Effective equations of motion on the brane in higher order dilaton gravity

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

String Pheno - Warsaw, 18 June 2009

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

Outline

introduction

higher order dilaton gravity

effective brane equations

cosmological example

higher order & conclusions

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

what if 'some' extra dimensions existed ...

- currently observed 4 space-time dimensions
 - Einstein equations of motion
 - Einstein-Hilbert action
 - \rightarrow linear in Riemann tensor
- higher-dimensional space-times
 - → additional higher curvature terms can be considered
- introducing higher powers of Riemann tensor into the gravity action
 Einstein theory of gravity generalized
- ▶ for a given order in the Riemann tensor
 - ightarrow contribution to the action unique (overall normalization)
 - quadratic contribution: Gauss-Bonnet (Lanczos) term
 - generalized to higher orders by Lovelock

what if 'some' extra dimensions existed

- currently observed 4 space-time dimensions
 - Einstein equations of motion
 - Einstein-Hilbert action
 - \rightarrow linear in Riemann tensor
- higher-dimensional space-times
 - \leadsto additional higher curvature terms can be considered
- introducing higher powers of Riemann tensor into the gravity action
 - \rightsquigarrow Einstein theory of gravity generalized
- for a given order in the Riemann tensor
 - \rightarrow contribution to the action unique (overall normalization)
 - quadratic contribution: Gauss-Bonnet (Lanczos) term
 - generalized to higher orders by Lovelock

string theory behind the scenes?

- effective action obtained from string theories

 higher derivative corrections to the gravity interactions
- first correction exactly of the form of the Gauss-Bonnet term
 ± local field redefinitions
- dilaton: scalar field of the gravitational sector
- $\blacktriangleright \ \alpha'$ expansion in the string theories
 - → higher order corrections also for the dilaton interactions

string theory behind the scenes?

- effective action obtained from string theories

 higher derivative corrections to the gravity interactions
- first correction exactly of the form of the Gauss-Bonnet term
 ± local field redefinitions
- dilaton: scalar field of the gravitational sector
- α' expansion in the string theories
 - \rightsquigarrow higher order corrections also for the dilaton interactions

Dominika Konikowska

Outline

introduction

higher order dilaton gravity

effective brane equations

cosmological example

higher order & conclusions

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

construction of the dilaton gravity equations of motion

- Einstein-Lovelock higher order gravity
 - → couple to the dilaton
- ► *N*-th order dilaton gravity equations of motion: $T^{(N)}_{\mu\nu} = 0 \& W^{(N)} = 0$ \rightsquigarrow constructed
 - at each order: unique up to a normalization
- ► E-L theory generalized → higher order dilaton gravity

Dominika Konikowska

some useful notation

a generalization of the Kronecker delta

$$\delta^{\sigma_1 \sigma_2 \cdots \sigma_N}_{\rho_1 \rho_2 \cdots \rho_N} = \det \begin{vmatrix} \delta^{\sigma_1}_{\rho_1} & \delta^{\sigma_1}_{\rho_2} & \cdots & \delta^{\sigma_1}_{\rho_N} \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ \delta^{\sigma_N}_{\rho_1} & \delta^{\sigma_N}_{\rho_2} & \cdots & \delta^{\sigma_N}_{\rho_N} \end{vmatrix}$$

a generalization of the trace operator

$$\mathcal{T}(M) = \delta_{\rho_1 \rho_2 \cdots \rho_N}^{\sigma_1 \sigma_2 \cdots \sigma_N} M^{\rho_1 \rho_2 \cdots \rho_N} \sigma_1 \sigma_2 \cdots \sigma_N$$

an extension of the trace operator

$$\overline{\mathcal{T}}_{\mu}^{\nu}(M) = \delta_{\mu \rho_1 \rho_2 \cdots \rho_N}^{\nu \sigma_1 \sigma_2 \cdots \sigma_N} M^{\rho_1 \rho_2 \cdots \rho_N} \sigma_1 \sigma_2 \cdots \sigma_N$$

Dominika Konikowska

some useful notation \rightarrow example

and a generalization of the N-th power operator

$$\begin{split} \mathcal{T}\left(\left[\frac{1}{2}\mathcal{R}^{**}_{**}\oplus 2(\nabla\nabla)^*_*\phi\right]^2\right) = \\ &= \frac{1}{4}\mathcal{T}\left(\mathcal{R}^{**}_{**}\mathcal{R}^{**}_{**}\right) + 2\mathcal{T}\left(\mathcal{R}^{**}_{**}(\nabla\nabla)^*_*\phi\right) + 4\mathcal{T}\left((\nabla\nabla)^*_*\phi(\nabla\nabla)^*_*\phi\right) = \\ &= \frac{1}{4}\delta^{\sigma_1\sigma_2\sigma_3\sigma_4}_{\rho_1\rho_2\rho_3\rho_4}\mathcal{R}^{\rho_1\rho_2}_{\sigma_1\sigma_2}\mathcal{R}^{\rho_3\rho_3}_{\sigma_3\sigma_4} + \\ &+ 2\delta^{\sigma_1\sigma_2\sigma_3}_{\rho_1\rho_2\rho_3}\mathcal{R}^{\rho_1\rho_2}_{\sigma_1\sigma_2}\left(\nabla^{\rho_3}\partial_{\sigma_3}\phi\right) + \\ &+ 4\delta^{\sigma_1\sigma_2}_{\rho_1\rho_2}\left(\nabla^{\rho_1}\partial_{\sigma_1}\phi\right)\left(\nabla^{\rho_2}\partial_{\sigma_2}\phi\right) \end{split}$$

- ▶ asterisks → tensors ranks
- shorthand: $(\nabla \nabla)^{\rho}_{\sigma} \equiv \nabla^{\rho} \partial_{\sigma}$

(just acquired) starting point: d-dimensional higher order dilaton gravity

• *d*-dimensional tensor $T_{\mu\nu} = 0$ and scalar W = 0 equations of motion

$$-\sum_{N=1}^{N_{max}} \frac{\alpha_N}{2} \,\overline{\mathcal{T}}_{\mu\nu} \left(\left[\frac{1}{2} \mathcal{R}_{**}^{**} \oplus 2(\nabla \nabla)_*^* \phi \oplus (-1)(\partial \phi)^2 \right]^N \right) + g_{\mu\nu} \, V(\phi) - \tau_{\mu\nu} \delta_B = 0$$

$$-\sum_{N=1}^{N_{max}} \frac{\alpha_N}{2} \mathcal{T}\left(\left[\frac{1}{2}\mathcal{R}^{**}_{**} \oplus 2(\nabla\nabla)^*_*\phi \oplus (-1)(\partial\phi)^2\right]^N\right) + V(\phi) - V'(\phi) - \tau_{\phi}\delta_B = 0$$

- position of the brane: Dirac delta type distribution δ_B
- ► brane localized terms: $\tau_{\mu\nu} = h_{\mu\nu}\mathcal{L}_B 2\frac{\delta\mathcal{L}_B}{\delta h^{\mu\nu}}$ & $\tau_{\phi} = \mathcal{L}_B \frac{\delta\mathcal{L}_B}{\delta \phi}$ due to the brane interactions given by \mathcal{L}_B
- induced brane metric: $h_{\mu\nu} = g_{\mu\nu} n_{\mu}n_{\nu}$
 - n^µ: unit vector field normal to the brane (at the brane)
- corresponding Lagrangian density

$$\mathcal{L} = e^{-\phi} \left\{ -V(\phi) + \mathcal{L}_{B}\delta_{B} + \sum_{N=1}^{N_{max}} \frac{\alpha_{N}}{2} \mathcal{T}\left(\left[\frac{1}{2} \mathcal{R}_{**}^{**} \oplus 2(\nabla \nabla)_{*}^{*} \phi \oplus (-1)(\partial \phi)^{2} \right]^{N} \right) \right\}$$

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

Outline

introduction

higher order dilaton gravity

effective brane equations

cosmological example

higher order & conclusions

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

where to?

- brane-world ideology: standard model localized on a brane
 - \rightarrow embedded in higher dimensional space-time
 - ~ how will the induced gravity look like on the brane?
- ► effective equations of motion: (*d* − 1)-dimensional
 - → simply restricting full *d*-dimensional equations? NO!
- ► certain quantities contributing to $T^{(N)}_{\mu\nu} = 0$ and $W^{(N)} = 0$... can be singular or discontinuous on the brane
 - singular: explicit Dirac delta contributions or discontinuous functions derivatives
 - ~ non-trivial derivation of effective equations on the brane
 - → will be carried out in COVARIANT APPROACH

where to?

- brane-world ideology: standard model localized on a brane
 - \rightarrow embedded in higher dimensional space-time
 - ~ how will the induced gravity look like on the brane?
- ► effective equations of motion: (*d* − 1)-dimensional
 - ~> simply restricting full d-dimensional equations? NO!
- certain quantities contributing to $T^{(N)}_{\mu\nu} = 0$ and $W^{(N)} = 0 \dots$ can be singular or discontinuous on the brane
 - singular: explicit Dirac delta contributions or discontinuous functions derivatives
 - ~ non-trivial derivation of effective equations on the brane

→ will be carried out in COVARIANT APPROACH

where to?

- brane-world ideology: standard model localized on a brane
 - \rightarrow embedded in higher dimensional space-time
 - ~ how will the induced gravity look like on the brane?
- ► effective equations of motion: (*d* − 1)-dimensional
 - ~> simply restricting full d-dimensional equations? NO!
- certain quantities contributing to $T^{(N)}_{\mu\nu} = 0$ and $W^{(N)} = 0 \dots$ can be singular or discontinuous on the brane
 - singular: explicit Dirac delta contributions or discontinuous functions derivatives
 - ~ non-trivial derivation of effective equations on the brane
 - → will be carried out in COVARIANT APPROACH

projecting: "parallel" & "perpendicular" to the brane

▶ identification in relevant tensors: benefits from $T\&\overline{T}$ antisymmetrization

$$\begin{aligned} \mathcal{R}_{**}^{**} &\to R_{**}^{**} - 2K_{*}^{*}K_{*}^{*} - 4(nn)_{*}^{*} \{\pounds_{n}K_{*}^{*} - (KK)_{*}^{*}\} - 8(nD)_{*}^{*}K_{*}^{*} \\ (\nabla\nabla)_{*}^{*}\phi &\to \left[(DD)_{*}^{*}\phi + K_{*}^{*}\pounds_{n}\phi \right] + (nn)_{*}^{*} \left\{ \pounds_{n}^{2}\phi - a^{\theta}\nabla_{\theta}\phi \right\} + \\ &+ 2\left[(nD)_{*}^{*}\pounds_{n}\phi - (nKD)_{*}^{*}\phi \right] \\ (\partial\phi)^{2} &= (D\phi)^{2} + (\pounds_{n}\phi)^{2} \end{aligned}$$

• $g_{\mu\nu}$: $\mathcal{R}^{\mu\nu}_{\rho\sigma}$ & ∇_{μ} vs $h_{\mu\nu}$: $R^{\mu\nu}_{\rho\sigma}$ & $D_{\mu\nu}$

- $K_{\mu\nu}$: extrinsic curvature of hypersurfaces orthogonal to n^{μ}
- \pounds_n : Lie derivative along n^{μ}
- $a^e \nabla_e \phi = n^a (\nabla_a n^b) (\nabla_b \phi)$ ('non-typical'; not present in final results)
- ▶ shorthand again: $(nn)^*_* \equiv n_*n^*$, $(DD)^*_* \equiv D_*D^*$, $(KK)^*_* \equiv K^*_X K^x_*$, $(nD)^*_* \equiv \frac{1}{2} (n_*D^* + n^*D_*)$, $(nKD)^*_* \equiv \frac{1}{2} (n_*K^*_X D^X + n^*K^X_* D_X)$

Dominika Konikowska

- the good
 - \rightarrow $h_{\mu\nu}, R_{\mu\nu}, (DD)_{\mu\nu}\phi, (D\phi)^2, V(\phi)$
 - \rightsquigarrow no work needed here, rejoice!
- the kind of bad
 - $\rightarrow K_{\mu\nu}, \mathcal{L}_n\phi$
 - \rightsquigarrow can be discontinuous when 'crossing' the brane
- and the slightly ugly
 - $\rightarrow \quad \pounds_n K_{\mu\nu}, \pounds_n^2 \phi$
 - \rightsquigarrow can be singular on the brane
 - \rightsquigarrow can have a finite contribution as well
- \rightsquigarrow all this information has to be properly taken into account

& the quest begins

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

- the good
 - \rightarrow $h_{\mu\nu}, R_{\mu\nu}, (DD)_{\mu\nu}\phi, (D\phi)^2, V(\phi)$
 - ∽→ no work needed here, rejoice!
- the kind of bad
 - $\rightarrow K_{\mu\nu}, \mathcal{L}_n\phi$

 \leadsto can be discontinuous when 'crossing' the brane

- and the slightly ugly
 - $\rightarrow \quad \pounds_n K_{\mu\nu}, \pounds_n^2 \phi$
 - \rightsquigarrow can be singular on the brane
 - \rightsquigarrow can have a finite contribution as well
- → all this information has to be properly taken into account

& the quest begins

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

- the good
 - \rightarrow $h_{\mu\nu}, R_{\mu\nu}, (DD)_{\mu\nu}\phi, (D\phi)^2, V(\phi)$
 - ∽→ no work needed here, rejoice!
- the kind of bad
 - $\rightarrow K_{\mu\nu}, \mathcal{L}_n\phi$
 - \leadsto can be discontinuous when 'crossing' the brane
- and the slightly ugly
 - $\rightarrow \mathcal{L}_n K_{\mu\nu}, \mathcal{L}_n^2 \phi$
 - \leadsto can be singular on the brane
 - \leadsto can have a finite contribution as well
- \rightsquigarrow all this information has to be properly taken into account

& the quest begins

Dominika Konikowska

- the good
 - \rightarrow $h_{\mu\nu}, R_{\mu\nu}, (DD)_{\mu\nu}\phi, (D\phi)^2, V(\phi)$
 - ∽→ no work needed here, rejoice!
- the kind of bad
 - $\rightarrow K_{\mu\nu}, \mathcal{L}_n\phi$
 - \rightsquigarrow can be discontinuous when 'crossing' the brane
- and the slightly ugly
 - $\rightarrow \mathcal{L}_n K_{\mu\nu}, \mathcal{L}_n^2 \phi$
 - \leadsto can be singular on the brane
 - \leadsto can have a finite contribution as well
- \rightsquigarrow all this information has to be properly taken into account

& the quest begins

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

- terms discontinuous on the brane (leading to singularities)
 - $\rightarrow K_{\mu\nu}, \pounds_n \phi$

→ *junction* (boundary) *conditions*

- terms singular on the brane
 - $\rightarrow \pounds_n K_{\mu\nu}, \pounds_n^2 \phi$
 - > purely singular contributions already addressed by the junction conditions
 - the smooth part has to be determined as well (yields a finite contribution to the effective equations)
 - → "brane limit of bulk equations system"
 - ▶ take scalar equation of motion & the trace of tensor equation of motion
 - \rightarrow "bulk equations system"
 - now the brane limit (i.e. evaluate 'next to the brane')
 - solve it

- terms discontinuous on the brane (leading to singularities)
 - $\rightarrow K_{\mu\nu}, \pounds_n \phi$

→ *junction* (boundary) *conditions*

- terms singular on the brane
 - $\rightarrow \pounds_n K_{\mu\nu}, \pounds_n^2 \phi$
 - purely singular contributions already addressed by the junction conditions
 - the smooth part has to be determined as well (yields a finite contribution to the effective equations)
 - → "brane limit of bulk equations system"
 - take scalar equation of motion & the trace of tensor equation of motion
 - \rightarrow "bulk equations system"
 - now the brane limit (i.e. evaluate 'next to the brane')
 - solve it

Dominika Konikowska

effective gravitational equations on the brane ...

- any order? complexity rather overwhelming
 - \rightsquigarrow *N* = 1 & *d* = 5 example
 - first order dilaton gravity
 - and a 4-dimensional brane
- higher order dilaton gravity: exactly the same procedure
 appropriate formulae derived just as well
 - explicit results? even fancy notation not always sufficient

Dominika Konikowska

effective gravitational equations ... bulk equations projected (N = 1)

• "parallel-parallel" part $T_{\mu\nu}^{\parallel\parallel} = 0$

$$\begin{split} \left[\left\{ R_{\mu\nu} + (DD)_{\mu\nu}\phi - \frac{h_{\mu\nu}}{2} \left(R + 2(DD)\phi - (D\phi)^2 \right) + h_{\mu\nu} \frac{V(\phi)}{\alpha_1} \right\} + \\ + \left\{ \left((KK)_{\mu\nu} - K_{\mu\nu} \left(K - \pounds_n \phi \right) \right) - \frac{h_{\mu\nu}}{2} \left((KK) - (K - \pounds_n \phi)^2 \right) \right\} + \\ - \left\{ \left(\pounds_n K_{\mu\nu} - (KK)_{\mu\nu} \right) - h_{\mu\nu} \left((h\pounds_n K) - (KK) \right) - h_{\mu\nu} \left(\pounds_n^2 \phi - a^e \nabla_e \phi \right) \right\} \right]_{\pm} = 0 \end{split}$$

Dominika Konikowska

addressing the discontinuities' problem: junction conditions

- junction conditions for a given point x_0^{μ} on the brane:
 - \rightarrow integrating the *d*-dimensional equations of motion 'across-the-brane'
 - i.e. in the direction perpendicular to the brane
 - ightarrow and shrinking the interval: 'infinitesimal across-the-brane integration'
- \blacktriangleright only some terms in the equations of motions \nrightarrow zero
 - explicit brane contributions proportional to δ_B
 - terms containing second Lie derivatives: $\pounds_n^2 \phi$ and $\pounds_n K_{\mu\nu}$
- useful notation
 - ▶ discontinuous at the brane \rightsquigarrow jump: $[f(x_0)]_{\pm} = [f(x_0)]_{+} [f(x_0)]_{-}$
 - ► "brane limits": [f(x₀)]₊, [f(x₀)]₋

addressing the discontinuities' problem: junction conditions

- junction conditions for a given point x_0^{μ} on the brane:
 - \rightarrow integrating the *d*-dimensional equations of motion 'across-the-brane'
 - i.e. in the direction perpendicular to the brane
 - ightarrow and shrinking the interval: 'infinitesimal across-the-brane integration'
- ► only some terms in the equations of motions → zero
 - explicit brane contributions proportional to δ_B
 - terms containing second Lie derivatives: $\pounds_n^2 \phi$ and $\pounds_n K_{\mu\nu}$
- useful notation
 - discontinuous at the brane \rightsquigarrow jump: $[f(x_0)]_{\pm} = [f(x_0)]_{+} [f(x_0)]_{-}$
 - ► "brane limits": [f(x₀)]₊, [f(x₀)]₋

addressing the discontinuities' problem: junction conditions

- junction conditions for a given point x_0^{μ} on the brane:
 - \rightarrow integrating the *d*-dimensional equations of motion 'across-the-brane'
 - i.e. in the direction perpendicular to the brane
 - ightarrow and shrinking the interval: 'infinitesimal across-the-brane integration'
- ► only some terms in the equations of motions → zero
 - explicit brane contributions proportional to δ_B
 - terms containing second Lie derivatives: $\pounds_n^2 \phi$ and $\pounds_n K_{\mu\nu}$
- useful notation
 - discontinuous at the brane \rightsquigarrow jump: $[f(x_0)]_{\pm} = [f(x_0)]_{+} [f(x_0)]_{-}$
 - ► "brane limits": [f(x₀)]₊, [f(x₀)]₋

junction conditions: $N = 1 \rightsquigarrow [\mathcal{K}_{\mu\nu}]_{\pm} \& [\pounds_n \phi]_{\pm}$ explicitly

- tensor junction condition (effectively from $T_{\mu\nu}^{\parallel\parallel} = 0$)
- scalar junction condition
- \leadsto easily solvable, jumps can be determined

$$\begin{split} \left[\mathcal{K}_{\mu\nu} \right]_{\pm} &= \frac{1}{\alpha_1} \Big(h_{\mu\nu} \tau_{\phi} - \tau_{\mu\nu} \Big) \\ \left[\pounds_n \phi \right]_{\pm} &= \frac{1}{\alpha_1} \Big((d-2) \tau_{\phi} - \tau \Big) \end{split}$$

however, no information whatsoever about the brane limits
 w unless ...

junction conditions: $N = 1 \& \mathbb{Z}_2 \rightsquigarrow [\mathcal{K}_{\mu\nu}]_+ \& [\mathcal{L}_n\phi]_+$ explicitly

 $\blacktriangleright \ \mathbb{Z}_2$ symmetry, brane located at the orbifold fixed point

 $\rightsquigarrow [f]_{\pm} = 2[f]_{+}$ if f is \mathbb{Z}_2 -odd, i.e. $[f]_{-} = -[f]_{+}$

 \leadsto brane limits can be determined

$$\begin{split} \left[\mathcal{K}_{\mu\nu} \right]_{+} &= \frac{1}{2\alpha_{1}} \Big(h_{\mu\nu} \tau_{\phi} - \tau_{\mu\nu} \Big) \\ \left[\pounds_{n} \phi \right]_{+} &= \frac{1}{2\alpha_{1}} \Big((d-2) \tau_{\phi} - \tau \Big) \end{split}$$

Dominika Konikowska

- terms singular on the brane
 - \rightarrow tend to appear in equations of motion in certain combinations

 $\rightarrow \{\pounds_n K_{\mu\nu} - (KK)_{\mu\nu}\}, \{\pounds_n^2 \phi - a^e \nabla_e \phi\}$

 \rightsquigarrow good occasion to get rid of $a^e \nabla_e \phi$ as well

- "brane limit of bulk equations system"
 - supposed to yield finite contributions to $\pounds_n K_{\mu\nu} \& \pounds_n^2 \phi$
 - a system of scalar equations ($W^{(N)} = 0$ and trace of $T^{(N)}_{\mu\nu} = 0$)
 - ▶ but $\pounds_n K_{\mu\nu}$ is a tensor variable... how come it can work? → yes, it can

$$\left\{ \pounds_{n} K_{\mu\nu} - (KK)_{\mu\nu} \right\} = \frac{h_{\mu\nu}}{d-1} \left\{ (h\pounds_{n} K) - (KK) \right\} - \frac{1}{d-3} (R_{\mu\nu} - KK_{\mu\nu} + (KK)_{\mu\nu}) + \frac{h_{\mu\nu}}{(d-1)(d-3)} (R - K^{2} + (KK)) - \frac{d-2}{d-3} E_{\mu\nu}$$

Dominika Konikowska

- terms singular on the brane
 - \rightarrow tend to appear in equations of motion in certain combinations

 $\rightarrow \{ \pounds_n K_{\mu\nu} - (KK)_{\mu\nu} \}, \{ \pounds_n^2 \phi - a^e \nabla_e \phi \}$

 \rightsquigarrow good occasion to get rid of $a^e \nabla_e \phi$ as well

- "brane limit of bulk equations system"
 - supposed to yield finite contributions to $\mathcal{L}_n K_{\mu\nu} \& \mathcal{L}_n^2 \phi$
 - a system of scalar equations ($W^{(N)} = 0$ and trace of $T^{(N)}_{\mu\nu} = 0$)
 - ▶ but $\pounds_n K_{\mu\nu}$ is a tensor variable... how come it can work? → yes, it can

$$\left\{ \mathcal{L}_{n}K_{\mu\nu} - (KK)_{\mu\nu} \right\} = \frac{h_{\mu\nu}}{d-1} \left\{ (h\mathcal{L}_{n}K) - (KK) \right\} - \frac{1}{d-3} (R_{\mu\nu} - KK_{\mu\nu} + (KK)_{\mu\nu}) + \frac{h_{\mu\nu}}{(d-1)(d-3)} (R - K^{2} + (KK)) - \frac{d-2}{d-3} E_{\mu\nu} \right\}$$

- terms singular on the brane
 - \rightarrow tend to appear in equations of motion in certain combinations

 $\rightarrow \{\pounds_n K_{\mu\nu} - (KK)_{\mu\nu}\}, \{\pounds_n^2 \phi - a^e \nabla_e \phi\}$

 \rightsquigarrow good occasion to get rid of $a^e \nabla_e \phi$ as well

- "brane limit of bulk equations system"
 - supposed to yield finite contributions to $\mathcal{L}_n K_{\mu\nu} \& \mathcal{L}_n^2 \phi$
 - a system of scalar equations ($W^{(N)} = 0$ and trace of $T^{(N)}_{\mu\nu} = 0$)
 - ▶ but $\mathcal{L}_n K_{\mu\nu}$ is a tensor variable... how come it can work? → yes, it can

$$\left\{ \pounds_{n} K_{\mu\nu} - (KK)_{\mu\nu} \right\} = \frac{h_{\mu\nu}}{d-1} \left\{ (h \pounds_{n} K) - (KK) \right\} - \frac{1}{d-3} (R_{\mu\nu} - KK_{\mu\nu} + (KK)_{\mu\nu}) + \frac{h_{\mu\nu}}{(d-1)(d-3)} (R - K^{2} + (KK)) - \frac{d-2}{d-3} E_{\mu\nu} \right\}$$

- $E_{\mu\nu} \equiv C_{abcd} h^a_{\mu} n^b h^c_{\nu} n^d$, where C_{abcd} : bulk Weyl tensor
 - $\rightsquigarrow E_{\mu\nu}$ enters $T_{\mu\nu}^{\parallel\parallel} = 0$

(so promising as effective gravitational equations on the brane) \rightarrow to never leave it

- treating $T_{\mu\nu}^{\parallel\parallel} = 0$ as effective gravitational equations on the brane ...
 - single bulk associated variable $E_{\mu\nu}$
 - \rightsquigarrow describes the permanent influence of bulk teory on brane-world gravity
 - not a closed system

 \rightsquigarrow bulk solutions essential to fully describe the gravity induced on the brane

- $E_{\mu\nu} \equiv C_{abcd} h^a_{\mu} n^b h^c_{\nu} n^d$, where C_{abcd} : bulk Weyl tensor
 - $\rightsquigarrow E_{\mu\nu}$ enters $T_{\mu\nu}^{\parallel\parallel} = 0$

(so promising as effective gravitational equations on the brane)

- \rightarrow to never leave it
- treating $T_{\mu\nu}^{\parallel\parallel} = 0$ as effective gravitational equations on the brane ...
 - single bulk associated variable $E_{\mu\nu}$
 - \rightsquigarrow describes the permanent influence of bulk teory on brane-world gravity
 - not a closed system
 - \rightsquigarrow bulk solutions essential to fully describe the gravity induced on the brane

bulk equations system: N = 1

two linear equations with two variables

 $g^{\mu
u}T_{\mu
u} = 0$ & W = 0

non-zero determinant

 $\rightsquigarrow \{(h\mathcal{L}_n\mathcal{K}) - (\mathcal{K}\mathcal{K})\} \text{ and } \{\mathcal{L}_n^2\phi - a^e \nabla_e \phi\} \text{ can be determined uniquely}$

• $\{\mathcal{L}_n \mathcal{K}_{\mu\nu} - (\mathcal{K}\mathcal{K})_{\mu\nu}\}$ to be calculated subsequently

effective gravitational equations on the brane: N = 1, d = 5, \mathbb{Z}_2

4-dimensional brane

embedded in a 5-dimensional space-time with \mathbb{Z}_2 symmetry

- ∽→ how shall we do it?
 - take $T_{\mu\nu}^{\parallel\parallel} = 0$
 - enter the solution of the brane limit of bulk equations system $\Rightarrow \{(h\mathcal{L}_n K) - (KK)\} \& \{\mathcal{L}_n^2 \phi - a^e \nabla_e \phi\} \& \{\mathcal{L}_n K_{\mu\nu} - (KK)_{\mu\nu}\}$
 - ▶ slightly readjust the relative $R_{\mu\nu}$ vs. *R* coefficient with $T^{\perp\perp} = 0$ \Rightarrow 'Einstein-like' form with the Einstein tensor $G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}R h_{\mu\nu}$
 - enter the result of junction conditions analysis

 $\rightsquigarrow [K_{\mu\nu}]_+ \& [\pounds_n\phi]_+$

effective gravitational equations on the brane: N = 1, d = 5, \mathbb{Z}_2

 \rightsquigarrow effective gravitational equations on the brane read

$$\begin{aligned} G_{\mu\nu} + E_{\mu\nu} + \frac{2}{3} \Big((DD)_{\mu\nu}\phi - h_{\mu\nu}(DD)\phi \Big) + \frac{1}{4}h_{\mu\nu}(D\phi)^2 + h_{\mu\nu}\frac{V(\phi)}{2\alpha_1} + \\ + \frac{1}{(2\alpha_1)^2} \Big[\frac{1}{3}\tau\tau_{\mu\nu} - (\tau\tau)_{\mu\nu} + h_{\mu\nu}\left(\frac{1}{2}(\tau\tau) - \frac{1}{12}\tau^2 - \frac{1}{2}\tau\tau_{\phi} + \frac{3}{4}\tau_{\phi}^2 \right) \Big] &= 0 \end{aligned}$$

Dominika Konikowska

Outline

introduction

higher order dilaton gravity

effective brane equations

cosmological example

higher order & conclusions

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

Friedmann equations in first order dilaton gravity

- the effective equations on the brane derived ... so what?
 - \rightsquigarrow let's see what can happen to the physics
- phenomenological applications to cosmology
 - → Friedmann equations modified / generalized
- ► standard cosmology ~→ FRW metric tensor ansatz → Friedmann equations are given by gravitational equations of motion
 - trace
 - (t,t) component
 - \leadsto let's just do the very same here

modified Friedmann equations: comments and complaints?

$$\begin{aligned} \frac{\ddot{a}}{a} + \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} - \frac{\dot{a}}{a}\dot{\phi} - \frac{1}{3}\ddot{\phi} + \frac{1}{6}\dot{\phi}^2 + \frac{1}{3\alpha_1}V(\phi) + \\ + \frac{1}{(4\alpha_1)^2} \left[-\frac{2}{3}(\tau_1^1)^2 - 2(\tau_4^4)^2 + \frac{4}{3}\tau_1^1\tau_{\phi} + 4\tau_4^4\tau_{\phi} - 2\tau_{\phi}^2 \right] &= 0 \\ \frac{\dot{a}^2}{a^2} + \frac{k}{a^2} - \frac{1}{3}E_1^1 - \frac{2}{3}\frac{\dot{a}}{a}\dot{\phi} + \frac{1}{12}\dot{\phi}^2 + \frac{1}{6\alpha_1}V(\phi) + \\ + \frac{1}{(4\alpha_1)^2} \left[\frac{1}{3}(\tau_1^1)^2 - \frac{2}{3}\tau_1^1\tau_4^4 - (\tau_4^4)^2 + \frac{2}{3}\tau_1^1\tau_{\phi} + 2\tau_4^4\tau_{\phi} - \tau_{\phi}^2 \right] = 0 \end{aligned}$$

- part with the scalar factor only: exactly the same
- however, there are obviously quite relevant differences
 - terms associated with dilaton appear, as well as mixing terms
 - \leadsto due to the introduction of the additional field interacting with graviton
 - terms quadratic in the brane localized terms
 - \rightsquigarrow a feature of higher-dimensional theories?
 - $E_{\mu\nu}$: influence of the original higher-dimensional theory
 - \leadsto on the effective 4-dimensional phenomenology

Dominika Konikowska

Outline

introduction

higher order dilaton gravity

effective brane equations

cosmological example

higher order & conclusions

Dominika Konikowska

University of Warsaw, Institute of Theoretical Physics

effective gravitational equations on the brane: arbitrary N

- derivation procedure for the effective gravitational equations on the brane
 - \rightarrow established
 - \rightarrow works fine, we've just seen the example of N = 1 & d = 5
- and what about higher orders?
 - ightarrow exactly the same procedure, namely
 - take $T_{\mu\nu}^{\parallel\parallel} = 0$
 - enter the solution of the brane limit of bulk equations system
 - $\rightsquigarrow \left\{ (h\pounds_n K) (KK) \right\} \& \left\{ \pounds_n^2 \phi a^e \nabla_e \phi \right\} \& \left\{ \pounds_n K_{\mu\nu} (KK)_{\mu\nu} \right\}$
 - enter the result of junction conditions analysis

 $\rightsquigarrow [K_{\mu\nu}]_+ \& [\pounds_n\phi]_+$

Dominika Konikowska

effective gravitational equations on the brane: arbitrary N

- derivation procedure for the effective gravitational equations on the brane
 - \rightarrow established
 - \rightarrow works fine, we've just seen the example of N = 1 & d = 5
- and what about higher orders?
 - \rightarrow exactly the same procedure, namely
 - take $T_{\mu\nu}^{\parallel\parallel} = 0$
 - enter the solution of the brane limit of bulk equations system

 $\rightsquigarrow \left\{ (h\pounds_n K) - (KK) \right\} \& \left\{ \pounds_n^2 \phi - a^e \nabla_e \phi \right\} \& \left\{ \pounds_n K_{\mu\nu} - (KK)_{\mu\nu} \right\}$

enter the result of junction conditions analysis

 $\rightsquigarrow [K_{\mu\nu}]_+ \& [\pounds_n \phi]_+$

Dominika Konikowska

conclusions

- starting point: higher order dilaton gravity
 - \rightarrow natural to consider in higher-dimensional space-times
 - ~ physically viable equations of motion: constructed
 - → appropriate lagrangian: presented
- effective gravitational equations on the brane (co-dimension 1)
 - \rightarrow derivation procedure for arbitrary order N: established
 - \rightsquigarrow details and results presented explicitly for N = 1 & d = 5
 - $\hookrightarrow \text{together with a } \textit{cosmological example}$