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Motivation

✤ Two popular lines of research in type II vacua are

Closed strings: Flux vacua Open strings: D-brane models

CY3!4

" G3

D7

D7
Moduli stabilization
de Sitter vacua
Inflation
Warping
...

Chirality
MSSM/GUT spectra
Yukawa couplings
Instanton effects
...



Motivation

✤ Both subjects have greatly evolved in the past few years,    
but mostly independently

✤ Some overlapping research has shown that fluxes can have 
interesting effects on D-branes

✦ Soft-terms/moduli stabilization

✦ D-terms and superpotentials

✦ Instanton zero mode lifting

✦ Warping effects

Cámara, Ibáñez, Uranga’03
Lüst, Reffert, Stieberger’04

Gomis, F.M., Mateos’05
...

Martucci’06

Tripathy, Trivedi’05
Saulina’05

Kallosh, Kashani-Poor, Tomasiello’05
...

Shiu’s Talk



Motivation

✤ Both subjects have greatly evolved in the past few years,    
but mostly independently

✤ Some overlapping research has shown that fluxes can have 
interesting effects on D-branes

✤ The most interesting sector is however still missing

D7

D7

D7

G3

Not understood 

Understood 



The problem

✤ The chiral sector of a D-brane model arises from                  
open strings with twisted boundary conditions

✤ We do not know the precise effect of fluxes and                       
warping microscopically

✦ CFT tricky because of RR flux

✦ Full D-brane action not available                                              
beyond U(1) gauge theories

D7

D7



The strategy

✤ Twisted open strings can be understood as wavefunctions

✤ Their coupling to fluxes can be read from the 10D action

D7

D7

Idea:
Consider Type I/Heterotic strings 

in the field theory limit

type 
IIB type 

I



Type I flux vacua

✤ The particle content of type I theory is

bosons fermions
gravity gMN , CMN , φ ψM , λ

vector Aα
M χα

closed st.
open st.



Type I flux vacua

✤ The particle content of type I theory is

bosons fermions
gravity gMN , CMN , φ ψM , λ

vector Aα
M χα

Fluxes

Torsion
F3 = dC2 + ω3

F2 = dA
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Type I flux vacua

✤ The particle content of type I theory is

bosons fermions
gravity gMN , CMN , φ ψM , λ

vector Aα
M χα

Fluxes

Torsion
F3 = dC2 + ω3

F2 = dA

gMN , CMN

(
/D +

1
4
eφ/2/F3

)
χ = 0

DKFKP − eφ/2

2
FMNFMNP = 0

Open string e.o.m.

χ

FMNFKP

Aα
M χα

closed st.
open st.



Type I flux vacua

✤ The gravity background is of the form

with M6 an SU(3)-structure manifold (→ forms Jmn, Ωmnp)      

such that

ds2 = Z−1/2ds2
R1,3 + ds2

M6

Zeφ ≡ gs = const.
g1/2

s eφ/2F3 = ∗M6 e−3φ/2d(e3φ/2J)
d

(
eφJ ∧ J

)
= 0 Hull’86

Strominger’86

If M6 is complex ⇒ N=1 SUSY vacuum

If M6 is not complex ⇒ N=0 no-scale vacuum
Schulz’04

Cámara & Graña’07
Lüst, F.M., Martucci, Tsimpis’08



Twisted tori

✤ Ansatz for M6: elliptic fibration

simplest examples → (warped) twisted tori  (B4 = T4)

They can be described as:

ds2
M6

= Z−1/2
∑

a∈Π2

(ea)2 + Z3/2ds2
B4

i) S1 bundles

ii) Coset manifolds Γ \ G

B4 : base
Π2 : fiber

G : nilpotent Lie group
Γ : discrete subgroup

• Parallelizable

• Explicit metric



ds2
B4

=
∑

m=1,2,4,5

(Rmdxm)2

ds2
Π2

=
[
(R3dx3)2 + (R6ẽ

6)2
]

F3 = −N(dx1 ∧ dx2 + dx4 ∧ dx5) ∧ ẽ6 − g−1
s ∗T 4 dZ2

Twisted tori

✤ Ansatz for M6: elliptic fibration

simplest examples → (warped) twisted tori  (B4 = T4)

For instance:

ds2
M6

= Z−1/2
∑

a∈Π2

(ea)2 + Z3/2ds2
B4

B4 : base
Π2 : fiber

ẽ6

ẽ6

ẽ6 = dx6 +
M

2
(x1dx2 − x2dx1 + x4dx5 − x5dx4)



de6 = R6M

(
e1 ∧ e2

R1R2
+

e4 ∧ e5

R4R5

)
dẽa =

1
2
f̃a

bcẽ
b ∧ ẽc

dea =
1
2
fa

bce
b ∧ ec

Twisted tori

In our example In general

dẽ6 = M(dx1 ∧ dx2 + dx4 ∧ dx5)



de6 = R6M

(
e1 ∧ e2

R1R2
+

e4 ∧ e5

R4R5

)
dẽa =

1
2
f̃a

bcẽ
b ∧ ẽc

dea =
1
2
fa

bce
b ∧ ec

fa
bc : structure constants of a 6D Lie algebra g

[∂̂b, ∂̂c] = −fa
bc∂̂agenerators of g : ∂̂a ≡ ea

α(x) ∂xα

Twisted tori

In our example In general

dẽ6 = M(dx1 ∧ dx2 + dx4 ∧ dx5)



dẽa =
1
2
f̃a

bcẽ
b ∧ ẽc

dea =
1
2
fa

bce
b ∧ ec

fa
bc : structure constants of a 6D Lie algebra g

[∂̂b, ∂̂c] = −fa
bc∂̂agenerators of g : ∂̂a ≡ ea

α(x) ∂xα

exp(g) = H5 × R G = exp(g)

M6 = Γ\GM6 = ΓH5\H5 × Z\R

Twisted tori

In our example In general

(For Z → 1) 

de6 = R6M

(
e1 ∧ e2

R1R2
+

e4 ∧ e5

R4R5

)
dẽ6 = M(dx1 ∧ dx2 + dx4 ∧ dx5)



Dimensional reduction

✤ Consider a U(N) gauge group (i.e., N D9-branes)

✤ The bosonic d.o.f. come from the 10D gauge boson AM

✤ As usual

AM = Bα
MUα + Wαβ

M eαβ Uα : Cartan subalgebra

Following  Cremades, Ibáñez, F.M.’04

〈Bα
m〉 #= 0 =⇒ U(N) →

∏

α

U(nα) = Gunbr



Dimensional reduction

✤ Consider a U(N) gauge group (i.e., N D9-branes)

✤ The bosonic d.o.f. come from the 10D gauge boson AM

✤ As usual

✤ We can expand the bosonic fields as

AM = Bα
MUα + Wαβ

M eαβ Uα : Cartan subalgebra

B(xµ, xi) = bµ(xµ) B(xi) dxµ +
∑

m

bm(xµ) [〈Bm〉 + ξm](xi) em

W (xµ, xi) = wµ(xµ) W (xi) dxµ +
∑

m

wm(xµ) Φm(xi) emem

em〈Bm〉

Following  Cremades, Ibáñez, F.M.’04

B ξm U(nα) Adj.

ΦmW (n̄α, nβ) bif.

〈Bα
m〉 #= 0 =⇒ U(N) →

∏

α

U(nα) = Gunbr

... and similarly for fermions



Laplace and Dirac eqs.

✤ The e.o.m for the adjoint fields read (Z→1)

✤ For bifundamental fields:

∂̂a∂̂aB = −m2
BB

PB4
+ =

1
2

(1± ΓB4)

(
Γa∂̂a +

1
2
/fPB4

+

)
χ6 = mχB∗

6χ∗
6

B6 = 6D Maj. matrix

∂̂a → ∂̂a − i(〈Bα
m〉 − 〈Bβ

m〉)
 see Cámara’s Talk

gauge bosons

fermions

... scalars



Recap

✤ We want to understand the effect of fluxes on non-Abelian 
gauge theories 

✤ Nice framework: type I/heterotic flux vacua → 10D field theory

✤ Simplest examples in terms of twisted tori

✤ The effect of fluxes appears in the modified Dirac                
and Laplace equations. For adjoint fields and Z→1:

∂̂a∂̂aB = −m2
BB

(
Γa∂̂a +

1
2
/fPB4

+

)
χ6 = mχB∗

6χ∗
6



Gauge Bosons

✤ Laplace equation 

✤ In our example:

∂̂a∂̂aB = −m2
BB

R1∂̂1 = ∂x1 +
M

2
x2∂x6 R4∂̂4 = ∂x4 +

M

2
x5∂x6

R2∂̂2 = ∂x2 − M

2
x1∂x6 R5∂̂5 = ∂x5 − M

2
x4∂x6

R3∂̂3 = ∂x3 R6∂̂6 = ∂x6

If B does not depend on x6 ⇒              ⇒ ∂̂a = ∂a B = e2πi"k·"x !k = (k1, k2, k3, k4, k5)

If B depends on x6 like               ⇒ e2πik6x6 eq. of a W-boson in a magnetized T4, 
with magnetic flux k6M

F cl
2 = k6M(dx1 ∧ dx2 + dx4 ∧ dx5)



Gauge Bosons

✤ Laplace equation 

✤ KK modes on the S1 fiber are analogous to magnetized open 
strings ⇒ B = θ-functions & sums of Hermite functions

✦ Fluxes freeze moduli                                                         
⇒ extra degeneracies

∂̂a∂̂aB = −m2
BB

m2
B =

|k6M |
πR1R2

(n + 1) +
(

k6

R6

)2

+
(

k3

R3

)2

  

 

 

}

}
  

j"j=R6

2j"j=R6

M = 0 M 6= 0

k6 = 1

k6 = 2

k6 = 0



Gauge Bosons

✤ Laplace equation 

✤ KK modes on the S1 fiber are analogous to magnetized open 
strings ⇒ B = θ-functions & sums of Hermite functions

✦ Fluxes freeze moduli                                                         
⇒ extra degeneracies

✦ Wavefunctions are                                                  
localized

∂̂a∂̂aB = −m2
BB



Group Manifolds

✤ While the previous example was quite simple, one can solve 
the Laplace eq. for more general manifolds of the form Γ \ G 

✤ A natural object to consider is the non-Abelian Fourier transform

f̂!ω ϕ("s) =
∫

G
B(g)π!ω(g)ϕ("s)dg

unirrep of G

auxiliary Hilbert space H



Group Manifolds

✤ While the previous example was quite simple, one can solve 
the Laplace eq. for more general manifolds of the form Γ \ G 

✦ Let us consider the function

✦ Note that

✦ So we can take Ψ = δ-function and φ eigenfunction

✦ Finally we can impose Γ-invariance via

Bϕ,ψ
#ω (g) = (π#ω(g)ϕ, ψ)

scalar product in H

∆ (π!ω(g)ϕ, ψ) = (π!ω(g)π!ω(∆)ϕ, ψ)

B!ω(g) =
∑

γ∈Γ

π!ω(γg)ϕ($s0)



Group Manifolds

✤ While the previous example was quite simple, one can solve 
the Laplace eq. for more general manifolds of the form Γ \ G

✤  By construction, we have a correspondence of unirreps of G 
and families of wavefunctions in Γ \ G

✤ Previous example → H2p+1 Heisenberg group ≅ 

πk′
z
u("s) = e2πik′

z [z+"x·"y/2+"y·"s] u("s + "x)

π"k′
x,"k′

y
= e2πi("k′

x·"x + "k′
y·"y)

(!x, !y, z)

fiber KK modes

base KK modes



Fermions

✤ Dirac equation 

✤ Squared Dirac eq.

i(D + F)Ψ = mχΨ∗ D ← Γa∂̂a

F ← 1
2
/fPB4

+

(D + F)∗(D + F)Ψ = |mχ|2Ψ Moduli lif
ting info.



Fermions

✤ Dirac equation 

✤ Squared Dirac eq.

✦ Previous example: F = 0

i(D + F)Ψ = mχΨ∗ D ← Γa∂̂a

F ← 1
2
/fPB4

+

(D + F)∗(D + F)Ψ = |mχ|2Ψ Moduli lif
ting info.

−D∗D =





∂̂m∂̂m 0 0 0
0 ∂̂m∂̂m −ε∂̂6 0
0 ε∂̂6 ∂̂m∂̂m 0
0 0 0 ∂̂m∂̂m



 ε = flux density

All entries of the matrix commute ⇒ standard diagonalization



Fermions

✤ Dirac equation 

✤ Squared Dirac eq.

✦ Previous example: F = 0

i(D + F)Ψ = mχΨ∗ D ← Γa∂̂a

F ← 1
2
/fPB4

+

(D + F)∗(D + F)Ψ = |mχ|2Ψ Moduli lif
ting info.

2 x

8 x

4 x

12 x

n = 0+; 0¡

n = 1+; 1¡

n = 2+; 2¡

n = 0+n = 0¡

n = 1+n = 1¡

n = 0+; 2¡ n = 0¡; 2+

n = 1¡; 3+n = 1+; 3¡

¢2k3;k6

¢2k3;k6 +
j"k6j
R6

¢2k3;k6 + 2
j"k6j
R6

¢2k3;k6 + 3
j"k6j
R6

0

»3»¡ »+

ξ3 =




0
0
1



 B

ξ± =




1
±i
0



 B



Fermions

✤ Squared Dirac eq.

✦ More involved example: F ≠ 0

(D + F)∗(D + F)Ψ = |mχ|2Ψ

−(D + F)∗(D + F) =





∂̂m∂̂m 0 0 0
0 ∂̂m∂̂m −ε∂̂z3 −ε∂̂z2

0 ε∂̂z̄3 ∂̂m∂̂m ε∂̂z1

0 ε∂̂z̄2 −ε∂̂z̄1 ∂̂m∂̂m − ε2




Entries no longer commute!!



m2
ξ3

= m2
B m2

ξ± =
1
4

(
εµ ±

√
ε2

µ + 4m2
B

)2

Fermions

✤ Squared Dirac eq.

✦ More involved example: F ≠ 0

(D + F)∗(D + F)Ψ = |mχ|2Ψ

−(D + F)∗(D + F) =





∂̂m∂̂m 0 0 0
0 ∂̂m∂̂m −ε∂̂z3 −ε∂̂z2

0 ε∂̂z̄3 ∂̂m∂̂m ε∂̂z1

0 ε∂̂z̄2 −ε∂̂z̄1 ∂̂m∂̂m − ε2





Eigenvectors:

ξ3 ≡




∂̂z̄1

∂̂z̄2

∂̂z̄3



 B ξ± ≡




∂̂z3 ∂̂z̄1 + mξ± ∂̂z2

∂̂z3 ∂̂z̄2 −mξ± ∂̂z1

∂̂z3 ∂̂z̄3 + m2
ξ±



 B

Entries no longer commute!!



Recap II

✤ We have computed the spectrum of KK modes in several  
type I vacua based on twisted tori 

✤ If one assumes the hierarchy                                                    
then one has 

ε = mflux ! mKK
base ! mKK

fib

Massless modes 
and lifted moduli

ψ = const like in T6

Base KK modes

ψ like in T4

Fiber KK modes

Exotic, localized ψ

Vol1/2
B4
! VolΠ2



About warping

✤ In the above we have assumed a constant warping 

✤ One can check that

✤ So for                          we have                    and                       

Z = const. is a good approximation

✤ However, for                         we have

✦ Warping effects

✦ Fiber modes more localized ⇒ should dominate

∇2
T 4Z2 = −ε2 + . . .

ε! mKK
baseVol1/2

B4
! VolΠ2

Vol1/2
B4
! VolΠ2



Type IIB T-dual

✤ We can take our models to type IIB by T-duality                    
on the fiber coordinates:

2
2(T  )2

1

D7

(T  )2
3

30

(T  )
! 2R

"
"

# = #

# = #  +   $

0

2%

N D9-branes N D7-branes
KK mode on B4 ! (T 2)1 × (T 2)2 −→ KK mode on (T 2)1 × (T 2)2

KK mode on Π2 ! (T 2)3 Winding mode on (T 2)3



Conclusions

✤ We have considered type I flux vacua in order to see the 
effect of fluxes on open strings via field theory calculations

✤ Assuming constant Z, one can compute exactly the massless 
and massive spectrum of wavefunctions for models based on 
twisted tori and group quotients Γ \ G

✤ The techniques used here for adjoint fields also work for 
bifundamental chiral multiplets

✤ Computing 4D couplings via wavefunctions, we can compare 
with the ones from 4D sugra. They indeed agree for ε small

✤ For ε not small, however, we expect new phenomena, in part 
due to warping and in part due to exotic KK modes

 see Cámara’s Talk



Outlook

✤ As a byproduct, we have developed a method for computing 
wavefunctions on group manifolds and quotients Γ \ G

✤ This is not only useful for type I compactifications, but also 
for the KK spectrum of type IIA flux vacua

✦ de Sitter vacua 

✦ AdS vacua

Silverstein’07
Haque, Underwood,Shiu, van Riet’08

Lüst & Tsimpis’04
see Villadoro’s & Zagermann’s Talks



Outlook

✤ As a byproduct, we have developed a method for computing 
wavefunctions on group manifolds and quotients Γ \ G

✤ This is not only useful for type I compactifications, but also 
for the KK spectrum of type IIA flux vacua

✦ de Sitter vacua 

✦ AdS vacua

✤ We have also seen that the effect of RR fluxes is very simple 
once that the background eom have been applied

(
Γa∂̂a +

1
4

[
/f + eφ/2/F3

])
χ6 →

(
Γa∂̂a +

1
2
/fPB4

+

)
χ6

...hint for a CFT computation?

Lüst & Tsimpis’04
see Villadoro’s & Zagermann’s Talks

Silverstein’07
Haque, Underwood,Shiu, van Riet’08


