Attraction to a radiation era and moduli stabilization in string cosmology

Hervé Partouche Ecole Polytechnique

in collaboration with
F. Bourliot, J. Estes, T. Catelin-Jullien, C. Kounnas and N.Toumbas

Our approach

- Start from a static Universe, an "empty box".
- Fill it with a thermalized gas of states.
- The pressure will back-react on the walls of the box.
- A quasi-static evolution emerges, i.e. a succession of states in thermal equilibrium.
Plan
- Comparison : field vs. string theory.
- Determine the back-reaction.
- Attraction mechanisms to radiation eras.
- Space-time dimension dynamically stabilized.
- Stabilization of moduli.

Field theory versus String theory

- For a single bosonic degree of freedom of mass M :
- The quantum canonical ensemble can be studied with a Euclidean path integral on $S_{\beta}^{1} \times T^{3}$ with periodic B.C. along S_{β}^{1} (antiperiodic for a fermion) :

$$
\begin{gathered}
Z=\operatorname{Tr} e^{-\beta H}=\int \mathcal{D} \phi e^{-\int_{0}^{\beta} d \tau \int d^{3} x \phi\left(-\square+M^{2}\right) \phi+\text { interdctions }} \\
F=-\frac{\ln Z}{\beta}=\frac{V}{\beta} \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \left(1-e^{-\beta \omega_{k}}\right)+V \int \frac{d^{3} k}{(2 \pi)^{3}}\left(\frac{\omega_{k}}{2}+\infty\right) \\
\omega_{k}=\sqrt{\vec{k}^{2}+M^{2}}
\end{gathered}
$$

- In terms of Feynman diagrams,

$$
\begin{aligned}
F & =-\frac{\ln Z}{\beta}=-\frac{1}{\beta}\left(Z_{1-l o o p}^{(c)}+\text { higher loops }\right) \\
& =-\int_{0}^{+\infty} \frac{d l}{2 l} \frac{V}{(2 \pi l)^{3 / 2}} e^{-\frac{M^{2} l}{2}} \frac{1}{\sqrt{2 \pi l}} \sum_{\tilde{m}_{0}} e^{-\frac{\beta^{2} \tilde{m}_{0}^{2}}{2 l}}
\end{aligned}
$$

- The bosonic loop can be wrapped \tilde{m}_{0} times along S_{β}^{1}.
- Finite in the I.F. as long as there is no tachyon.
- Divergent in the U.V. $\left(\tilde{m}_{0}=0, l \rightarrow 0\right)$.
- The genus one computation in string theory should be finite in the U.V. because of the integration on the fundamental domain.

Examples

- The bosonic string has a tachyon even at $T=0$. ${ }^{[F \text { in bosonic string }}$ Polchinski '86]
- Consider $\mathcal{N}=1,2,4$ susy heterotic models in 4D.
* Compute $F=-\frac{Z_{g e n u s-1}}{\beta}$ in the Euclidean
background $S^{1}\left(R_{0}\right) \times T^{3} \times \mathcal{M}_{6}$, where $\beta=2 \pi R_{0}$.
* The string result regularizes the field theory one :
$-\int_{0}^{+\infty} \frac{d l}{2 l} \frac{V}{(2 \pi l)^{3 / 2}} e^{-\frac{M^{2} l}{2}} \frac{1}{\sqrt{2 \pi l}} \sum_{\tilde{m}_{0}} e^{-\frac{\beta^{2} \tilde{m}_{0}^{2}}{2 l}}(-)^{a \tilde{m}_{0}}$
$-\int_{\mathcal{F}} \frac{d \tau_{1} d \tau_{2}}{2 \tau_{2}} \frac{V=0 \text { for bosons, } a=\mid \text { for fermions })}{(2 \pi)^{3} \tau_{2}^{3 / 2}} \sum_{\text {spectrum }} e^{-\pi M^{2} \tau_{2}} \frac{1}{2 \pi \sqrt{\tau_{2}}} \sum_{m_{0}, n_{0}} e^{-\frac{\pi R_{0}^{2}}{T_{2}}\left|\tilde{m}_{0}+n_{0} \tau\right|^{2}}(-)^{a \tilde{m}_{0}+b n_{0}+\tilde{m}_{0} n_{0}}$
Oscillators and internal lattice
* Reversed GSO when the winding n_{0} is odd :

A tachyon occurs for $\quad \frac{1}{R_{H}}<R_{0}<R_{H}=\frac{1+\sqrt{2}}{2}$
We restrict to $R_{0} \gg 1$ to avoid the Hagedorn transition.

* $e^{-\pi R_{0}^{2} n_{0}^{2} \tau_{2}}$ is exponentially small, except if $n_{0}=0$.
* $\left(\tilde{m}_{0}, n_{0}\right)$ both even is susy : no contribution.

We are left with $\left(2 k_{0}+1,0\right)$.

* Redef $\tau_{2}=y \pi R_{0}^{2}\left(2 \tilde{k}_{0}+1\right) \Longrightarrow e^{-\pi M^{2} \tau_{2}}$ is exponentially suppressed, except if $M=0$.
* Finally,
$P_{s t} \equiv-\frac{\partial F}{\partial V}=n_{T} T_{s t}^{4} \frac{\pi^{2}}{48} \quad$ where $\quad T_{s t}=\frac{1}{2 \pi R_{0}}$
i.e. Stefan's law.
- For phenomenology: Consider a non-susy 4D model, Heterotic $\mathscr{N}=1 \rightarrow 0$ spontaneously. And thermalize.
* To implement the temperature, we have imposed

Momentum $\frac{\tilde{m}_{0}+\frac{a}{2}}{R_{0}} \Rightarrow$ mass shift $\frac{1}{2 \pi R_{0}}=T_{s t}$

* Compactify on $\frac{T^{6}}{\mathbb{Z}_{2} \times \mathbb{Z}_{2}}$ and impose

$$
\begin{aligned}
& \varphi\left(x^{4}\right)=(-)_{\uparrow}^{(a+Q) \tilde{m}_{4}} \varphi\left(x^{4}+2 \pi R_{4} \tilde{m}_{4}\right) \\
& \text { R-sym chargel } \\
& \Rightarrow \text { mass shift } \\
& \frac{1}{2 \pi R_{4}}=M_{\text {st }} \\
& \text { susy breaking scale }
\end{aligned}
$$

* To avoid Hagedorn-like transitions: $R_{0}, R_{4} \gg 1$,

$$
P_{s t}=T_{s t}^{4}\left(n_{T} f_{T}(z)+n_{T}^{t w} \frac{\pi^{2}}{48}\right)+M_{s t}^{4} n_{V} f_{V}(z)
$$

where $e^{z}=\frac{M_{s t}}{T_{s t}}=\frac{R_{0}}{R_{4}}$ is a "complex structure".

$$
f_{T}(z)=\frac{\Gamma(5 / 2)}{\pi^{5 / 2}} \sum_{\tilde{k}_{0}, \tilde{k}_{4}} \frac{e^{4 z}}{\left[e^{2 z}\left(2 \tilde{k}_{0}+1\right)^{2}+\left(2 \tilde{k}_{4}\right)^{2}\right]^{5 / 2}}
$$

We can rewrite : $P_{s t}=$ $P(z)$

* The pressure of the thermal gas of strings now pushes the walls of the "3D box".
$S_{\text {genus }-0}=\int d^{4} x \sqrt{-G} e^{-2 \phi_{d i l}}\left[\frac{R}{2}+2\left(\partial \phi_{d i l}\right)^{2}+\frac{1}{2}\left(\partial \ln R_{4}\right)^{2}+\cdots\right]$
With originally constant dilaton, R_{4} and metric :

$$
\begin{aligned}
& \text { back to Lorentzian } \\
& d s_{s t}^{2}=\frac{\downarrow}{\left(2 \pi R_{0}\right)^{2} d t^{2}+\left(2 \pi R_{\text {box }}\right)^{2}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]} a_{s t}^{2}
\end{aligned}
$$

:The laps function is the inverse temperature

$$
S_{g e n u s-1}=S_{g e n u s-0}+\int d^{4} x \sqrt{-G} \frac{Z_{\text {genus }-1}}{V \beta}
$$

The I-loop correction to the orginally vanishing vacuum energy. It is our $P_{\text {st }}$.
NB:We don't need to compute the I-loop corrections to the kinetic terms. (They can be absorbed by wave function redefinitions and translate into corrections to the I-loop P at second order only.)

* In Einstein frame:
$S_{g e n u s-1}=\int d^{4} x \sqrt{-g}\left[\frac{R}{2}-\frac{1}{2}(\partial \Phi)^{2}-\frac{1}{2}\left(\partial \phi_{\perp}\right)^{2}+\cdots+P\right]$
where Φ, ϕ_{\perp} are linear combinations of $\phi_{d i l}, \ln R_{4}$,

$$
P=T^{4} p(z)
$$

$$
e^{z}=\frac{R_{0}}{R_{4}}=\frac{M}{}
$$

* For simplicity, we restrict to homogeneous and isotropic extrema of this action, which involve non-trivial backgrounds for $N, a, \Phi, \phi \perp$ only (we partially relax this hypothesis later).

$$
\frac{\delta S_{g e n u s-1}}{\delta N}=0 \quad \Longrightarrow \quad \frac{3}{N^{2}} H^{2}=\rho+\frac{1}{2 N^{2}} \dot{\Phi}^{2}+\frac{1}{2 N^{2}} \dot{\phi}_{\perp}^{2}
$$

where $\quad \rho=-P-N \frac{\partial P}{\partial N} \equiv-P+T \frac{\partial P}{\partial T} \equiv \frac{1}{V} \frac{\partial(\beta F)}{\partial \beta}$

NB:Variational principle and thermodynamics are consistent.

Attractors

* Write the Einstein equations coupled to Φ, ϕ_{\perp} in presence of sources ρ, P.
z-equation: $\quad \mathcal{E}\left(z, \stackrel{\circ}{z}, \stackrel{\circ}{z}, \stackrel{\circ}{\phi}_{\perp}\right)+\frac{d V}{d z}=0$
where $e^{z}=\frac{M}{T}$ and $\circ \equiv \frac{d}{d \ln a} . \quad \begin{aligned} & r(z)-4 p(z) \\ &\left(\rho=T^{4} r(z), P=T^{4} p(z)\right)\end{aligned}$

* Case $n_{\mathrm{V}}<0$: For generic I.B.C., there is an attraction to a particular solution, $z(t) \rightarrow z_{c}, \phi_{\perp}(t) \rightarrow c s t$. , with eventually damped oscillations.
- After convergence,
$M(t) \propto T(t) \propto \frac{1}{a(t)}$ i.e. $R_{4}, R_{0}, R_{b o x}$ proportional !
with Friedmann eq. $\quad 3 H^{2}=c \frac{p\left(z_{c}\right)}{a^{4}}$
\Longrightarrow Attraction to an effective radiation era.
- A paradox: $r\left(z_{c}\right)=4 p\left(z_{c}\right) \quad \Longrightarrow \quad \rho=4 P$

$$
\rho_{\text {tot }} \equiv \rho+\frac{1}{2} \dot{\Phi}^{2}+\frac{1}{2} \dot{\phi}_{\perp}^{2}=3\left(P+\frac{1}{2} \dot{\Phi}^{2}+\frac{1}{2} \dot{\phi}_{\perp}^{2}\right) \equiv 3 P_{\text {tot }} . \bar{\uparrow} \begin{aligned}
& \text { state equation for radiation in 4D }
\end{aligned}
$$

- Consistency :What perturbs the "static box" is

$$
+0+0
$$

* Case $n_{\mathrm{V}}>0$: Attraction to a run away solution $z(t) \rightarrow+\infty$ describing an era of contraction. We should have started from a small box.)
* In all Cases: If I.B.C. such that $z \ll-1$ i.e. $R_{4} \gg R_{0} \gg 1$, the KK in the direction 4 become continuous.
\Longrightarrow The system is better understood in 5D, but anisotropic :

$$
d s^{2}=-N^{N^{\prime 2}} d t^{2}+a^{\prime 2}\left[\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}+\left(d x^{3}\right)^{2}\right]+\left(e^{\left.-\frac{4}{3} \phi_{d i l}^{\prime} 2 \pi R_{4}\right)^{2}\left(d x^{4}\right)^{2}} \begin{array}{l}
b^{2}
\end{array}\right.
$$

- Our fields are $\left\{T^{\prime}, a^{\prime}, b, \phi_{\text {dil }}\right\}$ and the pressure in 5D satisfies Stefan's law $P^{\prime}=\left(n_{T}+n_{T}^{t w}\right) T^{15} \frac{93 \zeta(5)}{64 \pi^{2}}$.
- For arbitrary I.B.C., the solution converges to the effective radiation era $T^{\prime}(t) \propto \quad \propto \frac{1}{b(t)}, \quad \phi_{d i l}^{\prime}(t)=c s t$

Moduli stabilization

* We have considered the dynamics of 2 susy breaking moduli, R_{0}, R_{4}; supposing the others are frozen. Let us relax this hyp.
* For one more dynamical susy-breaking modulus R_{5} :

$$
\begin{gathered}
T=\frac{1}{2 \pi R_{0} e^{-\phi_{d i l}}} \quad M=\frac{1}{2 \pi \sqrt{R_{4} R_{5}} e^{-\phi_{d i l}}} \\
P=T^{4} p(z, Z) \\
e^{z}=\frac{M}{T}=\frac{R_{0}}{\sqrt{R_{4} R_{5}}} \text { and } e^{Z}=\frac{R_{5}}{R_{4}} \text { are complex structures }
\end{gathered}
$$

-There is an attraction to an effective radiation era, where

$$
\propto R_{4}(t) \propto R_{5}(t) \text { i.e. }(z, Z) \equiv\left(z_{c}, Z_{c}\right) \text { are }
$$

stabilized.

* For one more dynamical non-susy-breaking modulus :
$R_{0} \gg 1, \quad R_{b o x}, \quad 0<R_{4}<+\infty, \quad R_{9} \gg 1, \quad \phi_{d i l}$
\downarrow
$\frac{1}{T}$
$R_{4} \leftrightarrows \frac{1}{R_{4}} \quad \frac{1}{M}$
-The pressure is $P=T^{4} p\left(z, \frac{R_{4}}{R_{0}}, \frac{R_{4}}{\sqrt{\alpha^{\prime}}}\right)$ small / large $\Rightarrow 4 D$ or 5D

If $\simeq 1$: enhanced symmetry point,
$U(1) \rightarrow S U(2)$
massless winding modes
-The potential for R_{4} is $-P$. At fixed T, z, R_{9} one has:
${ }^{-P}{ }_{1 /\left(2 R_{0,9}\right)} \quad \ln R_{0,9} \ln R_{4}$

Up to $\mathcal{O}\left(e^{-R_{0,9}}\right)$ terms:

$$
\begin{aligned}
& 4 \mathrm{dim} \\
& U(1) \rightarrow S U(2) \\
& =\begin{array}{l}
\text { with } n_{T} \\
\text { Connected by } \\
\text { String vers. }
\end{array}
\end{aligned}
$$

$5 \operatorname{dim}$
$P^{\prime} \simeq T^{/ 5} p^{\prime}(z)$
with n_{T}, n_{V}

Phase I : - The Kähler modulus R_{4} is a Higgs field.

- Damped oscillations \Rightarrow Stabilized.
- The attractor is a radiation era in 4D.

Phase II : \neq basins of attraction:
a) Friction dominates $\Longrightarrow\left(\ln R_{4}\right)^{\circ} \rightarrow 0$.

- gets stuck anywhere on the plateau.
- Not stabilized but frozen.
- The attractor is a radiation era in 4D.
b) Friction negligible $\Longrightarrow\left(\ln R_{4}\right)^{\circ} \rightarrow$ cst. - R_{4} catches the moving edges and "falls".

Phase III : - Run away of the Kähler modulus R_{4} i.e. spontaneous decompactification.

- The attractor is a

Summary

- Consider a flat and static background. At I-loop, it is cosmological, due to finite temperature effects.
- The free energy can be computed at the string level: It is free of singularity (not in field theory).
- We have not described in this talk the "Hagedorn era". However, for arbitrary I.B.C. at the time we exit this era, the evolution of the universe is attracted to a radiation era.
- The space-time dimension is dynamically stabilized.
- Kähler and complex structure moduli can be stabilized.
- Our approach is valid till $M \simeq Q_{0}$, the E.W. transmutation scale. There, large radiative corrections should induce the EW breaking and stabilize M. (work in progress)

