# Fixing D7 Brane Positions by F-Theory Fluxes 

# Christoph Lüdeling bctp and PI , University of Bonn 

A. Braun, A. Hebecker, CL, R. Valandro, Nucl.Phys.B815:256-287,2009 [arXiv:0811.2416 [hep-th]]

## Motivation

- F-Theory: Nonperturbative version of type IIB string theory [Vafa;Sen]
- Add two auxiliary dimensions, singularities of compactification manifold encode brane positions
- Recently, lots of interest in F-theory for model building interest
[Beasley,Heckman,Vafa;Saulina,Schäfer-Nameki;Bourjaily;Tatar,Watari. ...]
- Local models do not address global constraints like tadpole cancellation


## Motivation

- F-Theory: Nonperturbative version of type IIB string theory
[Vafa;Sen]
- Add two auxiliary dimensions, singularities of compactification manifold encode brane positions
- Recently, lots of interest in F-theory for model building interest [Beasley,Heckman,Vafa;Saulina,Schäfer-Nameki;Bourjaily;Tatar,Watari. ..]
- Local models do not address global constraints like tadpole cancellation
- Four-form flux can stabilise moduli, including brane positions
- Simple example: F-Theory on $K 3 \times \widetilde{K 3}$, where $\widetilde{K 3}$ is an elliptic fibration over $\mathbb{P}^{1} \quad$ [Görlich et al.;Lust et al.; Aspinwall,Kallosh;Dasgupta et al.]
- Includes as special case the type IIB orientifold $K 3 \times T^{2} / \mathbb{Z}_{2}$
[Angelantonj et al.]


## F-Theory/M-Theory Duality

| $\substack{\text { M-Theory } \\ \text { on } \\ X_{6} \times T^{2}}$ |  |
| :---: | :---: |
| one $S^{1}$ |  |
| Compactify <br> on <br> $X_{6} \times S_{A}^{1}$ | along $S_{A}^{1}$ |
| $T$-dualise | Type IIB <br> on <br> $X_{6} \times S_{B}^{1}$ <br> $\left(R_{B}=1 / R_{A}\right)$ |

## F-Theory/M-Theory Duality

| M-Theory <br> on <br> $X_{6} \times T^{2}$ |  |
| :---: | :---: |
| one $S^{1}$ |  |
| Compactify | Type IIA <br> on <br> $X_{6} \times S_{A}^{1}$ |
| along $S_{A}^{1}$ |  |$\xrightarrow{T \text {-dualise }}$

## Type IIB on $X_{6} \times S_{B}^{1}$ $\left(R_{B}=1 / R_{A}\right)$

$$
\begin{gathered}
R_{B} \rightarrow \infty \\
\left(R_{A} \rightarrow 0\right)
\end{gathered}
$$

Type IIB on $X_{6}$
Four noncompact dimensions

## F-Theory/M-Theory Duality

| M-Theory <br> on $X_{6} \times T^{2}$ | $\xrightarrow[\text { one } S^{1}]{\text { Compactify }}$ | Type IIA on $X_{6} \times S_{A}^{1}$ | $\xrightarrow[\text { along } S_{A}^{1}]{T \text {-dualise }}$ | $\begin{gathered} \text { Type IIB } \\ \text { on } \\ X_{6} \times S_{B}^{1} \\ \left(R_{B}=1 / R_{A}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |

Shrink one $S^{1}$

$$
\begin{aligned}
& R_{B} \rightarrow \infty \\
&\left(R_{A} \rightarrow 0\right)
\end{aligned}
$$

M-Theory on

$$
\begin{gathered}
X_{6} \times T^{2} \\
\operatorname{Vol}\left(T^{2}\right) \rightarrow 0
\end{gathered}
$$

Type IIB on $X_{6}$
Four noncompact dimensions

## F-Theory/M-Theory Duality

| M-Theory <br> on <br> $X_{6} \times T^{2}$ |
| :---: | :---: |
| one $S^{1}$ |
| Compactify |
| Type IIA <br> on <br> $X_{6} \times S_{A}^{1}$ |
| along $S_{A}^{1}$ |
| T-dualise |
| Type IIB <br> on <br> $X_{6} \times S_{B}^{1}$ <br> $\left(R_{B}=1 / R_{A}\right)$ |

Shrink one $S^{1}$

$$
\begin{aligned}
& R_{B} \rightarrow \infty \\
&\left(R_{A} \rightarrow 0\right)
\end{aligned}
$$

M-Theory on

$$
\begin{gathered}
X_{6} \times T^{2} \\
\operatorname{Vol}\left(T^{2}\right) \rightarrow 0
\end{gathered}
$$



Type IIB on $X_{6}$ Four noncompact dimensions

Fibrewise duality: $X_{6} \times T^{2} \rightsquigarrow$ elliptically fibred $\mathrm{CY}_{4}$ dual to type IIB on base of fibration

## K3: Calabi-Yau Two-Fold

- $H^{2}(K 3, \mathbb{R})$ has signature $(3,19)$
- Holomorphic two-form and Kähler form spanned by three real forms $\omega_{i}$ with $\omega_{i} \cdot \omega_{j}=\delta_{i j}$ and overall volume $\nu$ :

$$
\omega=\omega_{1}+\mathrm{i} \omega_{2} \quad j=\sqrt{2 \nu} \omega_{3}
$$

## K3: Calabi-Yau Two-Fold

- $H^{2}(K 3, \mathbb{R})$ has signature $(3,19)$
- Holomorphic two-form and Kähler form spanned by three real forms $\omega_{i}$ with $\omega_{i} \cdot \omega_{j}=\delta_{i j}$ and overall volume $\nu$ :

$$
\omega=\omega_{1}+\mathrm{i} \omega_{2} \quad j=\sqrt{2 \nu} \omega_{3}
$$

- K3 is hyperkähler, i.e. $S O(3)$ rotating the $\omega_{i} \rightsquigarrow$ geometry fixed by positive-norm three-plane $\Sigma \subset H^{2}(K 3, \mathbb{R})$ and $\nu$
- Moduli space has $3 \times 19+1=58$ dimensions
- Integral basis for $H^{2}(K 3)$ with intersection matrix $U \oplus U \oplus U \oplus\left(-E_{8}\right) \oplus\left(-E_{8}\right)$, where $U=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $E_{8}$ is
Cartan matrix of $E_{8}$
$\Rightarrow$ The $\omega_{i}$ must have components along the $U$ blocks, components along " $E_{8}$ directions" determine gauge group


## K3: Elliptic Fibration and F-Theory Limit

- For an elliptically fibred $K 3$, require integral cycles $B$ and $F$ (base and fibre) with
- intersection matrix $\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$
- $B \cdot \omega=F \cdot \omega=0$
$\Rightarrow(B, F)$ spans a $U$ block, and we can parametrise the Kähler form as

$$
j=b B+f F+c^{a} u_{a} \quad\left(\text { where } u_{a} \cdot \omega=0\right)
$$

## K3: Elliptic Fibration and F-Theory Limit

- For an elliptically fibred $K 3$, require integral cycles $B$ and $F$ (base and fibre) with
- intersection matrix $\left(\begin{array}{cc}-2 & 1 \\ 1 & 0\end{array}\right)$
- $B \cdot \omega=F \cdot \omega=0$
$\Rightarrow(B, F)$ spans a $U$ block, and we can parametrise the Kähler form as

$$
j=b B+f F+c^{a} u_{a} \quad\left(\text { where } u_{a} \cdot \omega=0\right)
$$

- F-theory limit: Fibre volume shrinks to zero $\Rightarrow b \rightarrow 0$. K3 volume is $\nu \sim b f-c^{a} c^{a}$, so we have to take $c^{a} \rightarrow 0$ as fast as $\sqrt{b}$ (as intuitively expected)
- In the limit, $j=f F$ is the Kähler form of the $\mathbb{P}^{1}$ base


## Cycles Between Branes



- One leg in the base, one in the fibre torus
- Shrink to zero when the branes are moved on top of each other.
- They are topologically a sphere $\leftrightarrow$ self-intersection -2 .
- Cycles meeting at a brane intersect once, cycles encircling O planes $(X)$ do not intersect


## Shrinking Cycles and Gauge Enhancement

Intersection matrix of shrinking cycles determines gauge group: Consider e.g. $T^{2} / \mathbb{Z}_{2}$ orientifold: One 07, four D7s $\rightsquigarrow S O(8)$


$$
\leadsto\left(\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 1 \\
0 & 1 & -2 & 0 \\
0 & 1 & 0 & -2
\end{array}\right)
$$

## Shrinking Cycles and Gauge Enhancement

 Intersection matrix of shrinking cycles determines gauge group: Consider e.g. $T^{2} / \mathbb{Z}_{2}$ orientifold: One O7, four D7s $\rightsquigarrow S O$ (8)

$$
\rightsquigarrow\left(\begin{array}{cccc}
-2 & 1 & 0 & 0 \\
1 & -2 & 1 & 1 \\
0 & 1 & -2 & 0 \\
0 & 1 & 0 & -2
\end{array}\right)
$$

In appropriate basis, complex structure of $\widetilde{K 3}$ is [Braun,Hebecker, Triend]]

$$
\omega=\frac{\alpha}{2}+u e_{2}+s \frac{\beta}{2}-\left(u s-\frac{z^{2}}{2}\right) e_{1}+z_{1} \widehat{E}_{1}
$$

## Shrinking Cycles and Gauge Enhancement

 Intersection matrix of shrinking cycles determines gauge group: Consider e.g. $T^{2} / \mathbb{Z}_{2}$ orientifold: One O7, four D7s $\rightsquigarrow S O$ (8)

In appropriate basis, complex structure of $\widetilde{K 3}$ is [Braun,Hebecker, Triend]]


## Shrinking Cycles and Gauge Enhancement

 Intersection matrix of shrinking cycles determines gauge group: Consider e.g. $T^{2} / \mathbb{Z}_{2}$ orientifold: One O7, four D7s $\rightsquigarrow S O$ (8)

In appropriate basis, complex structure of $\widetilde{K 3}$ is [Braun,Hebecker, Triend]]


Explicit mapping between complex structure and brane positions!

## Flux Potential

- Type IIB: Three-form flux $G_{3}$ on the bulk, two-form gauge flux $F_{2}$ on the branes can stabilise geometric and brane moduli
- In M-theory, these are combined into four-form flux $G_{4}$ (brane moduli become four-form geometric moduli)
- Consistency conditions
- Flux quantisation: flux needs to be integral
$\square$


## Flux Potential

- Type IIB: Three-form flux $G_{3}$ on the bulk, two-form gauge flux $F_{2}$ on the branes can stabilise geometric and brane moduli
- In M-theory, these are combined into four-form flux $G_{4}$ (brane moduli become four-form geometric moduli)
- Consistency conditions:
- Flux quantisation: flux needs to be integral
- Tadpole cancellation (without spacetime-filling M2 branes)

$$
\frac{1}{2} \int_{K 3 \times \widetilde{K 3}} G_{4} \wedge G_{4}=\frac{\chi}{24}=24
$$

- $G_{4}$ needs to have exactly one leg on each on base and fibre for Lorentz invariance, hence two on each K3: $G=G^{I \wedge} \eta_{I} \wedge \tilde{\eta}_{\wedge}$, but no flux along $B$ or $F$


## Potential

- Flux potential $(\mathcal{V}$ is the volume) :

$$
V=\frac{1}{4 \mathcal{V}^{3}}\left(\int_{K 3 \times \widetilde{K 3}} G \wedge * G-\frac{\chi}{12}\right)
$$

- $K 3 \times \widetilde{K 3}$ is not a proper $\mathrm{CY}_{4}$ : Holonomy is $S U(2) \times S U(2)$


## Potential

- Flux potential $(\mathcal{V}$ is the volume) :

$$
V=\frac{1}{4 \mathcal{V}^{3}}\left(\int_{K 3 \times \widetilde{K 3}} G \wedge * G-\frac{\chi}{12}\right)
$$

- $K 3 \times \widetilde{K 3}$ is not a proper $\mathrm{CY}_{4}$ : Holonomy is $S U(2) \times S U(2)$
- $G_{4}$ induces map $G: H^{2}(\widetilde{K 3}) \rightarrow H^{2}(K 3)$ and its adjoint $G^{a}$ by

$$
G \tilde{\eta}=\int_{\widetilde{K 3}} G \wedge \tilde{\eta} \quad G^{a} \eta=\int_{K 3} G \wedge \eta
$$

- Potential is concisely expressed in terms of these maps


## $K 3 \times K 3$ Flux Potential

$$
V=-\frac{1}{2(\nu \cdot \widetilde{\nu})^{3}}\left(\sum_{j}\left\|G \tilde{\omega}_{j}\right\|_{\perp}^{2}+\sum_{i}\left\|G^{a} \omega_{i}\right\|_{\Gamma}^{2}\right)
$$

Here $\|\cdot\|_{\perp}^{2}$ is the norm orthogonal to the three-plane

## $K 3 \times \widetilde{\text { K3 Flux Potential }}$

$$
V=-\frac{1}{2(\nu \cdot \widetilde{\nu})^{3}}\left(\sum_{j}\left\|G \tilde{\omega}_{j}\right\|_{\perp}^{2}+\sum_{i}\left\|G^{a} \omega_{i}\right\|_{\Gamma}^{2}\right)
$$

Here $\|\cdot\|_{\perp}^{2}$ is the norm orthogonal to the three-plane

- Positive definite potential
- Manifestly symmetric under $S O$ (3)
- Minima at $V=0$ :

$$
G \tilde{\omega}_{j} \in\left\langle\omega_{1}, \omega_{2}, \omega_{3}\right\rangle \quad G^{a} \omega_{i} \in\left\langle\tilde{\omega}_{1}, \tilde{\omega}_{2}, \tilde{\omega}_{3}\right\rangle
$$

- $\nu$ and $\widetilde{\nu}$ are unfixed, flat directions (when $V=0$ )


## Minima: Existence, Flat Directions

- Minkowski minima do not necessarily exist: $G^{a} G$ must be diagonalisable and positive semi-definite (not guaranteed although $G^{a} G$ is self-adjoint, since metric is indefinite!)
- Flat directions generally exist and are desired: M-theory moduli become part of 4D vector fields in F-theory limit $\rightsquigarrow$ fixing these moduli breaks the gauge group (rank-reducing)
- Flux also induces explicit mass term for three-dimensional vectors
- Vacua can preserve $\mathcal{N}=4, \mathcal{N}=2$ or $\mathcal{N}=0$ supersymmetry in four dimensions, depending on the action of $G$ on the three-plane


## Stabilisation Strategy

- F-theory limit fixes Kähler form (up to base volume), $j=f F$
- Holomorphic two-form determines shrinking cycles, i.e. gauge enhancement
- Identify set of shrinking cycles to obtain desired brane stacks
- Choose these as part of a basis of $H^{2}(\widetilde{K 3})$ and complete by
- Find an integral block-diagonal flux that satisfies tadpole cancellation condition (strong constraint and computationally


## Stabilisation Strategy

- F-theory limit fixes Kähler form (up to base volume), $j=f F$
- Holomorphic two-form determines shrinking cycles, i.e. gauge enhancement
- To stabilise a desired brane configuration:
- Identify set of shrinking cycles to obtain desired brane stacks
- Choose these as part of a basis of $H^{2}(\widetilde{K 3})$ and complete by integral cycles
- Find an integral block-diagonal flux that satisfies tadpole cancellation condition (strong constraint and computationally costly)


## Examples

We give explicit examples of

- The $T^{2} / \mathbb{Z}_{2}$ orientifold with $S O(8)^{4}$ : Four stacks of four D7 branes and one O7 plane each



## Examples

We give explicit examples of

- The $T^{2} / \mathbb{Z}_{2}$ orientifold with $S O(8)^{4}$ : Four stacks of four D7 branes and one O7 plane each

- Moving one brane off a stack. $\rightsquigarrow S O(8)^{3} \times S O(6) \times U(1)$ or $S O(8)^{3} \times S O(6)$



## Examples

We give explicit examples of

- The $T^{2} / \mathbb{Z}_{2}$ orientifold with $S O(8)^{4}$ : Four stacks of four D7 branes and one O7 plane each

- Moving one brane off a stack. $\rightsquigarrow S O(8)^{3} \times S O(6) \times U(1)$ or $S O(8)^{3} \times S O(6)$
- Moving two branes
$\rightsquigarrow S O(8)^{3} \times S O(4) \times S U(2)$



## Conclusion

- We have a nice geometric picture of D7 brane motion
- We found the flux potential in M-theory and explicit conditions for the existence of minima and gauge symmetry breaking
- Translation to F-theory $\Rightarrow$ recipe to find fluxes that stabilise a desired situation
- Explicit examples: We can move branes


## Conclusion

- We have a nice geometric picture of D7 brane motion
- We found the flux potential in M-theory and explicit conditions for the existence of minima and gauge symmetry breaking
- Translation to F-theory $\Rightarrow$ recipe to find fluxes that stabilise a desired situation
- Explicit examples: We can move branes
- Open problem: Numerical scan of matrices is very time-consuming
- Outlook: Generalise to elliptically fibred four-folds to get physically more realistic models, in particular intersecting branes

