The Heterotic String:

From Super-Geometry to the LHC

Burt Ovrut
String Phenomenology '09 Conference
Warsaw, 2009

Heterotic Compactifications

- Heterotic Standard Model: $V, G=S U(4), W, F=\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ Braun, He, Ovrut, Pantev 2006

\mathbb{R}^{4} Theory Gauge Group:

Gauge connection $G=S U(4) \Rightarrow$

$$
E_{8} \rightarrow H=\operatorname{Spin}(10)
$$

Wilson line $F=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \Rightarrow$

$$
\operatorname{Spin}(10) \rightarrow \mathcal{H}=S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}
$$

rank $\operatorname{Spin}(10)=5$ plus $\mathrm{FAbelian} \Rightarrow$ extra gauged $U(1)_{B-L}$.
Note that

$$
\mathbb{Z}_{2}(R-\text { parity }) \subset U(1)_{B-L}
$$

\Rightarrow no rapid proton decay. But must be spontaneously broken above the scale of weak interactions.

\mathbb{R}^{4} Theory Spectrum:

$E_{8} \xrightarrow{V} \operatorname{Spin}(10) \Rightarrow$

$$
248=(1,45) \oplus(4,16) \oplus(\overline{4}, \overline{16}) \oplus(6,10) \oplus(15,1)
$$

The Spin(I0) spectrum is determined from $n_{R}=h^{1}\left(X, U_{R}(V)\right)$. For example,

$$
n_{16}=h^{1}(X, V)=27
$$

$\operatorname{Spin}(10) \xrightarrow{F} S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L} \Rightarrow$
The $3 \times 2 \times 1_{Y} \times 1_{B-L}$ spectrum is determined from $n_{r}=\left(h^{1}\left(X, U_{R}(V)\right) \otimes \mathbf{R}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}$. For example, $R=\mathbf{1 6}$

Tensoring and taking invariant subspace gives 3 families of quarks/leptons each transforming as

$$
\begin{gathered}
Q_{L}=(3,2,1,1), \quad u_{R}=(\overline{3}, 1,-4,-1), \quad d_{R}=(\overline{3}, 1,2,-1) \\
L_{L}=(1,2,-3,-3), e_{R}=(1,1,6,3), \quad \nu_{R}=(1,1,0,3)
\end{gathered}
$$

under $S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)_{B-L}$.
Similarly we get I pair of Higgs-Higgs conjugate fields

$$
H=(1,2,3,0), \quad \bar{H}=(1, \overline{2},-3,0)
$$

That is, we get exactly the matter spectrum of the MSSM! In addition, there are $n_{1}=h^{1}\left(X, V \times V^{*}\right)^{\mathbb{Z}_{3} \times \mathbb{Z}_{3}}=13$ vector bundle moduli

$$
\phi=(1,1,0,0)
$$

Supersymmetric Interactions:

The most general superpotential is

$$
W=\sum_{i=1}^{3}\left(\lambda_{u, i} Q_{i} H u_{i}+\lambda_{d, i} Q_{i} \bar{H} d_{i}+\lambda_{\nu, i} L_{i} H \nu_{i}+\lambda_{e, i} L_{i} \bar{H} e_{i}\right)
$$

Note B-L symmetry forbids dangerous B and L violating terms
LLe, LQd, udd

Can we evaluate Yukawa couplings from first principles? Yes!
a) Texture:

$$
W=\ldots \lambda L H r+\ldots
$$

$\Rightarrow \mathrm{a}$ Yukawa coupling is the triple product

$$
H^{1}(X, V)^{z_{8} \times z_{3}} \otimes H^{1}\left(X, \wedge^{2} V\right)^{z_{9} \times z_{3}} \otimes H^{1}(X, V)^{z_{3} \times x_{3}} \longrightarrow \mathbb{C}
$$

Internal super-geometry (X elliptically fibered over dP9 base) \Rightarrow in flavor diagonal basis for each of u, d, ν, e

$$
\lambda_{1}=0, \quad \lambda_{2}, \lambda_{3} \neq 0
$$

That is, naturally light first family and heavy second/third families.
b) Explicit Calculation:

Braun, Brelidze, Douglas, Ovrut 2008
Anderson, Braun, Karp, Ovrut 2009
The triple product \Rightarrow

$$
\lambda=\int_{X} \sqrt{g_{\mu \nu}} \psi_{L}^{a} \psi_{H}^{[b, c]} \psi_{r}^{d} \epsilon_{a b c d} d^{6} x
$$

where

$$
\nabla_{* *}^{2} \psi^{*}=\lambda \psi^{*}, \lambda=0
$$

\Rightarrow need to calculate the metric and eigenfunctions of the Laplacian. Unfortunately, a Calabi-Yau manifold does not admit a continuous symmetry. \Rightarrow the metric, gauge connection and, hence, the Laplacian are unknown! Remarkably, these can be well-approximated by numerical methods.

Ricci-Flat Metrics, Scalar Laplacians and Gauge Connections on Calabi-Yau Threefolds

Let $s_{\alpha}, \alpha=0, \ldots, N_{k}-1$ be degree-k polynomials on the CY and $h_{\text {bal }}^{\alpha \bar{\beta}}$ a specific matrix. Defining
then

$$
g_{(\text {bal } i \bar{j}}^{(k)}=\frac{1}{k \pi} \partial_{i} \partial_{\bar{j}} \ln \sum_{\alpha, \bar{\beta}=0}^{N_{k}-1} h_{\text {bal }}^{\alpha \bar{\beta}} s_{\alpha} \overline{s_{\bar{\beta}}}
$$

$$
g_{(\mathrm{bal}) i \bar{j}}^{(k)} \xrightarrow{k \rightarrow \infty} g_{i \bar{j}}^{C Y}
$$

Expressed this way, $g_{(\text {bal }) i \bar{j}}^{(k)}$ at any finite k is not very enlightening. More interesting is how closely they approach $g_{i \bar{j}}^{C Y}$ for large k . This can be estimated using

$$
\sigma_{k}(\tilde{Q})=\frac{1}{\operatorname{Vol}_{C Y}(\tilde{Q})} \int_{\tilde{Q}}\left|1-\frac{\omega_{k}^{3} / \operatorname{Vol}_{K}(\tilde{Q})}{\Omega \wedge \bar{\Omega} / \operatorname{Vol}_{C Y}(\tilde{Q})}\right| d V o l_{C Y}
$$

Fermat quintic:

The error measure σ_{k} for the metric on the Fermat quintic, computed with the two different point generation algorithms

Scalar Laplacians:

Given a metric $g_{\mu \nu} \Rightarrow$

$$
\Delta=-\frac{1}{\sqrt{g}} \partial_{\mu}\left(g^{\mu \nu} \sqrt{g} \partial_{\nu}\right)
$$

Solve the eigen-equation

$$
\Delta \phi_{m, i}=\lambda_{m} \phi_{m, i}, i=1, \ldots \mu_{m}
$$

where μ_{m} is the multiplicity from continuous/finite symmetry. Choose a basis $\left\{f_{a} \mid a=1, \ldots, k\right\} \Rightarrow$ the eigen-equation becomes

$$
\sum_{b}\left\langle f_{a}\right| \Delta\left|f_{b}\right\rangle\left\langle f_{b} \mid \tilde{\phi}_{m, i}\right\rangle=\sum_{b} \lambda_{m}\left\langle f_{a} \mid f_{b}\right\rangle\left\langle f_{b} \mid \tilde{\phi}_{m, i}\right\rangle
$$

Numerical Solution:
I) Solve numerically for λ_{n} and ϕ_{n}
2) For fixed k let $n_{\phi} \rightarrow \infty$

Fermat quintic:

Eigenvalues of the scalar Laplace operator on the Fermat quintic. The metric is computed at degree $k_{h}=8$, using $n_{h}=2,166,000$ points. The Laplace operator is evaluated at degree $k_{\phi}=3$ using a varying number n_{ϕ} of points.

SU(N) Gauge Connections:

Let $z_{\alpha}^{a}, \alpha=0, \ldots, N_{k_{H}}-1$ be degree- k_{H} polynomials on the CY carrying the N-representation of $\mathrm{U}(\mathrm{N})$ and $H_{\text {bal }}^{\alpha \bar{\beta}}$ a specific matrix. Defining an $\mathrm{SU}(\mathrm{N})$ connection
then

$$
A_{(\text {ball }) \mathrm{i}}^{\left(k_{H}\right) a \bar{b}}=\partial_{i}\left(\ln \sum_{\alpha, \bar{\beta}}^{N_{k_{H}}-1} H_{\text {bal }}^{\alpha \bar{\beta}} z_{\alpha}^{a} \bar{z}_{\bar{\beta}}^{\bar{b}}-g^{a \bar{b}} \ln \sum_{\alpha, \bar{\beta}}^{N_{k_{H}}-1} h_{\text {bal }}^{\alpha \bar{\beta}} s_{\alpha} \bar{\alpha}_{\bar{\beta}}\right)
$$

$$
A_{(\text {bal }) \mathrm{i}}^{k_{H}} \xrightarrow{k_{H} \rightarrow \infty} A_{i}^{H}
$$

where A_{i}^{H} satisfies the Hermitian Yang-Mills equations. That is

$$
\omega^{i \bar{j}} F_{(\mathrm{bal}) \mathrm{ij} \bar{j}}^{\left(k_{H}\right)}=\omega^{i \bar{j}} \partial_{\bar{j}} A_{(\text {bal }) \mathrm{i}}^{\left(k_{H}\right)} \xrightarrow{k_{H} \rightarrow \infty} 0
$$

Expressed this way $A_{\text {(bal) } \mathrm{i}}^{k_{H}}$ at any finite k_{H} is not enlightening. More interesting is how closely they approach A_{i}^{H} for large k_{H}. This can be estimated using

$$
\tau_{k_{H}}(A)=\frac{1}{2 \pi V_{C Y}(\tilde{Q})} \int_{\tilde{Q}} \sum_{a=1}^{N}\left|\lambda_{a}\right| d V o l_{C Y} \quad \text { where } \omega^{i \bar{j}} F_{(\text {bal }) \mathrm{i} \bar{j}}^{\left(k_{H}\right)}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

Fermat quintic:

Supersymmetry Breaking, the Renormalization Group and the LHC

Soft Supersymmetry Breaking:

$\mathrm{N}=$ I Supersymmetry is spontaneously broken by the moduli during compactification \Rightarrow soft supersymmetry breaking interactions. The relevant ones are

$$
\begin{gathered}
V_{2 s}=m_{\nu_{3}}^{2}\left|\nu_{3}\right|^{2}+m_{H}^{2}|H|^{2}+m_{\bar{H}}^{2}|\bar{H}|^{2}-(B H \bar{H}+h c)+\ldots \\
V_{2 f}=\frac{1}{2} M_{3} \lambda_{3} \lambda_{3}+\ldots
\end{gathered}
$$

At the compactification scale $M_{C} \simeq 10^{16} \mathrm{GeV}$ these parameters are fixed by the vacuum values of the moduli. For example

$$
m_{\nu_{3}}^{2}=m_{\nu_{3}}^{2}(\langle\phi\rangle)
$$

However, at a lower scale μ measured by $t=\ln \left(\frac{\mu}{M_{C}}\right)$ these parameters change under the renormalization group.
For example,

$$
16 \pi^{2} \frac{d m_{\nu_{3}}^{2}}{d t} \simeq \frac{3}{4} g_{4}{ }^{2} \sum_{i=1}^{3}\left(m_{\nu_{i}}^{2}+\ldots\right), 8 \pi^{2} \frac{d \xi_{B-L}}{d t}=\cdots+\sqrt{\frac{3}{4}} g_{4} \operatorname{Tr}\left(Y_{B-L} m^{2}\right)
$$

Solving these, at a scale $\mu \simeq 10^{4} \mathrm{GeV} \Rightarrow t_{B-L} \simeq-25$

$$
m_{\nu_{3}}\left(t_{B-L}\right)^{2}=m_{\nu}(0)^{2}-1.9 m_{\nu}(0)^{2}, \quad \xi_{B-L}\left(t_{B-L}\right)=-8.57 m_{\nu}(0)^{2}
$$

Including the D-term effect

$$
m_{\mathrm{eff} \nu_{3}}\left(t_{B-L}\right)^{2}=m_{\nu_{3}}\left(t_{B-L}\right)^{2}+\sqrt{\frac{3}{4}} g_{4} \xi_{B-L}
$$

\Rightarrow

$$
m_{\mathrm{eff} \nu_{3}}\left(t_{B-L}\right)^{2}=-4 m_{\nu}(0)^{2}
$$

Therefore, we expect the spontaneous breaking of B-L at t_{B-L}.

Result:

The vacuum expectation value at t_{B-L} is

$$
\begin{aligned}
& \qquad\left\langle\nu_{3}\right\rangle=\frac{2 m_{\nu}(0)}{\sqrt{\frac{3}{4}} g_{4}} \\
& \Rightarrow \text { a B-L vector boson mass of }
\end{aligned}
$$

$$
M_{A_{B-L}}=2 \sqrt{2} m_{\nu}(0)
$$

At this scale, no other symmetry is broken.

Similarly, at the electroweak scale $\mu \simeq 10^{2} \mathrm{GeV} \Rightarrow t_{E W} \simeq-29.6$

$$
m_{H^{\prime}}\left(t_{E W}\right)^{2} \simeq-\frac{\Delta^{2}}{\tan \beta^{2}} m_{H}(0)^{2} \quad, \quad m_{\bar{H}^{\prime}}\left(t_{E W}\right)^{2} \simeq m_{H}(0)^{2}
$$

where $\tan \beta=\frac{\langle H\rangle}{\langle\bar{H}\rangle}$ and $0<\Delta^{2}<1$ is related to $M_{3}(0) . \Rightarrow$ at
$t_{E W}$ electroweak symmetry is broken by the expectation value

$$
\left\langle H^{\prime} 0\right\rangle=\frac{2 \Delta m_{H}(0)}{\tan \beta \sqrt{\frac{3}{5} g_{1}^{2}+g_{2}^{2}}}
$$

$\Rightarrow \mathrm{a}$ Z-boson mass of

$$
M_{Z}=\frac{\sqrt{2} \Delta m_{H}(0)}{\tan \beta} \simeq 91 G e V
$$

It follows that there is a B-L/EW gauge hierarchy given by

$$
\frac{M_{A_{B-L}}}{M_{Z}} \simeq \frac{\tan \beta}{\Delta}
$$

Our approximations are valid for the range $6.32 \leq \tan \beta \leq 40$.
For $\Delta=\frac{1}{2.5}$, the B-L/EW hierarchy in this range is

$$
15.8 \lesssim \frac{M_{A_{B-L}}}{M_{Z}} \lesssim 100
$$

We conclude that this vacuum exhibits a natural hierarchy of $\mathcal{O}(10)$ to $\mathcal{O}(100) \Rightarrow$

$$
1.42 \times 10^{3} \mathrm{GeV} \lesssim M_{A_{B-L}} \lesssim 0.91 \times 10^{4} \mathrm{GeV}
$$

All super-partner masses are related through intertwined renormalization group equations. \Rightarrow Measuring some masses predicts the rest!

The slepton and squark masses to leading order are

$$
\begin{gathered}
\left\langle\left\langle m_{\nu_{1,2}}^{2}\right\rangle\right\rangle \simeq 36.4 m_{H}(0)^{2}, \quad\left\langle\left\langle m_{\nu_{3}}^{2}\right\rangle\right\rangle \simeq 8.87 m_{H}(0)^{2}, \\
\left\langle\left\langle m_{N_{i}}^{2}\right\rangle\right\rangle \simeq\left\langle\left\langle m_{E_{i}}^{2}\right\rangle\right\rangle \simeq 6.65 m_{H}(0)^{2},\left\langle\left\langle m_{e_{i}}^{2}\right\rangle\right\rangle \simeq 4.75 m_{H}(0)^{2}
\end{gathered}
$$

and

$$
\begin{aligned}
\left\langle\left\langle m_{U_{3}}^{2}\right\rangle\right\rangle & \simeq\left\langle\left\langle m_{D_{3}}^{2}\right\rangle\right\rangle \simeq 0.109 m_{H}(0)^{2}, \\
\left\langle\left\langle m_{U_{1,2}}^{2}\right\rangle\right\rangle & \simeq\left\langle\left\langle m_{D_{1,2}}^{2}\right\rangle\right\rangle \simeq 0.442 m_{H}(0)^{2}, \\
\left\langle\left\langle m_{u_{1,2}}^{2}\right\rangle\right\rangle \simeq\left\langle\left\langle m_{d_{i}}^{2}\right\rangle\right\rangle & \simeq 1.075 m_{H}(0)^{2},\left\langle\left\langle m_{u_{3}}^{2}\right\rangle\right\rangle \simeq 0.409 m_{H}(0)^{2}
\end{aligned}
$$

where

$$
m_{H}(0)=\frac{\tan \beta}{\sqrt{2} \Delta} M_{Z}
$$

Note that all mass squares are positive and, hence, the B-L/EW vacuum is a stable local minimum!

