatively large numbers of $U(1)$ gauge symmetries that are superficially anomalous, providing quasi-global symmetries that may produce hierarchical interactions.
- This is a blessing when it comes to forbidding unwanted couplings like baryon and lepton number violating interactions or μ terms.
- It can be a curse when they forbid Yukawa couplings for heavy quarks and leptons.
- An anomalous $U(1)$ is one that becomes massive by mixing with an axion. It may or may not have anomalies
- It is always broken by non-perturbative effects: defects that couple to the axion that mixes with the gauge boson. (In tune with absence of global symmetries)
- Non-perturbative effects may leave a discrete symmetry behind (as it happens in standard gauge theories).
- In the present context, such a discrete symmetry can play the role of R-symmetry

Which hierarchy mechanisms do not work

- Orientifolds provide important constraints in implementing standard mechanisms for the hierarchy of masses
- The basic reason is that charge assignments must follow the open string algorithm.
- This makes family symmetry implementation radically different from what has been studied so far (because Q cannot be charged)
- The same applies to texture zeros as all approaches consider hermitian setup (not compatible with similarity of Qs).
- The Frogatt-Nielsen mechanism is at odds with the restricted charge assignments in orientifolds

Which hierarchy mechanisms can work

- Absence of tree level Yukawa's because of (anomalous) $U(1)$ symmetries
- Generation of such couplings from instanton effects: possibility of exponential suppression
- Generation of forbidden couplings at higher order in the superpotential via vevs of appropriate scalar fields
- Use of (slightly broken) discrete symmetries of the compactification manifold

The algorithm

- For a given bottom up configuration of the form $U(3)_{a} \times U(2)_{b} \times U(1)_{c} \times$ $U(1) d$, we study the allowed Yukawa couplings
- We choose D-brane configurations that allow only one U quark and one D quark to get a mass (out of all six). We name these the top and bottom quark.
© This is not strictly necessary: For the third generation we can generate the all masses at the right scale via tree level Yukawas

Antoniadis+Kiritsis+Rizos+Tomaras 2002

- We add a scalar Φ between the $U(1)$ branes, give it a vev $\langle\Phi\rangle$ to generate further mass terms.
- All other mass terms are generated by instantons with Yukawa couplings $h_{i} e^{-S}$. Instantons with the same charge structure are assumed to have the same exponential factors (restrictive).
- The overall mass scales are $\left\langle H_{u}\right\rangle,\left\langle H_{d}\right\rangle,\langle\Phi\rangle, M_{s} e^{-S_{i}}$. Typically, one instanton factor is relevant. They are fit at will, as there is no serious constraint on their values.
- The coefficients are assumed to be dimensionless numbers in the range [0.1-0.5] (adhoc, perturbativity constraint).

The
three types of mass generating terms: The configuration A allows for a Yukawa term. However, in the B and C cases no Yukawa terms can be generated. In the B case there is a higher order term due to the presence of a field Φ, while in the C case there is a contribution from an instanton term E_{2}.

Quark Mass matrices

$$
\begin{gathered}
M_{1}=\left(\begin{array}{lll}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right) \quad, \quad M_{2}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y}
\end{array}\right) \sim\left(\begin{array}{ccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\hline \mathcal{Y} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{Y} & \mathcal{Y} & \mathcal{Y}
\end{array}\right) \\
M_{3}=\left(\begin{array}{l|l|l}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\hline \mathcal{Z} & \mathcal{U} & \mathcal{U} \\
\mathcal{Z} & \mathcal{U} & \mathcal{U}
\end{array}\right), \quad M_{4}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z}
\end{array}\right) \quad, \quad M_{5}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\mathcal{U} & \mathcal{V} & \mathcal{W}
\end{array}\right)
\end{gathered}
$$

$\mathcal{X}, \mathcal{Y}, \mathcal{Z}, \mathcal{U}, \mathcal{V}, \mathcal{W}$ denotes terms of the same type, either Yukawa, higherdimension or instantonic terms.

- $1,2,4$ are relevant when Q have same charges. This is the case when $U(2)_{b} \rightarrow S P(2)_{b}$
- The pattern says that two quark masses out of the three are zero (small).

Lepton Mass matrices

- In the lepton sector, in addition to the previous mass matrices we can also have vacua where all the entries in the mass matrix are different:

$$
M_{6}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\hline \mathcal{R} & \mathcal{S} & \mathcal{T}
\end{array}\right)
$$

- This is because there are less constraints on the charge of the lepton sector.

Three stack models

There are two possible hypercharge embeddings

For the "SU(5)-like hypercharge embedding $Y=-\frac{1}{3} Q_{\mathrm{a}}-\frac{1}{2} Q_{\mathrm{b}}$, the only possible form for both quark mass matrices M_{U} and M_{D} is

$$
M_{1}=\left(\begin{array}{ccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right)
$$

For "SU(5)-like hypercharge embedding $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}$, there are two different possible charge assignments for the d-quarks allowing the corresponding mass matrix to be of the form

$$
M_{1}=\left(\begin{array}{ccc}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right) \quad, \quad M_{2}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y}
\end{array}\right)
$$

Four-stack models

- For AKT embeddings $Y=-\frac{1}{3} Q_{\mathrm{a}}-\frac{1}{2} Q_{\mathrm{b}}+Q_{\mathrm{d}}$ or $Y=\frac{2}{3} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{b}}+Q_{\mathrm{c}}$, both M_{U}, M_{D} can be of the form M_{1} or M_{2}
- The same is true for $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}-\frac{3}{2} Q_{\mathrm{d}}$, or $Y=-\frac{1}{3} Q_{\mathrm{a}}-\frac{1}{2} Q_{\mathrm{b}}$
- For the Madrid embedding $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}-\frac{1}{2} Q_{\mathrm{I}}^{\mathrm{d}}$ an quark mass matrices can be $M_{U} \sim\left(M_{1}, M_{2}, M_{3}\right)$ and $M_{D} \sim\left(M_{1} \cdots M_{5}\right)$

$$
\begin{gathered}
M_{1}=\left(\begin{array}{lll}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\mathcal{X} & \mathcal{X} & \mathcal{X}
\end{array}\right) \quad, \quad M_{2}=\left(\begin{array}{c|cc}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Y}
\end{array}\right) \sim\left(\begin{array}{lll|l}
\mathcal{X} & \mathcal{X} & \mathcal{X} \\
\hline \mathcal{Y} & \mathcal{Y} & \mathcal{Y} \\
\mathcal{Y} & \mathcal{Y} & \mathcal{Y}
\end{array}\right) \\
M_{3}=\left(\begin{array}{l|l|l|l}
\mathcal{X} & \mathcal{Y} & \mathcal{Y} \\
\hline \mathcal{Z} & \mathcal{U} & \mathcal{U} \\
\mathcal{Z} & \mathcal{U} & \mathcal{U}
\end{array}\right), \quad M_{4}=\left(\begin{array}{c|c|c}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\mathcal{X} & \mathcal{Y} & \mathcal{Z}
\end{array}\right), \quad M_{5}=\left(\begin{array}{l|l|l}
\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\
\hline \mathcal{U} & \mathcal{V} & \mathcal{W} \\
\mathcal{U} & \mathcal{V} & \mathcal{W}
\end{array}\right)
\end{gathered}
$$

Example I

There are 8 bottom up configurations (including the CP Charges) that have maximal freedom.

- Here is an example with $V_{u}, V_{d}, M_{s}, v_{\Phi_{1}}=\frac{\left\langle\Phi_{1}\right\rangle}{M_{s}}, v_{\Phi_{2}} \frac{\left\langle\Phi_{2}\right\rangle}{M_{s}}, E_{1}, E_{2}, E_{3}, E_{4}, E_{5}$
$M_{U}=V_{u}\left(\begin{array}{lll}1 & v_{\Phi_{1}} & v_{\Phi_{1}} \\ E_{1} & E_{2} & E_{2} \\ E_{1} & E_{2} & E_{2}\end{array}\right), M_{D}=V_{d}\left(\begin{array}{lll}1 & v_{\Phi_{2}} & v_{\Phi_{2}} \\ E_{1} & E_{3} & E_{3} \\ E_{1} & E_{3} & E_{3}\end{array}\right), M_{L}=V_{d}\left(\begin{array}{lll}E_{4} & v_{\Phi_{1}} & 1 \\ E_{4} & v_{\Phi_{1}} & 1 \\ E_{4} & v_{\Phi_{1}} & 1\end{array}\right)$

$$
M_{N}=\left(\begin{array}{llllll}
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{2} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{2} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5} \\
V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{2} & M_{s} E_{5} & M_{s} E_{5} & M_{s} E_{5}
\end{array}\right)
$$

Correct eigenvalues are obtained with

$$
V_{u} \sim m_{t}, \quad, \quad V_{d} \sim m_{b} \quad, \quad E_{1} \sim E_{2} \sim m_{c} / m_{t} \quad, \quad E_{3} \sim E_{4} \sim m_{s} / m_{b}
$$

$$
v_{\phi_{1}} \sim m_{u} / m_{t} \quad, \quad v_{\phi_{2}} \sim m_{d} / m_{b}
$$

and $E_{5} \sim 0.6-0.7$ for $M_{s} \leq 10^{12} \mathrm{GeV}$, or $E_{5} \sim 10^{-7}$ if $M_{s} \sim M_{G U T}$.

- The mixing turns out to have the right magnitude

$$
\begin{gathered}
\mathrm{CKM}(1 \mathrm{TeV})=\left(\begin{array}{rrr}
0.970 & 0.240 & 0.007 \\
0.240 & 0.970 & 0.013 \\
0.010 & 0.011 & 0.999
\end{array}\right) \\
U_{\nu}=\left(\begin{array}{rrr}
-0.42-0.23 i & -0.53+0.38 i & -0.19-0.54 i \\
0.69-0.21 i & -0.34+0.10 i & -0.55+0.17 i \\
0.20-0.44 i & 0.65 & -0.16-0.55 i
\end{array}\right)
\end{gathered}
$$

- Similar results apply for large values of the string scale

Branes at a Z_{3} singularity

- Z_{3} acts on the doublet-triplets but not on the antiquarks that correspond to strings ending on other branes.
- The matrix of up and down quarks has the form $M_{4}=\left(\begin{array}{c|c|c}\mathcal{X} & \mathcal{Y} & \mathcal{Z} \\ \mathcal{X} & \mathcal{Y} & \mathcal{Z} \\ \mathcal{X} & \mathcal{Y} & \mathcal{Z}\end{array}\right)$
- We must break the Z_{3} by moving-off the orbifold point
- We use a basis $v_{0}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \quad, \quad v_{+}=\frac{1}{\sqrt{6}}\left(\begin{array}{r}2 \\ -1 \\ -1\end{array}\right) \quad, \quad v_{-}=\frac{1}{\sqrt{2}}\left(\begin{array}{r}0 \\ 1 \\ -1\end{array}\right)$
- v_{+}has eigenvalue +1 under the action of reflection while v_{-}has eigenvalue -1 . We may now parameterize a general mass matrix as

$$
\sum_{i j} A_{i j} v_{i} \otimes v_{j} \quad, \quad i, j=0, \pm \quad, \quad M_{i j}=\epsilon^{i-1} A_{i j}
$$

so there is hierarchical breaking of the symmetries (Z_{3} and reflection)

$$
M M^{\dagger}=B_{i j} \epsilon^{(i+j-2)} \quad, \quad B=A A^{T}
$$

with eigenvalues ($\epsilon \ll 1$)

$$
\begin{gathered}
m_{0}^{2}=B_{00}+\mathcal{O}\left(\epsilon^{2}\right) \quad, \quad m_{1}^{2}=\frac{\left(B_{00} B_{++}-B_{0+}^{2}\right)^{2}}{B_{00}} \epsilon^{2}+\mathcal{O}\left(\epsilon^{4}\right) \\
m_{2}^{2}=\frac{(\operatorname{det} B)}{\left(B_{00} B_{++}-B_{0+}^{2}\right)^{2}} \epsilon^{4}+\mathcal{O}\left(\epsilon^{6}\right)
\end{gathered}
$$

- We generate a natural hierarchy of the masses if for up quarks $\epsilon_{u}=\lambda^{4}$ while for the down-type quarks $\epsilon_{d}=\lambda^{2}$ with $\lambda \simeq 0.22$.

The associated unitary matrix that diagonalizes the mass matrix is

$$
U=\left(\begin{array}{ccc}
1-\frac{a^{2}}{2} \epsilon^{2} & a \epsilon & b \epsilon^{2} \\
-a \epsilon & 1-\frac{a^{2}+c^{2}}{2} \epsilon^{2} & c \epsilon \\
(a c-b) \epsilon^{2} & -c \epsilon & 1-\frac{c^{2}}{2} \epsilon^{2}
\end{array}\right)
$$

both for up and down quarks.

- The CKM matrix is:

$$
\begin{aligned}
V_{C K M}= & U_{U}^{\dagger} U_{D}=\left(\begin{array}{ccc}
1+a_{d} a_{u} \epsilon_{d} \epsilon_{u} & a_{d} \epsilon_{d}-a_{u} \epsilon_{u} & -a_{u} c_{d} \epsilon_{d} \epsilon_{u} \\
a_{u} \epsilon_{u}-a_{d} \epsilon_{d} & 1+\left(a_{d} a_{u}+c_{d} c_{u}\right) \epsilon_{d} \epsilon_{u} & c_{d} \epsilon_{d}-c_{u} \epsilon_{u} \\
-a_{d} c_{u} \epsilon_{d} \epsilon_{u} & c_{u} \epsilon_{u}-c_{d} \epsilon_{d} & 1+c_{d} c_{u} \epsilon_{d} \epsilon_{u}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{4} a_{d}^{2} & \lambda^{2} a_{d}-\lambda^{4} a_{u} & \lambda^{4} b_{d} \\
\lambda^{4} a_{u}-\lambda^{2} a_{d} & 1-\frac{1}{2} \lambda^{4}\left(a_{d}^{2}+c_{d}^{2}\right) & \lambda^{2} c_{d}-\lambda^{4} c_{u} \\
\lambda^{4}\left(a_{d} c_{d}-b_{d}\right) & \lambda^{4} c_{u}-\lambda^{2} c_{d} & 1-\frac{1}{2} \lambda^{4} c_{d}^{2}
\end{array}\right)
\end{aligned}
$$

- If now we assume $a_{u} \ll 1, c_{d} \ll 1$ and in addition $a_{d} \sim 5, b_{d} \sim 1, c_{u} \sim$ 10 , the CKM becomes:

$$
V_{C K M}=\left(\begin{array}{ccc}
1-\frac{1}{2} \lambda^{4} a_{d}^{2} & \lambda^{2} a_{d} & \lambda^{4} b_{d} \\
-\lambda^{2} a_{d} & 1-\frac{1}{2} \lambda^{4} a_{d}^{2} & -\lambda^{4} c_{u} \\
\lambda^{4}\left(a_{d} c_{d}-b_{d}\right) & \lambda^{4} c_{u} & 1
\end{array}\right)=\left(\begin{array}{ccc}
0.970 & 0.242 & 0.0023 \\
-0.242 & 0.970 & -0.023 \\
-0.0023 & 0.023 & 1
\end{array}\right)
$$

- This is in absolute value close to the data.

Outlook and Open problems

- Traditional mechanism for mass hierarchies do not apply in orientifolds.
- A hybrid of anomalous $U(1)$ symmetries, appropriate charges, higher order Yukawa couplings, and the see-saw mechanism can generate the full hierarchy of the SM model (under optimal conditions)
- A similar goal can be achieved by taking advantage of Z_{3} discrete symmetries present near Z_{3} singularities in the compactification manifold.
- A search for SM embedding with the optimal spectra in interesting (and under way).

Five stack models

- There are 23 distinct hypercharge embeddings
- 12 of them have either M_{U} or M_{D} or both on them of the form M_{1}.
- 8 of them have either M_{U} or M_{D} or both on them of the form M_{1} or M_{2}.

The remaining three are the most interesting ones where the mass matrices M_{U} and M_{D} can have at least three scales:

- For $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}-\frac{1}{2} Q_{\mathrm{d}}-\frac{3}{2} Q_{\mathrm{e}}$ and $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}-\frac{1}{2} Q_{\mathrm{d}}, M_{U}$ can be of the form $\left(M_{1} \cdots M_{3}\right)$ while M_{D} can be of the form $\left(M_{1} \cdots M_{5}\right)$.
- For the "Madrid-like" 5 stacks extension: $Y=\frac{1}{6} Q_{\mathrm{a}}+\frac{1}{2} Q_{\mathrm{c}}+\frac{1}{2} Q_{\mathrm{d}}+\frac{1}{2} Q_{\mathrm{e}}$, both M_{U} and M_{D} can be of the form $\left(M_{1} \cdots M_{5}\right)$.

Example I: addedum

$$
\begin{gathered}
\operatorname{CKM}\left(10^{12} \mathrm{GeV}\right)=\left(\begin{array}{rrr}
0.974 & 0.221 & 0.020 \\
0.221 & 0.975 & 0.003 \\
0.019 & 0.007 & 0.999
\end{array}\right) \\
\mathrm{U}_{\nu}\left(10^{12} \mathrm{GeV}\right)=\left(\begin{array}{rrr}
0.56-0.47 i & 0.05-0.01 i & 0.66+0.06 i \\
-0.47+0.36 i & 0.42-0.25 i & 0.61+0.09 i \\
0.29-0.01 i & 0.86 & -0.31-0.24 i
\end{array}\right) \\
\mathrm{CKM}\left(\wedge_{G U T}\right)=\left(\begin{array}{rrr}
0.971 & 0.235 & 0.017 \\
0.235 & 0.971 & 0.002 \\
0.017 & 0.001 & 0.999
\end{array}\right) \\
\mathrm{U}_{\nu}\left(\wedge_{G U T}\right)=\left(\begin{array}{rrr}
-0.38-0.32 i & 0.11-0.44 i & 0.20+0.24 i \\
0.19+0.14 i & -0.05+0.67 i & 0.33+0.54 i \\
0.0 .12 i
\end{array}\right) \\
\text { RETURN }
\end{gathered}
$$

Example II

$$
\begin{gathered}
M_{L}=V_{d}\left(\begin{array}{llll}
v_{\Phi_{2}} & 1 & 1 \\
1 & v_{\Phi_{1}} & v_{\Phi_{1}} \\
1 & v_{\Phi_{1}} & v_{\Phi_{1}}
\end{array}\right) \\
M_{N} \sim\left(\begin{array}{llllll}
0 & 0 & 0 & V_{u} E_{1} & V_{u} E_{1} & V_{u} E_{1} \\
0 & 0 & 0 & V_{u} E_{2} & V_{u} E_{2} & V_{u} E_{2} \\
0 & 0 & 0 & V_{u} E_{2} & V_{u} E_{2} & V_{u} E_{2} \\
V_{u} E_{1} & V_{u} E_{2} & V_{u} E_{2} & M_{s} E_{4} & M_{s} E_{4} & M_{s} E_{4} \\
V_{u} E_{1} & V_{u} E_{2} & V_{u} E_{2} & M_{s} E_{4} & M_{s} E_{4} & M_{s} E_{4} \\
V_{u} E_{1} & V_{u} E_{2} & V_{u} E_{2} & M_{s} E_{4} & M_{s} E_{4} & M_{s} E_{4}
\end{array}\right)
\end{gathered}
$$

M_{s}	V_{u}	V_{d}	$v_{\Phi_{1}}$	$v_{\Phi_{2}}$	E_{1}	E_{2}	E_{3}	E_{4}
1 TeV	644000	8920	0.62	0.34	1.66×10^{-6}	0.0008	0.003	0.35
$10^{12} \mathrm{GeV}$	452960	3160	0.53	0.52	1.54×10^{-6}	0.0006	0.004	3×10^{-9}
$\wedge_{G U T}$	378800	2440	0.56	0.55	1.32×10^{-6}	0.0006	0.004	5×10^{-14}

$$
\mathrm{CKM}(1 \mathrm{TeV})=\left(\begin{array}{lll}
0.973 & 0.229 & 0.003 \\
0.229 & 0.972 & 0.042 \\
0.006 & 0.041 & 0.999
\end{array}\right)
$$

in agreement with data and

$$
\begin{array}{r}
\text { Uneutrino Mixing }=\left(\begin{array}{rrr}
0.484+0.118 i & 0.166-0.687 i & -0.486-0.117 i \\
0.294+0.643 i & 0.001 & 0.295+0.642 i \\
-0.5 i & 0.707 & 0.5 i
\end{array}\right) \\
\operatorname{CKM}\left(\wedge_{G U T}\right)=\left(\begin{array}{rrr}
0.973 & 0.228 & 0.003 \\
0.228 & 0.972 & 0.042 \\
0.006 & 0.041 & 0.999
\end{array}\right)
\end{array}
$$

$$
U_{\text {Neutrino Mixing }}\left(\wedge_{G U T}\right)=\left(\begin{array}{rrr}
-0.43-0.11 i & 0.76-0.06 i & 0.05-0.46 i \\
-0.07-0.34 i & -0.18-0.59 i & 0.70 \\
0.82 & 0.13-0.11 i & 0.02-0.54 i
\end{array}\right)
$$

Masses in KST vacua

The spectrum is

$$
\begin{array}{lllllll}
Q_{1}, Q_{2}, Q_{3} & : & (1,+1,0,0) \\
U_{1}^{c} & : & (-1,0,-1,0) & U_{2}^{c} U_{3}^{c} & : & (-1,0,0,-1) \\
D_{1}^{c} & : & (-1,0,+1,0) & D_{2}^{c} D_{3}^{c} & : & (-1,0,0,+1) \\
L_{1}^{c} & : & (0,+1,0,-1) & L_{2}^{c} L_{3}^{c} & : & (0,+1,-1,0) \\
E_{1}^{c}, E_{2}^{c}, E_{3}^{c} & : & (0,0,+1,+1) \\
N_{1}^{c} & : & (0,0,-1,+1) & N_{2}^{c}, N_{3}^{c} & : & \left(\begin{array}{lll}
0 & 0, & 0,0
\end{array}\right) \\
\text { Kiritsis+Sčhellekens+Tsulaia } 2008
\end{array}
$$

The two MSSM Higgses are described by

$$
H_{u}:(0,-1,+1,0) \quad, \quad H_{d}:(0,+1,-1,0)
$$

The quark mass matrices for this vacuum are:

$$
M_{U}=V_{u}\left(\begin{array}{ccc}
1 & 1 & E_{1}^{*} \\
1 & 1 & E_{1}^{*} \\
1 & 1 & E_{1}^{*}
\end{array}\right) \quad, \quad M_{D}=V_{d}\left(\begin{array}{ccc}
1 & 1 & E_{1} \\
1 & 1 & E_{1} \\
1 & 1 & E_{1}
\end{array}\right)
$$

- the lepton and neutrino mass matrices are given by:

$$
\begin{gathered}
M_{L}=V_{d}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
E_{1} & E_{1} & E_{1}
\end{array}\right) \\
M_{N}=\left(\begin{array}{llllll}
0 & 0 & 0 & V_{u} & V_{u} E_{1}^{*} & V_{u} E_{1}^{*} \\
0 & 0 & 0 & V_{u} & V_{u} E_{1}^{*} & V_{u} E_{1}^{*} \\
0 & 0 & V_{u}^{2} / M_{s} & V_{u} E_{1} & V_{u} & V_{u} \\
V_{u} & V_{u} & g_{31} V_{u} E_{1} & M_{s} E_{1}^{2} & M_{s} E_{1} & M_{s} E_{1} \\
V_{u} E_{1}^{*} & V_{u} E_{1}^{*} & V_{u} & M_{s} E_{1} & M_{s} & M_{s} \\
V_{u} E_{1}^{*} & V_{u} E_{1}^{*} & V_{u} & M_{s} E_{1} & M_{s} & M_{s}
\end{array}\right)
\end{gathered}
$$

- We obtain

M_{s}	V_{u}	V_{d}	E_{1}
1 TeV	644000	2230	2.191
$10^{12} \mathrm{GeV}$	452960	3160	3.429
$\wedge_{G U T}$	378800	2440	3.245

- The corresponding CKM matrices:

$$
\begin{gathered}
\text { CKM }(1 \mathrm{TeV})=\left(\begin{array}{lll}
0.727 & 0.444 & 0.522 \\
0.554 & 0.755 & 0.350 \\
0.403 & 0.481 & 0.777
\end{array}\right) \\
\text { CKM }\left(10^{12} \mathrm{GeV}\right)=\left(\begin{array}{lll}
0.825 & 0.533 & 0.184 \\
0.496 & 0.841 & 0.214 \\
0.269 & 0.085 & 0.959
\end{array}\right) \\
\mathrm{CKM}\left(\wedge_{G U T}\right)=\left(\begin{array}{lll}
0.662 & 0.543 & 0.515 \\
0.554 & 0.675 & 0.486 \\
0.503 & 0.498 & 0.705
\end{array}\right)
\end{gathered}
$$

CKM (Data)

$\operatorname{CKM}($ Data $)=$

$=\left(\begin{array}{r}0.97419 \pm 0.00022 \\ 0.2256 \pm 0.0010 \\ 0.00874_{-0.00037}^{+0.00026}\end{array}\right.$
$\left.\begin{array}{rr}0.2257 \pm 0.0010 & 0.00359 \pm 0.00016 \\ 0.97334 \pm 0.00023 & 0.0415 \pm 0.001 \\ 0.0407 \pm 0.0010 & 0.999133_{-0.000043}^{+0.000044}\end{array}\right)$

Detailed plan of the presentation

- Title page 0 minutes
- Collaborators 1 minutes
- Introduction 3 minutes
- The Goal 4 minutes
- Mechanisms for mass hierarchies 6 minutes
- Can the mechanisms work in string theory? 8 minutes
- Bottom-up SM model building and orientifolds 11 minutes
- Which hierachy mechanisms do not work 13 minutes
- Which hierachy mechanisms do work 15 minutes
- The algorithm 18 minutes
- Quark Mass matrices 20 minutes
- Lepton Mass matrices 20 minutes
- Three-stack models 22 minutes
- Four-stack Models 24 minutes
- Example I 28 minutes
- Branes at a Z_{3} singularity 32 minutes
- Outlook 33 minutes
- Five-stack Models 35 minutes
- Example I: addedum 37 minutes
- Example II 39 minutes
- Masses in KST vacua 41 minutes
- CKM (Data) 41 minutes

