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V,G

W,F

H1(V )F ⇒ matter

H1(V ∗)F ⇒ conjugate matter

H1(∧2V )F ⇒ Higgs

H1(V ⊗ V ∗)F ⇒ Bundle Moduli

• Heterotic Standard Model: V , G = SU(4) W , F = Z3 × Z3,

N = 1 SUSY

“slope” stable

H = [E8, G]

H = [H,F ]

Heterotic Compactifications

R4

D = 6

D = 10, gMN , Aa
M , E8

X,

Braun, He, Ovrut, Pantev 2006



R4 Theory Gauge Group:

G = SU(4)⇒

F = Z3 × Z3 ⇒

E8 → H = Spin(10)

Spin(10)→ SU(3)C × SU(2)L × U(1)Y×U(1)B−L

rank Spin(10)=5 plus F Abelian ⇒ extra gauged     U(1)B−L .

Note that

Z2 (R− parity) ⊂ U(1)B−L

⇒ no rapid proton decay. But must be spontaneously 
broken above the scale of weak interactions.

Gauge connection

Wilson line

H =



R4 Theory Spectrum:

E8
V−→ Spin(10)⇒

248 = (1, )⊕ (4, )⊕ (4̄, )⊕ (6, )⊕ (15, )45 16 1̄6 10 1

The Spin(10) spectrum is determined from nR = h1(X, UR(V )).

For example,
n16 = h1(X, V ) = 27

Spin(10) F−→ SU(3)C × SU(2)L × U(1)Y × U(1)B−L ⇒

The 3× 2× 1Y × 1B−L spectrum is determined from

nr = (h1(X, UR(V ))⊗R)Z3×Z3 . For example, R = 16

Tensoring and taking invariant subspace gives 3 families 

of quarks/leptons each transforming as



QL = (3, 2, 1, 1), uR = (3̄, 1,−4,−1), dR = (3̄, 1, 2,−1)

LL = (1, 2,−3,−3), eR = (1, 1, 6, 3), νR = (1, 1, 0, 3)

under SU(3)C × SU(2)L × U(1)Y × U(1)B−L.

Similarly we get 1 pair of Higgs-Higgs conjugate fields

H = (1, 2, 3, 0), H̄ = (1, 2̄,−3, 0)

That is, we get exactly the matter spectrum of the MSSM!

In addition, there are

bundle moduli

n1 = h1(X, V × V ∗)Z3×Z3 = 13 vector

φ = (1, 1, 0, 0)



Supersymmetric Interactions:

The most general superpotential is

W =
3∑

i=1

(λu,iQiHui + λd,iQiH̄di + λν,iLiHνi + λe,iLiH̄ei)

Note B-L symmetry forbids dangerous B and L violating terms

LLe, LQd, udd

Can we evaluate Yukawa couplings from first principles? Yes!

a) Texture:
W = . . .λLHr + . . .

⇒ a Yukawa coupling is the triple product 

H1(X, V ) ⊗H1(X,∧2V ) ⊗H1(X, V ) −→ CZ3 × Z3 Z3 × Z3 Z3 × Z3

Internal super-geometry (X elliptically fibered over dP9 base) ⇒
in flavor diagonal basis for each of u, d, ν, e

λ1 = 0, λ2,λ3 != 0

Braun, He, Ovrut 2006



b) Explicit Calculation:

The triple product ⇒ 

where

∇2
∗∗ψ

∗ = λψ∗ ,λ = 0

⇒ need to calculate the metric and eigenfunctions of the  

Laplacian. Unfortunately, a Calabi-Yau manifold does not admit 

a continuous symmetry. ⇒ the metric, gauge connection 

and, hence, the Laplacian are unknown! Remarkably, these

can be well-approximated by numerical methods.

λ =
∫

X

√
gµνψa

Lψ[b,c]
H ψd

r εabcdd
6x

That is, naturally light first family and heavy second/third
families.

Braun, Brelidze, Douglas, Ovrut 2008

Anderson, Braun, Karp, Ovrut 2009



Ricci-Flat Metrics, Scalar Laplacians and Gauge Connections
on Calabi-Yau Threefolds

Let sα,α = 0, . . . , Nk − 1 be degree-k polynomials on the CY

and hαβ̄
bal a specific matrix. Defining

g(k)
(bal)ij̄

=
1
kπ

∂i∂j̄ ln
Nk−1∑

α,β̄=0

hαβ̄
balsαs̄β̄

then

g(k)
(bal)ij̄

k→∞−→ gCY
ij̄

Expressed this way, g(k)
(bal)ij̄ at any finite k is not very enlightening.

More interesting is how closely they approach gCY
ij̄ for large k. 

This can be estimated using

σk

(
Q̃

)
=

1
V olCY

(
Q̃

)
∫

Q̃

∣∣∣∣∣∣
1−

ω3
k

/
V olK

(
Q̃

)

Ω ∧ Ω̄
/

V olCY

(
Q̃

)

∣∣∣∣∣∣
dV olCY
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Figure 1: The error measure σk for the metric on the Fermat quintic, com-
puted with the two different point generation algorithms described in
Subsection 2.3. In each case we iterated the T-operator 10 times,
numerically integrating over Np = 200,000 points. Then we eval-
uated σk using 10,000 different test points. The error bars are the
numerical errors in the σk integral.
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Fermat quintic:



Scalar Laplacians:

Given a metric gµν ⇒
∆ = − 1

√
g
∂µ(gµν√g∂ν)

Solve the eigen-equation

∆φm,i = λmφm,i , i = 1, . . . µm

where is the multiplicity from continuous/finite symmetry.µm

Choose a basis ⇒ the eigen-equation becomes

∑

b

〈
fa

∣∣∆
∣∣fb

〉
〈fb|φ̃m,i〉 =

∑

b

λm〈fa|fb〉〈fb|φ̃m,i〉

Numerical Solution:

let alone solving for the infinite number of eigenvalues and eigenfunctions, is not
possible. Instead, we greatly simplify the problem by choosing a finite subset of
slowly-varying functions as an approximate basis. For simplicity of notation, let us
take {fa|a = 1, . . . , k} to be our approximating basis. The k×k matrices (∆ab)1≤a,b≤k

and 〈fa|fb〉1≤a,b≤k are then finite dimensional and one can numerically solve eq. (11)
for the approximate eigenvalues and eigenfunctions. It is important to note that
this procedure generically violates any underlying symmetries of the manifold and,
hence, each eigenvalue will be non-degenerate. Finally, we successively improve the
accuracy of the approximation in two ways: 1) for fixed k the numerical integration of
the matrix elements is improved by summing over more points and 2) we increase the
dimension k of the truncated space of functions. In the limit where both the numerical
integration becomes exact and where k → ∞, the approximate eigenvalues λn and
eigenfunctions φn converge to the exact eigenvalues λ̂m and eigenfunctions φm,i with
multiplicity µm.

3 The Spectrum of ∆ on P3

{sec:CP3}
In this section, we use our numerical method to compute the eigenvalues and eigen-
functions of ∆ on the complex projective threefold

P3 = S7
/
U(1) = SU(4)

/
S
(
U(3)× U(1)

)
(13) {eq:CP3def}

with a Kähler metric proportional to the Fubini-Study metric, rescaled so that the
total volume is unity. As mentioned above, since this is a symmetric space of the form
G/H, the equation ∆φ = λφ can be solved analytically. The results were presented
in [33]. Therefore, although P3 is not a phenomenologically realistic string vacuum,
it is an instructive first example since we can check our numerical algorithm against
the exact eigenvalues and eigenfunctions. Note that, in this case, the metric is known
analytically and does not need to be determined numerically.

3.1 Analytic Results
{sec:CP3analytic}

Let us begin by reviewing the known analytic results [33]. First, recall the Fubini-
Study metric is given by gFS

ī = ∂i∂̄̄KFS with

KFS(z, z̄) =
1

π
ln

(
|z0|2 + |z1|2 + |z2|2 + |z3|2

)
. (14) {eq:K_FS}

With respect to this metric the volume of P3 is

VolFS(P3) =

∫

P3
det

(
gī

)
d6x =

∫

P3

ω3
FS

3!
=

1

6
, (15) {eq:K_FSvol}

7

1) Solve numerically for λn and φn

2) For fixed k let nφ →∞
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Figure 8: Eigenvalues of the scalar Laplace operator on the Fermat quintic.
The metric is computed at degree kh = 8, using nh = 2,166,000
points. The Laplace operator is evaluated at degree kφ = 3 using a
varying number nφ of points. {fig:SpecQtFNp
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Fermat quintic:



SU(N) Gauge Connections:

Let za
α, α = 0, . . . , NkH − 1 be degree- polynomials on the kH

CY carrying the N-representation of U(N) and Hαβ̄
bal a specific

matrix. Defining an SU(N) connection

A(kH)ab̄
(bal)i = ∂i(ln

NkH
−1∑

α,β̄

Hαβ̄
balz

a
αz̄b̄

β̄ − gab̄ln

NkH
−1∑

α,β̄

hαβ̄
balsαs̄β̄)

then

AkH

(bal)i
kH→∞−→ AH

i

where AH
i satisfies the Hermitian Yang-Mills equations. That is

ωij̄F (kH)
(bal)īj

= ωij̄∂j̄A
(kH)
(bal)i

kH→∞−→ 0

Expressed this way AkH

(bal)i at any finite kH is not enlightening. More

interesting is how closely they approach AH
i for large kH . This can 

be estimated using



Fermat quintic:

τkH (A) =
1

2πVCY (Q̃)

∫

Q̃

N∑

a=1

|λa|dV olCY ωij̄F (kH)
(bal)īj

= diag(λ1, . . . ,λN )where



Supersymmetry Breaking, the Renormalization Group 
and the LHC

Soft Supersymmetry Breaking:

N=1 Supersymmetry is spontaneously broken by the moduli 

during compactification ⇒ soft supersymmetry breaking 

interactions. The relevant ones are

V2f =
1
2
M3λ3λ3 + . . .

V2s = m2
ν3

|ν3|2 + m2
H |H|2 + m2

H̄ |H̄|2 − (BHH̄ + hc) + . . .

At the compactification scale MC ! 1016GeV these parameters 

are fixed by the vacuum values of the moduli. For example

m2
ν3

= m2
ν3

(〈φ〉)

Ambroso, Ovrut 2009



However, at a lower scale µ measured by t = ln(
µ

MC
) these 

parameters change under the renormalization group. 

For example,

Solving these, at a scale µ ! 104GeV ⇒ tB−L ! −25

mν3(tB−L)2 = mν(0)2

Including the D-term effect

meffν3(tB−L)2 = mν3(tB−L)2 +
√

3
4
g4ξB−L

⇒
meffν3(tB−L)2 = −4mν(0)2

Therefore, we expect the spontaneous breaking of B-L at tB−L.

16π2 dm2
ν3

dt
! 3

4
g4

2
3∑

i=1

(m2
νi

+ . . . )

−1.9 mν(0)2

, 8π2 dξB−L

dt
= · · · +

√
3
4
g4Tr(YB−Lm2)

ξB−L(tB−L) =, −8.57 mν(0)2



Result:

The vacuum expectation value at      

〈ν3〉 =
2mν(0)√

3
4g4

tB−L is

⇒ a B-L vector boson mass of 

At this scale, no other symmetry is broken.

〈ν3〉

ν3

V

MAB−L = 2
√

2mν(0)



Similarly, at the electroweak scale µ ! 102GeV ⇒ tEW ! −29.6

mH̄′ (tEW )2 ! mH(0)2,

where tanβ =
〈H〉
〈H̄〉 and 

symmetry is broken by the expectation valuetEW electroweak

⇒ a Z-boson mass of 

. ⇒ at is related to M3(0)

mH′ (tEW )2 !− ∆2

tanβ2 mH(0)2

〈H
′0〉 =

2∆ mH(0)

tanβ
√

3
5g2

1 + g2
2

0 < ∆2 < 1

MZ =
√

2∆ mH(0)
tanβ

" 91GeV



It follows that there is a B-L/EW gauge hierarchy given by

Our approximations are valid for the range 6.32 ≤ tanβ ≤ 40 .

For ,  the B-L/EW hierarchy in this range is

We conclude that this vacuum exhibits a natural hierarchy
O(10) O(100)of to ⇒

1.42× 103GeV ! MAB−L ! 0.91× 104GeV

15.8 ! MAB−L

MZ
! 100

All super-partner masses are related through intertwined
renormalization group equations. ⇒ Measuring some
masses predicts the rest!

MAB−L

MZ
! tanβ

∆

∆ =
1

2.5



The slepton and squark masses to leading order are

〈〈m2
ν1,2

〉〉 # 36.4 mH(0)2, 〈〈m2
ν3
〉〉 # 8.87 mH(0)2,

〈〈m2
Ni
〉〉 # 〈〈m2

Ei
〉〉 # 6.65 mH(0)2, 〈〈m2

ei
〉〉 # 4.75 mH(0)2

and

〈〈m2
U3
〉〉 # 〈〈m2

D3
〉〉 # 0.109 mH(0)2,

〈〈m2
U1,2

〉〉 # 〈〈m2
D1,2

〉〉 # 0.442 mH(0)2,

〈〈m2
u1,2

〉〉 # 〈〈m2
di
〉〉 # 1.075 mH(0)2, 〈〈m2

u3
〉〉 # 0.409 mH(0)2

where

Note that all mass squares are positive and, hence, the

B-L/EW vacuum is a stable local minimum! 

mH(0) =
tanβ√

2∆
MZ


