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Count the number of consistent string vacua ➤
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Two (complementary) issues:

Count the number of consistent string vacua ➤
Vast landscape with                               vacua!                 
                

Nsol = 10
500−1500

(Kawai, Lewellen, Tye (1986); Lerche, Lüst, Schellekens (1986); 
Antoniadis, Bachas, Kounnas (1986); Douglas (2003))

Introduction:

● Can we view into the landscape?
 ⇒  information about other vacua?
● Can we by-pass the landscape?

⇒  look for green (promising) spots  

- model independent predictions?
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Outline

  ●  By-passing the landscape: 
       Stringy signatures at LHC

(The LHC string hunter’s companion)

  ●  Viewing into the landsape
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In general:  constraints on the landscape of effective    
        theories by consistent embedding in quantum gravity 

(swampland approach)

II) Viewing into the landscape:

a)  Bounds on the landscape from decays of black holes:

⇒  information on particle masses and vacuum 

expectation values in some vacua

b) Transitions between vacua due to domain walls:

⇒  information on life times of particle of some vacua

(Vafa et al.)

Need non-perturbative effects as telescopes:



(G. Dvali, arXiv:0706.2050; G. Dvali, D. Lüst, arXiv:0801.1287)

Consider a theory with N species of particles with mass M:

N < Nmax =

M2

Planck

M2

This bound must be satisfied in every effective string 
vacuum that is consistently coupled to gravity!

a) Bounds from black hole decays:

M: scale of new physics

E.g. if a scalar field in the effective potential gives mass to 
N particles via the Higgs effect: M = M(φ)

(A quantum black hole can emit at most  N      different   
 particles)

max

M(φ)2 <
M2

Planck

N
Warsaw, StringPheno 2009, 15. June 2009

 ⇒  Implications for inflation

(gravitational waves)!



E.g:

This bound gives also a possible  explanation of 
the hierarchy problem:

N = 10
32

=⇒ M < 10
−16

MPlanck " 1 TeV

M can be seen as the fundamental scale of gravity, which 
is diluted by the presence on the N particle species.
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E.g:

This bound gives also a possible  explanation of 
the hierarchy problem:

N = 10
32

=⇒ M < 10
−16

MPlanck " 1 TeV

M can be seen as the fundamental scale of gravity, which 
is diluted by the presence on the N particle species.

Is there a stringy realization
of the large N species scenario?

⇒  dramatic effects at the LHC.

Warsaw, StringPheno 2009, 15. June 2009
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These transitions are due to domain wall solutions that 
interpolate between different vacua.

E.g. from M4 to AdS4: !!

!"

!"#
" !

#$%

$%

b) Transitions between different vacua:

(Behnrdt, Cvetic; 
Ceresole, Dall‘Agata, Giryavets, Kallosh, Linde, hep-th/0605266; 

Kounnas, Lüst, Petropoulos, Tsimpis, arXiv:0707.4270;
Koerber, Lüst, Tsimpis, arXiv:0804.0614;

Haack, Lüst, Martucci, Tomasiello, arXiv:0905.1582;
Smyth, Vaula, arXiv:0905.1334)

Described by 
generalized geometry 
and flow equations:
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E.g. from M4 to AdS4: !!

!"

!"#
" !

#$%

$%

non-zero fluxes
zero 

fluxes

b) Transitions between different vacua:
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Haack, Lüst, Martucci, Tomasiello, arXiv:0905.1582;
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generalized geometry 
and flow equations:



Outline

  ●  By-passing the landscape: 
       Stringy signatures at LHC

(The LHC string hunter’s companion)

  ●  Viewing into the landsape

(D. Lüst, S. Stieberger, T. Taylor, arXiv:0807.3333; 
L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. Stieberger, T. Taylor, arXiv:0808.0497 
[hep-ph]; arXiv:0904.3547 [hep-ph]
D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, to appear)
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Strategy for string phenomenology:
Consider (only) those vacua that realize the Standard Model

II) By-passing the landscape by making 
model independent predictions:
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l

W±

q

(a) baryonic

U(2)

(d) leptonic

U(1)R

(c) right

(b) left

e

u, d

U(3)

U(1)L

g

Open string Standard Model Quiver, wrapped 
around internal p-cycles:

We consider type IIA/B orientifolds with 
intersecting D6/D7-branes:

Realization of the SM without chiral exotics!

HSSM

Warsaw, StringPheno 2009, 15. June 2009

(Baryon number is (anomalous) U(1) gauge symmetry!)

(Gmeiner, Honecker)

(Bachas (1995); Blumenhagen, Görlich, Körs, Lüst 
(2000); Angelantonj, Antoniadis, Dudas Sagnotti 
(2000); Ibanez,  Marchesano, Rabadan (2001); 

Cvetic, Shiu, Uranga (2001); ...)

(Review: Blumenhagen, Körs, Lüst, Stieberger, hep-th/0610327)
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U(1)L
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Open string Standard Model Quiver, wrapped 
around internal p-cycles:

We want to compute all n-point, g-loop string amplitudes 
of SM model open string fields.
So far:  n=4,5;   g=0 

We consider type IIA/B orientifolds with 
intersecting D6/D7-branes:

Realization of the SM without chiral exotics!

HSSM
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There are 3 basic mass scales in D-brane 
compactifications:

(1) : Ms =
1√
α′String scale:

(2) : M6 =
1

V 1/6
6

Compactification scale:

(3) : M‖
p =

1

(V ‖
p )1/p

,Scale of wrapped D(p+3)-branes:

Strength of 4D gravitational interactions:

(A) : M2
Planck !M8

s V6 ! 1019 GeV
Strength of 4D gauge interactions:

=⇒ (V ‖
p )−1/p "Ms

(B) : g−2
Dp !Mp

s V ‖
p ! O(1)
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There are 3 basic mass scales in D-brane 
compactifications:

(1) : Ms =
1√
α′String scale:

(2) : M6 =
1

V 1/6
6

Compactification scale:

(3) : M‖
p =

1

(V ‖
p )1/p

,Scale of wrapped D(p+3)-branes:

is a free parameter!Ms
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 Low string scale scenario:
(Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

 is the Standard Model (TeV) scale:Ms

Stringy realization by Swiss cheese Calabi-Yau‘s:
(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; 

Blumenhagen, Moster, Plauschinn;  
for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

Ms ≡MSM " 103 GeV , M6
s V6 = 1032
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 Low string scale scenario:
(Antoniadis, Arkani-Hamed, Dimopoulos, Dvali)

 is the Standard Model (TeV) scale:Ms

Stringy realization by Swiss cheese Calabi-Yau‘s:

QL

Q

eL
U(2)

U(3)

R

U(1)

U(1)

eR

BULK
BLOW!UP

- SM lives on D7-branes around 
small cycles of the CY. One needs 
at least one blow-up mode 
(resolves point like singularity).

2 requirements: 
- Negative Euler number.

(Abdussalam, Allanach, Balasubramanian, Berglund, Cicoli, Conlon, Kom, Quevedo, Suruliz; 
Blumenhagen, Moster, Plauschinn;  

for model building and phenomenological aspects see: Conlon, Maharana, Quevedo, arXiv:0810.5660)

Ms ≡MSM " 103 GeV , M6
s V6 = 1032
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There are several generic types of particles:

Open string excitations: completely universal (model 
independent),  carry SM gauge quantum numbers

MRegge = Ms = MPlanck√
V ′

6

M2
n = M2

s

(
n∑

k=1

αµ
−kαν

k − 1

)
= (n− 1) M2

s , (n = 1, . . . ,∞)

Stringy Regge excitations:
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M‖
KK =

1

(V ‖
p )1/p

!Ms =
MPlanck

(V ′
6)1/2

Open strings, depend on the details of the internal 
geometry, carry SM gauge quantum numbers 

D-brane cycle Kaluza Klein excitations:
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M‖
KK =

1

(V ‖
p )1/p

!Ms =
MPlanck

(V ′
6)1/2

Open strings, depend on the details of the internal 
geometry, carry SM gauge quantum numbers 

D-brane cycle Kaluza Klein excitations:

The string Regge excitations and the D-brane cycle KK 
modes  are charged under the SM and have mass
of order           ➠   can they be seen at LHC  ?!          Ms

Low string scale compactification is a concrete realization 
of the large number of species scenario at 1 TeV !

1032 KK (bulk) gravitons at the string scale.
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Test of D-brane models at the LHC:

- Regge excitations of higher spin

- Kaluza Klein (KK) (and winding) modes

One has to compute the parton model cross sections of 
SM fields into new stringy states !

In string perturbation theory production of:



The string scattering amplitudes exhibit 
some interesting properties:

●  Interesting mathematical structure

(ii) They contain stringy corrections.

●  They go beyond the N=4 Yang-Mills amplitudes:

(i) The contain quarks & leptons in fundamental repr.

Quark, lepton vertex operators:

Fermions: boundary changing (twist) operators!

Vq,l(z, u, k) = uαSα(z)Ξa∩b(z)e−φ(z)/2eik·X(z)

Striking relation between quark and gluon amplitudes!
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Parton model cross sections of SM-fields:
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W±
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(a) baryonic

U(2)
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U(1)R
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U(3)
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:
A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk
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 ● Exchange of SM fields
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Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

 ● Exchange of SM fields

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude among 4 external SM fields                       :(q, l, g, γ, Z0, W±)

● Exchange of string  Regge resonances (Veneziano like ampl.) 
⇒ new contact interactions:

k1

k2

k3

k4

| k; n 〉
α′2 ζ(2) trF 4α′2⇒     

A(k1, k2, k3, k4;α′) ∼ −
Γ(−α′s) Γ(1− α′u)

Γ(−α′s− α′u)
=

∞∑

n=0

γ(n)
s−M2

n

∼ t

s
− π2

6
tu (α′)2 + . . .

Vs(α′) =
Γ(1− s/M2

string)Γ(1− u/M2
string)

Γ(1− t/M2
string)

= 1− π2

6
M−4

stringsu− ζ(3)M−6
stringstu + · · ·→ 1|α′→0



Parton model cross sections of SM-fields:

These amplitudes are dominated by the following poles:

 ● Exchange of SM fields

● Exchange of KK and winding modes (model dependent)

A(Φ1,Φ2,Φ3,Φ4) =< VΦ1(z1) VΦ2(z2) VΦ3(z3) VΦ4(z4) >disk

Disk amplitude among 4 external SM fields                       :(q, l, g, γ, Z0, W±)

● Exchange of string  Regge resonances (Veneziano like ampl.) 
⇒ new contact interactions:

k1

k2

k3

k4

| k; n 〉
α′2 ζ(2) trF 4α′2⇒     

A(k1, k2, k3, k4;α′) ∼ −
Γ(−α′s) Γ(1− α′u)
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=

∞∑
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∼ t

s
− π2

6
tu (α′)2 + . . .
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Γ(1− s/M2
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= 1− π2

6
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●  n-point tree amplitudes with 0 or 2 open string 
fermions (quarks, leptons)  and n or n-2 gauge bosons 
(gluons)  are completely model independent.

⇒  Information about the string Regge spectrum.
(Computation of higher point amplitudes for LHC: 
D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, 
work in progress).
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●  n-point tree amplitudes with 0 or 2 open string 
fermions (quarks, leptons)  and n or n-2 gauge bosons 
(gluons)  are completely model independent.

⇒  Information about the string Regge spectrum.
(Computation of higher point amplitudes for LHC: 
D. Härtl, D. Lüst, O. Schlotterer, S. Stieberger, T. Taylor, 
work in progress).

● KK modes are seen in scattering processes with 
more than 2 fermions.

⇒  Information about the internal geometry.

KK modes are exchanged in t- and u-channel processes 
and exhibit an interesting angular distribution.

(L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. 
Stieberger, T. Taylor, arXiv:0904.3547 [hep-ph])
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Five point scattering amplitudes (3 jet events):
z2

a

z3

a

a

a

z1

z4z5

Aa5

Aa1 Aa3

Aa4

Aa2

a

z2

a

z3

b

a

a

z1

z4z5

ψ
β5

α5

Aa1 Aa3

ψα4

β4

Aa2

a

5 gluons:

3 gluons, 2 quarks: 

Field theory factors:

(Stieberger, Taylor (2006))

(D. Lüst, O. Schlotterer, 
S. Stieberger, T. Taylor, work in 
progress).

A(g−1 , g−2 , g+
3 , g+

4 , g+
5 ) =

(
V (5)(α′, ki)− 2iε(1, 2, 3, 4)P (5)(α′, ki)

)
×M(5)

YM

A(g−1 , g+
2 , g+

3 , q−4 , q+
5 ) =

(
V (5)(α′, ki)− 2iε(1, 2, 3, 4)P (5)(α′, ki)

)
×N (5)

YM

N (5)
YM =

4g3
YM〈15〉〈14〉3

〈12〉〈23〉 . . . 〈51〉

M(5)
YM =

4g3
YM〈12〉4

〈12〉〈23〉 . . . 〈51〉
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k3

k2

k1

k4

k5

| k; n 〉 | k′
; n′ 〉

k3

k2

k1

k4

k5

| k; n 〉

The two kinds of amplitudes are universal: the 
same Regge states are exchanged:
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2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged   ⇒
These amplitudes are completely model independent!

Note: Cullen, Perelstein, Peskin (2000)
considered:

e+e− → γγ

z3

z4

z1
z2

a b

a

ψ
β4

α4

ψα3
β3

Aa Ab

z4
ψ

β4

α4

ψα3
β3Aa

Aa

b

b

a

z3

a

a

z1

z2

   ⇒  dijet events

|M(qg → qg)|2 = g4
3
s2 + u2

t2

[
Vs(α′)Vu(α′)− 4

9
1
su

(sVs(α′) + uVu(α′))2
]

|M(qg → qγ(Z0))|2 = −1
3
g4
3Q2

A
s2 + u2

sut2
(sVs(α′) + uVu(α′))2
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2 gauge boson - two fermion amplitude:

Only string Regge resonances are exchanged   ⇒
These amplitudes are completely model independent!

Note: Cullen, Perelstein, Peskin (2000)
considered:

e+e− → γγ

z3

z4
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z2

a b

a

ψ
β4

α4

ψα3
β3
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z4
ψ

β4

α4

ψα3
β3Aa

Aa

b

b

a

z3

a

a
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α′ → 0 : agreement with SM !

|M(qg → qg)|2α′→0 = g4
3
s2 + u2

t2

[
1− 4

9
1
su

(s + u)2
]

|M(qg → qγ(Z0))|2α′→0 = −1
3
g4
3Q2

A
s2 + u2

sut2
(s + u)2
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These stringy corrections can be 
seen in dijet events at LHC:

(Anchordoqui, Goldberg, Lüst, Nawata, 
Stieberger, Taylor, arXiv:0808.0497[hep-ph])

ΓRegge = 15− 150 GeV

Widths can be computed in a 
model independent way !

(Anchordoqui, Goldberg, Taylor, 
arXiv:0806.3420)

MRegge = 2 TeV

There would be a 
clear signal at LHC 

during the first run with

E = 10TeV , L = 100 pb−1
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● KK modes are seen in scattering processes with 
more than 2 fermions.

(L. Anchordoqui, H. Goldberg, D. Lüst, S. Nawata, S. 
Stieberger, T. Taylor, arXiv:0904.3547 [hep-ph])

|A(qq → qq)|2 =
2
9

1
t2

[(
sF bb

tu (α′)
)2 +

(
sF cc

tu (α′)
)2 +

(
uGbc

ts(α
′)

)2 +
(
uGcb

ts(α
′)

)2
]

+
2
9

1
u2

[(
sF bb

ut (α
′)

)2

+
(
sF cc

ut (α
′)

)2 +
(
tGbc

us(α
′)

)2 +
(
tGcb

us(α
′)

)2
]
− 4

27
s2

tu
F

bb

tu
(α′)F bb

ut (α
′) + F cc

tu (α′)F cc
ut (α

′)
)

Squared 4-quark amplitude with identical flavors:

Squared 4-quark amplitude with different flavors:

|A(qq′ → qq′)|2 =
2
9

1
t2

[(
sF bb

tu (α′)
)2 +

(
sG̃cc′

tu (α′)
)2 +

(
uGbc

ts(α
′)

)2 +
(
uGbc′

ts (α′)
)2

]
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Dominant contribution:

F bb
tu = 1 +

g2
b t

g2
au

+
g2

b t

g2
a

Np ∆
u−M2

ab

∆ ∼ e−M2
ab/M2

sM2
ab = (M (b)

KK)2 + (M (a)
wind.)

2 ,

Np : Np = 3Degeneracy of KK-states;     take

∆ : Thickness of D-branes

KK of SU(2) branes and winding 
modes of SU(3) branes:

Mab :
Mab = 0.7Ms

Gbc
tu = G̃bc

tu = 1
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Dijet angular contribution by t-channel exchange:

CMS detector simulation:

1fb−1 10fb−1Luminosity
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INTERESTING TIMES FOR STRING 
PHENOMENOLOGY ARE AHEAD OF US.

THANK YOU !!


