Open String Wavefunctions in Flux Compactifications

Fernando Marchesano

Open String Wavefunctions in Flux Compactifications

Fernando Marchesano

In collaboration with
Pablo G. Cámara

Centre
de physique théorique
POLYTECHNIQUE

Motivation

\% Two popular lines of research in type II vacua are

Closed strings: Flux vacua CY_{3}

Moduli stabilization de Sitter vacua Inflation Warping

Open strings: D-brane models

Chirality MSSM/GUT spectra Yukawa couplings Instanton effects

Motivation

$\%$ Both subjects have greatly evolved in the past few years, but mostly independently
\& Some overlapping research has shown that fluxes can have interesting effects on D-branes

- Soft-terms/moduli stabilization
\uparrow D-terms and superpotentials
\uparrow Instanton zero mode lifting
Cámara, Váñeg, Uranga'03 Süst. Reffert. Stieberger'04 Gomis, 7.M. Mateas'05

Tripathy, Triwedi'05
Saulina'05
Kallosh, Kashani-Poar, Tomasiella'05
\uparrow Warping effects

Motivation

\% Both subjects have greatly evolved in the past few years, but mostly independently

* Some overlapping research has shown that fluxes can have interesting effects on D-branes
$\%$ The most interesting sector is however still missing

The problem

\% The chiral sector of a D-brane model arises from open strings with twisted boundary conditions
$\%$ We do not know the precise effect of fluxes and warping microscopically

- CFT tricky because of RR flux

\downarrow Full D-brane action not available beyond $U(1)$ gauge theories

The strategy

Idea:

Consider Type 1/Heterotic strings in the field theory limit

\% Twisted open strings can be understood as wavefunctions
\% Their coupling to fluxes can be read from the 10D action

Type I flux vacua

$\%$ The particle content of type I theory is

	bosons	fermions	
gravity	$g_{M N}, C_{M N}, \phi$	ψ_{M}, λ	closed $s \neq$.
vector	A_{M}^{α}	χ^{α}	open $s \neq$

Type I flux vacua

$\%$ The particle content of type I theory is

	bosons	fermions	
gravity	$\boldsymbol{g}_{M N}, C_{M N}, \phi$	ψ_{M}, λ	closed st.
vector	A_{M}^{α}	χ^{α}	Fluxes
			Topen st.
		$F_{3}=d C_{2}+\omega_{3}$	
		$F_{2}=d A$	

Type I flux vacua

$\%$ The particle content of type I theory is

				bosons
gravity	$\boldsymbol{g}_{M N}, C_{M N}, \phi$	fermions	ψ_{M}, λ	closed st.

$$
\begin{aligned}
\left(\not D+\frac{1}{4} e^{\phi / 2} \not F_{3}\right) \chi & =0 \\
D_{K} F^{K P}-\frac{e^{\phi / 2}}{2} F_{M N} F^{M N P} & =0
\end{aligned}
$$

Type I flux vacua

The gravity background is of the form

$$
d s^{2}=Z^{-1 / 2} d s_{\mathbb{R}^{1,3}}^{2}+d s_{\mathcal{M}_{6}}^{2}
$$

with \mathcal{M}_{6} an $\operatorname{SU}(3)$-structure manifold (\rightarrow forms $J_{m n}, \Omega_{m n p}$)
such that

$$
\begin{aligned}
Z e^{\phi} & \equiv g_{s}=\text { const. } \\
g_{s}^{1 / 2} e^{\phi / 2} F_{3} & ={ }^{*} \mathcal{M}_{6} e^{-3 \phi / 2} d\left(e^{3 \phi / 2} J\right) \\
d\left(e^{\phi} J \wedge J\right) & =0
\end{aligned}
$$

If \mathcal{M}_{6} is complex $\Rightarrow \mathcal{N}=1$ SUSY vacuum
If \mathcal{M}_{6} is not complex $\Rightarrow \mathcal{N}=0$ no-scale vacuum Cámara \& Graña'07

Twisted tori

\% Ansatz for \mathcal{M}_{6} : elliptic fibration
B_{4} : base

$$
d s_{\mathcal{M}_{6}}^{2}=Z^{-1 / 2} \sum_{a \in \Pi_{2}}\left(e^{a}\right)^{2}+Z^{3 / 2} d s_{B_{4}}^{2}
$$

$$
\Pi_{2}: \text { fiber }
$$

simplest examples \rightarrow (warped) twisted tori $\left(B_{4}=T^{4}\right)$
They can be described as:
i) S^{1} bundles

ii) Coset manifolds
$\Gamma \backslash G$
G : nilpotent Lie group
「: discrete subgroup

- Parallelizable
- Explicit metric

Twisted tori

\& Ansatz for \mathcal{M}_{6} : elliptic fibration
B_{4} : base

$$
d s_{\mathcal{M}_{6}}^{2}=Z^{-1 / 2} \sum_{a \in \Pi_{2}}\left(e^{a}\right)^{2}+Z^{3 / 2} d s_{B_{4}}^{2}
$$

Π_{2} : fiber
simplest examples \rightarrow (warped) twisted tori $\left(\mathrm{B}_{4}=\mathrm{T}^{4}\right)$
For instance:

$$
\begin{aligned}
d s_{B_{4}}^{2} & =\sum_{m=1,2,4,5}\left(R_{m} d x^{m}\right)^{2} \\
d s_{\Pi_{2}}^{2} & =\left[\left(R_{3} d x^{3}\right)^{2}+\left(R_{6} \tilde{e}^{6}\right)^{2}\right] \\
F_{3} & =-N\left(d x^{1} \wedge d x^{2}+d x^{4} \wedge d x^{5}\right) \wedge \tilde{e}^{6}-g_{s}^{-1} *_{T^{4}} d Z^{2} \\
\tilde{e}^{6}= & d x^{6}+\frac{M}{2}\left(x^{1} d x^{2}-x^{2} d x^{1}+x^{4} d x^{5}-x^{5} d x^{4}\right)
\end{aligned}
$$

Twisted tori

$$
\begin{gathered}
\text { In our example } \\
d e^{6}=M\left(d x^{1} \wedge d x^{2}+d x^{4} \wedge d x^{5}\right) \\
d e^{6}=R^{6} M\left(\frac{e^{1} \wedge e^{2}}{R_{1} R_{2}}+\frac{e^{4} \wedge e^{5}}{R_{4} R_{5}}\right)
\end{gathered}
$$

In general

$$
\begin{aligned}
& d \tilde{e}^{a}=\frac{1}{2} \tilde{f}_{b c}^{a} e^{b} \wedge \tilde{e}^{c} \\
& d e^{a}=\frac{1}{2} f_{b c}^{a} e^{b} \wedge e^{c}
\end{aligned}
$$

Twisted tori

In our example

$$
\begin{aligned}
& d \tilde{e}^{6}=M\left(d x^{1} \wedge d x^{2}+d x^{4} \wedge d x^{5}\right) \\
& d e^{6}=R^{6} M\left(\frac{e^{1} \wedge e^{2}}{R_{1} R_{2}}+\frac{e^{4} \wedge e^{5}}{R_{4} R_{5}}\right)
\end{aligned}
$$

In general

$$
\begin{aligned}
& d \tilde{e}^{a}=\frac{1}{2} \tilde{f}_{b c}^{a} e^{b} \wedge \tilde{e}^{c} \\
& d e^{a}=\frac{1}{2} f_{b c}^{a} e^{b} \wedge e^{c}
\end{aligned}
$$

$f_{b c}^{a}$: structure constants of a 6D Lie algebra \mathfrak{g}

$$
\text { generators of } \mathfrak{g}: \hat{\partial}_{a} \equiv e_{a}{ }^{\alpha}(x) \partial_{x^{\alpha}} \quad\left[\hat{\partial}_{b}, \hat{\partial}_{c}\right]=-f_{b c}^{a} \hat{\partial}_{a}
$$

Twisted tori

In our example

$$
\begin{aligned}
& d \tilde{e}^{6}=M\left(d x^{1} \wedge d x^{2}+d x^{4} \wedge d x^{5}\right) \\
& d e^{6}=R^{6} M\left(\frac{e^{1} \wedge e^{2}}{R_{1} R_{2}}+\frac{e^{4} \wedge e^{5}}{R_{4} R_{5}}\right)
\end{aligned}
$$

In general

$$
\begin{aligned}
d \tilde{e}^{a} & =\frac{1}{2} \tilde{f}_{b c}^{a} e^{b} \wedge \tilde{e}^{c} \\
d e^{a} & =\frac{1}{2} f_{b b}^{a} e^{b} \wedge e^{c}
\end{aligned}
$$

$f_{b c}^{a}$: structure constants of a 6D Lie algebra \mathfrak{g}

$$
\begin{array}{lr}
\text { generators of } \mathfrak{g}: \hat{\partial}_{a} \equiv e_{a}{ }^{\alpha}(x) \partial_{x^{\alpha}} & {\left[\hat{\partial}_{b}, \hat{\partial}_{c}\right]=-f_{b c}^{a} \hat{\partial}_{a}} \\
\exp (\mathfrak{g})=\mathcal{H}_{5} \times \mathbb{R} & G=\exp (\mathfrak{g}) \\
\mathcal{M}_{6}=\Gamma_{\mathcal{H}_{5}} \backslash \mathcal{H}_{5} \times \mathbb{Z} \backslash \mathbb{R} & \mathcal{M}_{6}=\Gamma \backslash G
\end{array}
$$

Dimensional reduction

\% Consider a U(N) gauge group (i.e., N D9-branes)
\% The bosonic d.o.f. come from the 10D gauge boson A_{M}

$$
A_{M}=B_{M}^{\alpha} U_{\alpha}+W_{M}^{\alpha \beta} e_{\alpha \beta} \quad U_{\alpha}: \text { Cartan subalgebra }
$$

\because As usual $\quad\left\langle B_{m}^{\alpha}\right\rangle \neq 0 \quad \Longrightarrow \quad U(N) \rightarrow \prod U\left(n_{\alpha}\right)=G_{\text {unbr }}$

Dimensional reduction

\% Consider a $\mathrm{U}(\mathrm{N})$ gauge group (i.e., N D9-branes)
The bosonic d.o.f. come from the 10D gauge boson A_{M}

$$
A_{M}=B_{M}^{\alpha} U_{\alpha}+W_{M}^{\alpha \beta} e_{\alpha \beta} \quad U_{\alpha}: \text { Cartan subalgebra }
$$

\& As usual $\left\langle B_{m}^{\alpha}\right\rangle \neq 0 \quad \Longrightarrow \quad U(N) \rightarrow \prod_{\alpha} U\left(n_{\alpha}\right)=G_{u n b r}$

* We can expand the bosonic fields as

$$
\begin{aligned}
B\left(x^{\mu}, x^{i}\right) & =b_{\mu}\left(x^{\mu}\right) B\left(x^{i}\right) d x^{\mu}+\sum_{m} b^{m}\left(x^{\mu}\right)\left[\left\langle B^{m}\right\rangle+\xi^{m}\right]\left(x^{i}\right) e_{m} \quad U\left(n_{\alpha}\right) \text { Adj. } \\
W\left(x^{\mu}, x^{i}\right) & =w_{\mu}\left(x^{\mu}\right) W\left(x^{i}\right) d x^{\mu}+\sum_{m} w^{m}\left(x^{\mu}\right) \Phi^{m}\left(x^{i}\right) e_{m} \quad\left(\bar{n}_{\alpha}, n_{\beta}\right) \text { bif. }
\end{aligned}
$$

... and similarly for fermions

Laplace and Dirac eqs.

\% The e.o.m for the adjoint fields read ($Z \rightarrow 1$)

$$
\begin{array}{cc}
\hat{\partial}_{a} \hat{\partial}^{a} B=-m_{B}^{2} B & \text { gauge bosons } \\
\left(\Gamma^{a} \hat{\partial}_{a}+\frac{1}{2} f P_{+}^{B_{4}}\right) \chi_{6}=m_{\chi} \mathcal{B}_{6}^{*} \chi_{6}^{*} & \text { fermions } \\
\cdots & \text { scalars } \\
\quad P_{+}^{B_{4}}=\frac{1}{2}\left(1 \pm \Gamma_{B_{4}}\right) & \mathcal{B}_{6}=6 \mathrm{D} \text { Maj. matrix }
\end{array}
$$

\% For bifundamental fields:

$$
\hat{\partial}_{a} \quad \rightarrow \quad \hat{\partial}_{a}-i\left(\left\langle B_{m}^{\alpha}\right\rangle-\left\langle B_{m}^{\beta}\right\rangle\right)
$$

Recap

\% We want to understand the effect of fluxes on non-Abelian gauge theories
$\%$ Nice framework: type I/heterotic flux vacua \rightarrow 10D field theory
$\%$ Simplest examples in terms of twisted tori
\% The effect of fluxes appears in the modified Dirac and Laplace equations. For adjoint fields and $Z \rightarrow 1$:

$$
\begin{aligned}
& \hat{\partial}_{a} \hat{\partial}^{a} B=-m_{B}^{2} B \\
& \left(\Gamma^{a} \hat{\partial}_{a}+\frac{1}{2} f P_{+}^{B_{4}}\right) \chi_{6}=m_{\chi} \mathcal{B}_{6}^{*} \chi_{6}^{*}
\end{aligned}
$$

Gauge Bosons

\% Laplace equation

$$
\hat{\partial}_{a} \hat{\partial}^{a} B=-m_{B}^{2} B
$$

\% In our example:

$$
\begin{aligned}
R_{1} \hat{\partial}_{1}=\partial_{x^{1}}+\frac{M}{2} x^{2} \partial_{x^{6}} & R_{4} \hat{\partial}_{4}=\partial_{x^{4}}+\frac{M}{2} x^{5} \partial_{x^{6}} \\
R_{2} \hat{\partial}_{2}=\partial_{x^{2}}-\frac{M}{2} x^{1} \partial_{x^{6}} & R_{5} \hat{\partial}_{5}=\partial_{x^{5}}-\frac{M}{2} x^{4} \partial_{x^{6}} \\
R_{3} \hat{\partial}_{3}=\partial_{x^{3}} & R_{6} \hat{\partial}_{6}=\partial_{x^{6}}
\end{aligned}
$$

If \mathbf{B} does not depend on $\boldsymbol{x}^{6} \Rightarrow \hat{\partial}^{a}=\partial_{a} \Rightarrow \quad B=e^{2 \pi i \vec{k} \cdot \vec{x}} \quad \vec{k}=\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)$
If B depends on x^{6} like $e^{2 \pi i k_{6} x^{6}} \Rightarrow$ eq. of a W-boson in a magnetized T^{4}, with magnetic flux $\mathrm{k}_{6} \mathrm{M}$

$$
F_{2}^{\mathrm{cl}}=k_{6} M\left(d x^{1} \wedge d x^{2}+d x^{4} \wedge d x^{5}\right)
$$

Gauge Bosons

Laplace equation

$$
\hat{\partial}_{a} \hat{\partial}^{a} B=-m_{B}^{2} B
$$

$\%$ KK modes on the S^{1} fiber are analogous to magnetized open strings $\Rightarrow B=\theta$-functions \& sums of Hermite functions
\uparrow Fluxes freeze moduli \Rightarrow extra degeneracies

Gauge Bosons

\% Laplace equation

$$
\hat{\partial}_{a} \hat{\partial}^{a} B=-m_{B}^{2} B
$$

\% KK modes on the S^{1} fiber are analogous to magnetized open strings $\Rightarrow B=\theta$-functions \& sums of Hermite functions

- Fluxes freeze moduli \Rightarrow extra degeneracies

\downarrow Wavefunctions are localized

Group Manifolds

\% While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$
\because A natural object to consider is the non-Abelian Fourier transform

$$
\hat{f}_{\vec{\omega}} \varphi(\vec{s})=\int_{G} B(g) \pi_{\vec{\omega}}(g) \varphi(\vec{s}) d g
$$

Group Manifolds

\% While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$

- Let us consider the function

$$
B_{\vec{\omega}}^{\varphi, \psi}(g)=\left(\pi_{\vec{\omega}}(g) \varphi, \psi\right) \quad \text { scalar product in } \mathscr{H}
$$

- Note that

$$
\Delta\left(\pi_{\vec{\omega}}(g) \varphi, \psi\right)=\left(\pi_{\vec{\omega}}(g) \pi_{\vec{\omega}}(\Delta) \varphi, \psi\right)
$$

- So we can take $\Psi=\delta$-function and φ eigenfunction
\downarrow Finally we can impose 「-invariance via

$$
B_{\vec{\omega}}(g)=\sum_{\gamma \in \Gamma} \pi_{\vec{\omega}}(\gamma g) \varphi\left(\vec{s}_{0}\right)
$$

Group Manifolds

\& While the previous example was quite simple, one can solve the Laplace eq. for more general manifolds of the form $\Gamma \backslash G$
\% By construction, we have a correspondence of unirreps of G and families of wavefunctions in $\Gamma \backslash G$
$\%$ Previous example $\rightarrow \mathcal{H}_{2 p+1}$ Heisenberg group $\cong(\vec{x}, \vec{y}, z)$

$$
\begin{aligned}
\pi_{k_{z}^{\prime}} u(\vec{s}) & =e^{2 \pi i k_{z}^{\prime}[z+\vec{x} \cdot \vec{y} / 2+\vec{y} \cdot \vec{s}]} u(\vec{s}+\vec{x}) \longrightarrow \text { fiber KK modes } \\
\pi_{\vec{k}_{x}^{\prime}, \vec{k}_{y}^{\prime}} & =e^{2 \pi i\left(\vec{k}_{x}^{\prime} \cdot \vec{x}+\vec{k}_{y}^{\prime} \cdot \vec{y}\right)} \quad \longrightarrow \text { base KK modes }
\end{aligned}
$$

Fermions

\& Dirac equation

$$
i(\mathbf{D}+\mathbf{F}) \Psi=m_{\chi} \Psi^{*}
$$

Fermions

\% Dirac equation

$$
i(\mathbf{D}+\mathbf{F}) \Psi=m_{\chi} \Psi^{*}
$$

- Previous example: $\mathbf{F}=0$
$-\mathbf{D}^{*} \mathbf{D}=\left(\begin{array}{cccc}\hat{\partial}_{m} \hat{\partial}^{m} & 0 & 0 & 0 \\ 0 & \hat{\partial}_{m} \hat{\partial}^{m} & -\varepsilon \hat{\partial}_{6} & 0 \\ 0 & \varepsilon \hat{\partial}_{6} & \hat{\partial}_{m} \hat{\partial}^{m} & 0 \\ 0 & 0 & 0 & \hat{\partial}_{m} \hat{\partial}^{m}\end{array}\right) \quad \varepsilon=$ flux density

All entries of the matrix commute \Rightarrow standard diagonalization

Fermions

Dirac equation

$$
i(\mathbf{D}+\mathbf{F}) \Psi=m_{\chi} \Psi^{*}
$$

Squared Dirac eq.

$$
(\mathbf{D}+\mathbf{F})^{*}(\mathbf{D}+\mathbf{F}) \Psi=\left|m_{\chi}\right|^{2} \Psi
$$

\downarrow Previous example: $\mathbf{F}=0$

Fermions

\& Squared Dirac eq.

$$
(\mathbf{D}+\mathbf{F})^{*}(\mathbf{D}+\mathbf{F}) \Psi=\left|m_{\chi}\right|^{2} \Psi
$$

- More involved example: $\mathbf{F} \neq 0$

$$
\begin{aligned}
& -(\mathbf{D}+\mathbf{F})^{*}(\mathbf{D}+\mathbf{F})=\left(\begin{array}{cccc}
\hat{\partial}_{m} \hat{\partial}^{m} & 0 & 0 & 0 \\
0 & \hat{\partial}_{m} \hat{\partial}^{m} & -\varepsilon \hat{\partial}_{z^{3}} & -\varepsilon \hat{\partial}_{z^{2}} \\
0 & \varepsilon \hat{\partial}_{\bar{z}^{3}} & \hat{\partial}_{m} \hat{\partial}^{m} & \varepsilon \hat{\partial}_{z^{1}} \\
0 & \varepsilon \hat{\partial}_{\bar{z}^{2}} & -\varepsilon \hat{\partial}_{\bar{z}^{1}} & \hat{\partial}_{m} \hat{\partial}^{m}-\varepsilon^{2}
\end{array}\right) \\
& \text { Entries no longer commute!! }
\end{aligned}
$$

Fermions

\% Squared Dirac eq.

$$
(\mathbf{D}+\mathbf{F})^{*}(\mathbf{D}+\mathbf{F}) \Psi=\left|m_{\chi}\right|^{2} \Psi
$$

- More involved example: $\mathbf{F} \neq 0$

$$
-(\mathbf{D}+\mathbf{F})^{*}(\mathbf{D}+\mathbf{F})=\left(\begin{array}{cccc}
\hat{\partial}_{m} \hat{\partial}^{m} & 0 & 0 & 0 \\
0 & \hat{\partial}_{m} \hat{\partial}^{m} & -\varepsilon \hat{\partial}_{z^{3}} & -\varepsilon \hat{\partial}_{z^{2}} \\
0 & \varepsilon \hat{\partial}_{\bar{z}^{3}} & \hat{\partial}_{m} \hat{\partial}^{m} & \varepsilon \hat{\partial}_{z^{1}} \\
\text { Entries no longer commute!! } & \varepsilon \hat{\partial}_{\bar{z}^{2}} & -\varepsilon \hat{\partial}_{\bar{z}^{1}} & \hat{\partial}_{m} \hat{\partial}^{m}-\varepsilon^{2}
\end{array}\right)
$$

Eigenvectors:

$$
\begin{aligned}
\xi_{3} \equiv\left(\begin{array}{c}
\hat{\partial}_{\bar{z}^{1}} \\
\hat{\partial}_{\bar{z}^{2}} \\
\hat{\partial}_{\bar{z}^{3}}
\end{array}\right) B & \xi_{ \pm} \equiv\left(\begin{array}{c}
\hat{\partial}_{z^{3}} \hat{\partial}_{\bar{z}^{1}}+m_{\xi_{ \pm}} \hat{\partial}_{z^{2}} \\
\hat{\partial}_{z^{3}} \hat{\partial}_{\bar{z}^{2}}-m_{\xi_{ \pm}} \hat{\partial}_{z^{1}} \\
\hat{\partial}_{z^{3}} \hat{\partial}_{\bar{z}^{3}}+m_{\xi_{ \pm}}^{2}
\end{array}\right) B \\
m_{\xi_{3}}^{2}=m_{B}^{2} & m_{\xi_{ \pm}}^{2}=\frac{1}{4}\left(\varepsilon_{\mu} \pm \sqrt{\varepsilon_{\mu}^{2}+4 m_{B}^{2}}\right)^{2}
\end{aligned}
$$

Recap II

\% We have computed the spectrum of KK modes in several type I vacua based on twisted tori
$\%$ If one assumes the hierarchy $\mathrm{Vol}_{B_{4}}^{1 / 2} \gg \mathrm{Vol}_{\Pi_{2}}$ then one has

About warping

\% In the above we have assumed a constant warping
$\%$ One can check that $\quad \nabla_{T^{4}}^{2} Z^{2}=-\varepsilon^{2}+\ldots$
\& So for $\operatorname{Vol}_{B_{4}}^{1 / 2} \gg \operatorname{Vol}_{\Pi_{2}}$ we have $\varepsilon \ll m_{\text {base }}^{\mathrm{KK}}$ and $Z=$ const. is a good approximation
\& However, for $\operatorname{Vol}_{B_{4}}^{1 / 2} \simeq \operatorname{Vol}_{\Pi_{2}}$ we have
\uparrow Warping effects
\downarrow Fiber modes more localized \Rightarrow should dominate

Type IIB T-dual

$\%$ We can take our models to type IIB by T-duality on the fiber coordinates:

$$
N \text { D9-branes } \quad N \text { D7-branes }
$$

KK mode on $B_{4} \simeq\left(T^{2}\right)_{1} \times\left(T^{2}\right)_{2} \quad \longrightarrow \quad$ KK mode on $\left(T^{2}\right)_{1} \times\left(T^{2}\right)_{2}$
KK mode on $\Pi_{2} \simeq\left(T^{2}\right)_{3}$ Winding mode on $\left(T^{2}\right)_{3}$

Conclusions

\% We have considered type I flux vacua in order to see the effect of fluxes on open strings via field theory calculations
\because Assuming constant Z, one can compute exactly the massless and massive spectrum of wavefunctions for models based on twisted tori and group quotients $\Gamma \backslash G$
\% The techniques used here for adjoint fields also work for bifundamental chiral multiplets
\% Computing 4D couplings via wavefunctions, we can compare with the ones from 4D sugra. They indeed agree for ε small
\% For ε not small, however, we expect new phenomena, in part due to warping and in part due to exotic KK modes

Outlook

\% As a byproduct, we have developed a method for computing wavefunctions on group manifolds and quotients $\Gamma \backslash G$
$\%$ This is not only useful for type I compactifications, but also for the KK spectrum of type IIA flux vacua

Siluerstein' 07
\uparrow de Sitter vacua

- AdS vacua

Hague, Undermoad, Shiu, uan Riet 08
Sü̈st \& Trimpis' 04
see Villadora's \& Zagermann's Talks

Outlook

\% As a byproduct, we have developed a method for computing wavefunctions on group manifolds and quotients $\Gamma \backslash G$
\% This is not only useful for type I compactifications, but also for the KK spectrum of type IIA flux vacua

Silverstein'07

- de Sitter vacua

Haque, Underwood, Shiu, wan Riet'08
Lüst \& Tsimpis'04
see Villadara's \& Zagermann's Talks
$\%$ We have also seen that the effect of RR fluxes is very simple once that the background eom have been applied

$$
\left(\Gamma^{a} \hat{\partial}_{a}+\frac{1}{4}\left[f+e^{\phi / 2} F_{3}\right]\right) \chi_{6} \quad \rightarrow \quad\left(\Gamma^{a} \hat{\partial}_{a}+\frac{1}{2} f P_{+}^{B_{4}}\right) \chi_{6}
$$

...hint for a CFT computation?

