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Our approach
• Start from a static Universe, an “empty box”.

• Fill it with a thermalized gas of states.

• The pressure will back-react on the walls of the box.

• A quasi-static evolution emerges, i.e. a succession of 
states in thermal equilibrium. 

Plan - Comparison : field vs. string theory.

- Determine the back-reaction.

- Attraction mechanisms to radiation eras.

- Space-time dimension dynamically stabilized.

- Stabilization of moduli.



Field theory versus String theory

• For a single bosonic degree of freedom of mass M :

• The quantum canonical ensemble can be studied with 
a Euclidean path integral on                  with periodic 
B.C. along        (antiperiodic for a fermion) :
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• In terms of Feynman diagrams,
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m̃0• The bosonic loop can be wrapped        times along      . 

• Finite in the I.F. as long as there is no tachyon.

• Divergent in the U.V. (              ,           ).

• The genus one computation in string theory should be 
finite in the U.V. because of the integration on the 
fundamental domain.
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• The bosonic string has a tachyon even at T = 0.

• Consider N  = 1,2,4 susy heterotic models in 4D.

F = −Zgenus-1

β
✳ Compute                                 in the Euclidean 

background                                    , where                   .β = 2πR0

Oscillators and internal lattice

Examples

✳ The string result regularizes the field theory one :

(a=0 for bosons, a=1for fermions)
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[F in bosonic string: 
Polchinski ’86]
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✳ Reversed GSO when the winding      is odd : 
    A tachyon occurs for

    We restrict to              to avoid the Hagedorn transition.               
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0τ2 n0 = 0

✳                  both even is susy : no contribution. 
    We are left with                     . 
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✳ Redef                                                              is  
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• For phenomenology: Consider a non-susy 4D model, 
Heterotic N  = 1→0 spontaneously. And thermalize.

✳ To implement the temperature, we have imposed 

Momentum                  ⇒ mass shift                             
m̃0 + a

2
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✳ Compactify on                    and impose
T 6

Z2 × Z2

⇒ mass shift                             
R-sym charge

susy breaking scale

ϕ(tE) = (−)am̃0ϕ(tE+2πR0m̃0)

ϕ(x4) = (−)(a+Q)m̃4ϕ(x4+2πR4m̃4)

[In field theory: Scherk, Schwarz ’79]
[In string theory: Kounnas, Rostand ’90]



✳ To avoid Hagedorn-like transitions:                      ,R0, R4 ! 1
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✳ The pressure of the thermal gas of strings now pushes 
the walls of the “3D box”.
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: The laps function is the inverse temperature
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NB: We don’t need to compute the 1-loop corrections to the 
kinetic terms. (They can be absorbed by wave function redefinitions and translate into 
corrections to the 1-loop P at second order only.)
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✳ For simplicity, we restrict to homogeneous and isotropic 
extrema of this action, which involve non-trivial backgrounds 
for                     only (we partially relax this hypothesis later). N, a,Φ, φ⊥
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NB: Variational principle and thermodynamics are consistent.



✳ Write the Einstein equations coupled to               in 
presence of sources          .

Φ, φ⊥
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-equation:
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✳ Case nV < 0 : For generic I.B.C., there is an attraction to a 
particular solution,                                             , with
eventually damped oscillations.

z(t)→ zc, φ⊥(t)→ cst.

Attractors :

(
ρ = T 4r(z), P = T 4p(z)

)
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- After convergence,                                       

M(t) ∝ T (t) ∝ 1
a(t)

i.e.                         proportional !

with Friedmann eq.  3H2 = c
p(zc)
a4

Attraction to an effective radiation era.⇒
- A paradox:                                        r(zc) = 4 p(zc) =⇒ ρ = 4P
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- Consistency : What perturbs the “static box” is                                    

state equation for radiation in 4D

Ptot(t)→ 0 + 0 + 0
✳ Case nV > 0 : Attraction to a run away solution
describing an era of contraction. (We should have started from a small box.)

z(t)→ +∞

R4, R0, Rbox



✳ In all Cases: If I.B.C. such that              i.e.                  
    the KK in the direction 4 become continuous. 

⇒       The system is better understood in 5D, but anisotropic :
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- Our fields are                           and the pressure in 5D 

  satisfies Stefan’s law                                                    .
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- For arbitrary I.B.C., the solution converges to the effective
  

  radiation era  

SO(1, 3)× U(1)→ SO(1, 4)
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, φ′
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Spontaneous enhancement of Lorentz group:

z ! −1 R4 ! R0 ! 1, .



✳ We have considered the dynamics of 2 susy breaking moduli,
           ; supposing the others are frozen. Let us relax this hyp.

✳ For one more dynamical susy-breaking modulus      :  
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                                         i.e.                               are
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Moduli stabilization ?
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✳ For one more dynamical non-susy-breaking modulus : 
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- The pressure is P = T 4 p
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small / large ⇒ 4D or 5D

massless winding modes

! 1
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If        : enhanced symmetry point,



- The potential for       is         .  At fixed                one has:R4 − P T , z, R9
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Connected by 
stringy effects



Phase I : - The Kähler modulus      is a Higgs field. 
             - Damped oscillations        Stabilized. 
             -  The attractor is a radiation era in 4D.

R4⇒

  b) Friction negligible                                 .
             -      catches the moving edges and “falls”.

≠

⇒

⇒

R4

Phase III : - Run away of the Kähler modulus  
                 i.e.  spontaneous decompactification.
               - The attractor is a radiation era in isotropic 5D.

Phase II :     basins of attraction:
  a) Friction dominates                             .
      - gets stuck anywhere on the plateau.
      - Not stabilized but frozen.
      - The attractor is a radiation era in 4D.

(lnR4)◦ → 0

(lnR4)◦ → cst

R4



• Consider a flat and static background. At 1-loop, it is 
cosmological, due to finite temperature effects.

• The free energy can be computed at the string level : It is 
free of singularity (not in field theory). 

• We have not described in this talk the “Hagedorn era”. 
However, for arbitrary I.B.C. at the time we exit this era, the 
evolution of the universe is attracted to a radiation era. 

• The space-time dimension is dynamically stabilized. 

• Kähler and complex structure moduli can be stabilized.

• Our approach is valid till                , the E.W. transmutation 
scale. There, large radiative corrections should induce the 
EW breaking and stabilize     . (work in progress)

Summary

M ! Q0

M


