Large hierarchies from approximate *R* symmetries

Warsaw, 16.6.2009

Based on: R. Kappl, H.P. Nilles, S. Ramos-Sánchez, M.R., K. Schmidt-Hoberg & P. Vaudrevange, Phys. Rev. Lett. **102**, 121602 (2009) (=arXiv:0812.2120)

Outline

Motivation

- Hierarchically small vacuum expectation value of the perturbative superpotential due to an approximate R symmetry
- 3 Explicit string theory realization
- Application to moduli stabilization

Motivation

 \sim Observed hierarchy: $M_P/m_W \sim 10^{17}$

 \sim Observed hierarchy: $M_P/m_W \sim 10^{17}$

 \sim Observed hierarchy: $M_P/m_W \sim 10^{17}$

Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation Witten (1981)

$$\Lambda ~\sim ~M_{
m P}~{
m exp}\left(-{b}/{g^2}
ight)$$

 \sim Observed hierarchy: $M_P/m_W \sim 10^{17}$

Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation

 \sim Observed hierarchy: $M_P/m_W \sim 10^{17}$

 Compelling answer: scale of supersymmetry breakdown set by dimensional transmutation

$$\Lambda ~\sim ~M_{
m P}~ \exp\left(-{b \over c}/g^2
ight)$$

→ hierarchically small gravitino mass ('gaugino condensation')

Nilles (1982)

$$m_W~\sim~m_{3/2}~\sim~\frac{\Lambda^3}{M_{\rm P}{}^2}$$

Problem with string theory realization

However: embedding into string theory ~ run-away problem

Dine, Seiberg (1985)

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization

Casas (1996)

Binétruy, Gaillard & Wu (1996)

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization
- Flux compactification

e.g. Kachru, Kallosh, Linde & Trivedi (2003)

There exist various possibilities to fix the gauge coupling/stabilize the dilaton:

- Race-track
- Kähler stabilization
- Flux compactification
- etc....

Motivation

Constant + exponential scheme

- rightarrow KKLT type proposal: $\mathscr{W}_{eff} = c + A e^{-\alpha S}$
- Gravitino mass
 - $m_{3/2} \sim |c|$

- rightarrow KKLT type proposal: $\mathscr{W}_{eff} = c + A e^{-\alpha S}$
- Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

- rightarrow KKLT type proposal: $\mathscr{W}_{eff} = c + A e^{-\alpha S}$
- Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

Philosophy of flux compactifications: many vacua, in some of them c might be small by accident

www.nature.com

 \ll KKLT type proposal: $\mathscr{W}_{eff} = c + A e^{-\alpha S}$

Gravitino mass

$$m_{3/2} \sim |c| \xrightarrow{m_{3/2} \stackrel{!}{\simeq} \text{TeV}} |c| \sim 10^{-15}$$

- Philosophy of flux compactifications: many vacua, in some of them c might be small by accident
- Our proposal: hierarchically small expectation of the perturbative superpotential due to approximate U(1)_R symmetry

$$c \rightarrow \langle \mathscr{W}_{\text{pert}} \rangle \sim \langle \phi \rangle^{N} \quad \text{with} \quad N = \mathcal{O}(10)$$

$$\text{typical VEV} < 1 \qquad \text{order of } \mathfrak{U}(1)_{\mathcal{R}}$$

Small superpotential VEVs

from

approximate R symmetries

Hierarchically small $\langle \mathscr{W} \rangle$

Two ingredients:

() in the presence of an exact $U(1)_R$ symmetry

Hierarchically small $\langle \mathscr{W} \rangle$

Two ingredients:

() in the presence of an exact $U(1)_R$ symmetry

Hierarchically small $\langle \mathscr{W} \rangle$

Two ingredients:

() in the presence of an exact $U(1)_R$ symmetry

2 for an approximate *R* symmetries

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_R$ (I)

aim: show that

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_R$ (I)

aim: show that

Consider a superpotential

$$\mathscr{W} = \sum C_{n_1 \cdots n_M} \phi_1^{n_1} \cdots \phi_M^{n_M}$$

with an exact *R*-symmetry

$$\mathscr{W} \rightarrow \mathbf{e}^{2\mathbf{i}\,\alpha}\,\mathscr{W}, \quad \phi_j \rightarrow \phi_j' = \mathbf{e}^{\mathbf{i}\,r_j\,\alpha}\,\phi_j$$

where each monomial in *W* has total *R*-charge 2

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_{\mathcal{R}}$ (II)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \text{ at } \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \to \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \frac{\partial \mathscr{W}}{\partial \phi_i} \Delta \phi_i$$

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_{\mathcal{R}}$ (II)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \text{ at } \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \to \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \overset{\otimes \mathscr{W}}{\not \to} \Delta \phi_i$$

$\langle \mathscr{W} \rangle = 0$ because of $\mathrm{U}(1)_R$ (II)

Consider a field configuration $\langle \phi_i \rangle$ with

$$F_i = \frac{\partial \mathscr{W}}{\partial \phi_i} = 0 \text{ at } \phi_j = \langle \phi_j \rangle$$

Under an infinitesimal $U(1)_{\ensuremath{\mathcal{R}}}$ transformation, the superpotential transforms nontrivially

$$\mathscr{W}(\phi_j) \rightarrow \mathscr{W}(\phi'_j) = \mathscr{W}(\phi_j) + \sum_i \overset{\mathfrak{A}}{\not \to} \Delta \phi_i \stackrel{!}{=} \mathbf{e}^{2\mathbf{i}\,\alpha} \mathscr{W}$$

This is only possible if $\langle \mathscr{W} \rangle = 0!$

bottom-line:

1 Statement $\langle \mathscr{W} \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

1 Statement $\langle \mathscr{W} \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

- 1 Statement $\langle \mathcal{W} \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken
- 2 Relation to Nelson-Seiberg theorem

Nelson & Seiberg (1994)

 $U(1)_R$ symmetry

1 Statement $\langle \mathscr{W} \rangle = 0$ holds regardless of whether $U(1)_R$ is unbroken (where it is trivial) or broken

3 in local SUSY :
$$\frac{\partial \mathscr{W}}{\partial \phi_i} = 0$$
 and $\langle \mathscr{W} \rangle = 0$ imply $D_i \mathscr{W} = 0$
(That is, a U(1)_R symmetry implies Minkowski solutions.)

Statement (*W*) = 0 holds regardless of whether U(1)_R is unbroken (where it is trivial) or broken

3 in local SUSY :
$$\frac{\partial \mathcal{W}}{\partial \phi_i} = 0$$
 and $\langle \mathcal{W} \rangle = 0$ imply $D_i \mathcal{W} = 0$

(That is, a $U(1)_R$ symmetry implies Minkowski solutions.)

4 in `no-scale' type settings

solutions of global SUSY F term eq.'s

stationary points of supergravity scalar potential

Approximate *R* symmetries

Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order *N* in the fields ϕ_i

Approximate *R* symmetries

- Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order *N* in the fields ϕ_i
- This allows us to avoid certain problems:
 - for a continuous $U(1)_R$ symmetry we would have
 - a supersymmetric ground state with $\langle \mathscr{W} \rangle = 0$ and $U(1)_{\mathcal{R}}$ spontaneously broken
 - a problematic *R*-Goldstone boson

Approximate *R* symmetries

- Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order *N* in the fields ϕ_i
- This allows us to avoid certain problems:
 - for a continuous $U(1)_R$ symmetry we would have
 - a supersymmetric ground state with $\langle \mathscr{W} \rangle = 0$ and $U(1)_{\mathcal{R}}$ spontaneously broken
 - a problematic *R*-Goldstone boson
 - however, for an **approximate** U(1)_R-symmetry one has
 - Goldstone-Boson massive and harmless
 - a non-trivial VEV of ${\mathscr W}$ at order N in ϕ VEVs

 $\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$
Approximate *R* symmetries

- Consider now the case of an **approximate** *R* symmetry, i.e. explicit *R* symmetry breaking terms appear at order *N* in the fields ϕ_i
- This allows us to avoid certain problems:
 - for a continuous $U(1)_R$ symmetry we would have
 - a supersymmetric ground state with $\langle \mathscr{W} \rangle = 0$ and $U(1)_{\mathcal{R}}$ spontaneously broken
 - a problematic *R*-Goldstone boson
 - however, for an approximate U(1)_R-symmetry one has
 - Goldstone-Boson massive and harmless
 - a non-trivial VEV of $\mathscr W$ at order N in ϕ VEVs $\langle \mathscr W \rangle \sim \langle \phi \rangle^N$
- Such approximate $U(1)_R$ symmetries can be a consequence of discrete \mathbb{Z}_N^R symmetries

Explicit

string theory

realization

Origin of high-power discrete *R*-symmetries

 Discrete R symmetries arise as remnants of Lorentz symmetries of compact space

Origin of high-power discrete *R*-symmetries

 Discrete R symmetries arise as remnants of Lorentz symmetries of compact space

Orbifolds break $SO(6) \simeq SU(4)$ Lorentz symmetry of compact space to discrete subgroups

Origin of high-power discrete *R*-symmetries

 Discrete R symmetries arise as remnants of Lorentz symmetries of compact space

- $<\!\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ Orbifolds break SO(6) \simeq SU(4) Lorentz symmetry of compact space to discrete subgroups
- \sim For example, in \mathbb{Z}_6 -II orbifolds one has

 $G_{R} = [\mathbb{Z}_{6} \times \mathbb{Z}_{3} \times \mathbb{Z}_{2}]_{R}$

Realization in heterotic mini-landscape

Heterotic orbifolds appear 'tailor-made' for applying these ideas

Realization in heterotic mini-landscape

- Heterotic orbifolds appear 'tailor-made' for applying these ideas
- To be specific, focus on the heterotic mini-landscape
 potentially realistic string derived models with nice features:
 - MSSM spectrum with one Higgs pair
 - potentially realistic flavor structure, see-saw, *R* parity, ...
 - many standard model singlets s_i

cf. talks by R. Kappl, H.P. Nilles, S. Ramos-Sánchez

Realization in heterotic mini-landscape

- Heterotic orbifolds appear 'tailor-made' for applying these ideas
- To be specific, focus on the heterotic mini-landscape
 potentially realistic string derived models with nice features:
 - MSSM spectrum with one Higgs pair
 - potentially realistic flavor structure, see-saw, *R* parity, ...
 - many standard model singlets s_i

cf. talks by R. Kappl, H.P. Nilles, S. Ramos-Sánchez

In a large subset of the mini-landscape models, there is a correlation between the MSSM μ term and $\langle \mathcal{W} \rangle$

 $\mu \sim \langle \mathscr{W} \rangle$

We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9
- The solve $D_a = 0$ as well as global $F_i = 0$ at order 9

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9
- The solve $D_a = 0$ as well as global $F_i = 0$ at order 9
- \sim We specifically search for solutions $|s_i| < 1$, and find that they exist

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9
- The solve $D_a = 0$ as well as global $F_i = 0$ at order 9
- \sim We specifically search for solutions $|s_i| < 1$, and find that they exist
- All fields acquire positive m² (no flat directions: not destroyed by supergravity corrections)

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9
- The solve $D_a = 0$ as well as global $F_i = 0$ at order 9
- $<\!\!\!<$ We specifically search for solutions $|s_i|<1$, and find that they exist
- All fields acquire positive m² (no flat directions; not destroyed by supergravity corrections)
- $<\!\!\!>$ Superpotential VEV $\langle \mathscr{W} \rangle \sim \langle s_i \rangle^{\circ} \ll$ 1 (as expected)

- We studied one example (heterotic benchmark model IA) with 23 SM singlets s_i getting a VEV
- R symmetry breaking terms appear at order 9
- The solve $D_a = 0$ as well as global $F_i = 0$ at order 9
- \sim We specifically search for solutions $|s_i| < 1$, and find that they exist
- All fields acquire positive m² (no flat directions; not destroyed by supergravity corrections)
- $<\!\!\!>$ Superpotential VEV $\langle \mathscr{W} \rangle \sim \langle s_i \rangle^{\circ} \ll$ 1 (as expected)

bottom-line:

straightforward embedding in heterotic orbifolds

- The more fields are switched on, the lower N we obtain examples:
 - benchmark model 1A with 23 fields $\sim N = 9$
 - model with 7 fields $\sim N = 26$

- The more fields are switched on, the lower N we obtain examples:
 - benchmark model 1A with 23 fields $\sim N = 9$
 - model with 7 fields $\sim N = 26$
- Suppressed s_i in accord with scale set by Fayet-Iliopoulos term

- The more fields are switched on, the lower N we obtain examples:
 - benchmark model 1A with 23 fields $\sim N = 9$
 - model with 7 fields $\sim N = 26$
- Suppressed s_i in accord with scale set by Fayet-Iliopoulos term
- One approximate Goldstone mode η

 $m_\eta ~\sim ~ \langle \mathscr{W}
angle / \langle s
angle^2 ~\ldots$ somewhat heavier than the gravitino

- The more fields are switched on, the lower N we obtain examples:
 - benchmark model 1A with 23 fields $\sim N = 9$
 - model with 7 fields $\sim N = 26$
- Suppressed s_i in accord with scale set by Fayet-Iliopoulos term
- One approximate Goldstone mode η

 $m_\eta ~\sim ~ \langle \mathscr{W}
angle / \langle s
angle^2 ~\ldots$ somewhat heavier than the gravitino

In most examples: all other s_i fields acquire masses ≫ m_η i.e. isolated points in s_i space with F_i = D_a = 0

- The more fields are switched on, the lower N we obtain examples:
 - benchmark model 1A with 23 fields $\sim N = 9$
 - model with 7 fields $\sim N = 26$
- Suppressed s_i in accord with scale set by Fayet-Iliopoulos term
- One approximate Goldstone mode η

 $m_\eta ~\sim ~ \langle \mathscr{W}
angle / \langle s
angle^2 ~\ldots$ somewhat heavier than the gravitino

- In most examples: all other s_i fields acquire masses ≫ m_η i.e. isolated points in s_i space with F_i = D_a = 0
- Minima survive supergravity corrections

Most direct application: fix the dilaton

- Most direct application: fix the dilaton
- Effective superpotential

- Most direct application: fix the dilaton
- Effective superpotential

$$\mathscr{W}_{\mathrm{eff}} = \langle \mathscr{W} \rangle + A \,\mathrm{e}^{-\alpha S} + \frac{1}{2} m_{\eta} \,\eta^{2}$$

 $<\!\!\! < \!\!\! >$ Dilaton adjusts to $\langle \mathscr W \rangle$

 $m_{3/2}~\simeq~\langle \mathscr{W}_{\rm eff}\rangle~\sim~\langle \mathscr{W}\rangle$

- Most direct application: fix the dilaton
- Effective superpotential

$$\mathscr{W}_{\mathrm{eff}} = \langle \mathscr{W} \rangle + A \,\mathrm{e}^{-\alpha \,\mathrm{S}} + \frac{1}{2} m_{\eta} \,\eta^{2}$$

 $<\!\!\!>$ Dilaton adjusts to $\langle \mathscr{W} \rangle$

 $m_{3/2}~\simeq~\langle \mathscr{W}_{\mathrm{eff}}
angle~\sim~\langle \mathscr{W}
angle$

bottom-line:

- dilaton fixed
- true origin of hierarchically small m_{3/2} (~ m_W): approximate R symmetry

outlook

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

$$\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$$
 with $\langle \phi \rangle < 1$

Such a suppressed superpotential VEV can play an important role in moduli fixing

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

$$\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$$
 with $\langle \phi \rangle < 1$

- Such a suppressed superpotential VEV can play an important role in moduli fixing
- The hierarchy between $m_W \sim m_{3/2}$ and M_P is consequence of an approximate symmetry

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

$$\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$$
 with $\langle \phi \rangle < 1$

- Such a suppressed superpotential VEV can play an important role in moduli fixing
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! > \!\!\!$ In this picture, the hierarchy between $m_W \sim m_{3/2}$ and $M_{\rm P}$ is consequence of an approximate symmetry
- Still to do:
 - `uplifting'

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

$$\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$$
 with $\langle \phi \rangle < 1$

- Such a suppressed superpotential VEV can play an important role in moduli fixing
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! > \!\!\!$ In this picture, the hierarchy between $m_W \sim m_{3/2}$ and $M_{\rm P}$ is consequence of an approximate symmetry
- Still to do:
 - `uplifting'
 - fixing of T and complex structure moduli

(duality invariance; field-theoretic radion stabilization, \dots)

Approximate R symmetries can explain a suppressed expectation value of the perturbative superpotential

$$\langle \mathscr{W} \rangle \sim \langle \phi \rangle^{\mathsf{N}}$$
 with $\langle \phi \rangle < 1$

- Such a suppressed superpotential VEV can play an important role in moduli fixing
- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! > \!\!\!$ In this picture, the hierarchy between $m_W \sim m_{3/2}$ and $M_{\rm P}$ is consequence of an approximate symmetry
- Still to do:
 - `uplifting'
 - fixing of 7 and complex structure moduli (duality invariance; field-theoretic radion stabilization, ...)
 - unequivocal signatures of this scenario

Dziekuje!

'Appendix'

Embedding into the MiniLandscape

We analyzed a couple of models

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$

Embedding into the MiniLandscape

- We analyzed a couple of models
- \iff We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\rm pert} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$
Embedding into the MiniLandscape

- We analyzed a couple of models
- \iff We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\text{pert}} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$

ote: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)

Embedding into the MiniLandscape

- We analyzed a couple of models
- \iff We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle ~\sim ~ \langle \mathscr{W}_{\text{pert}} \rangle ~\sim ~ 10^{-\mathcal{O}(10)}$$

- or note: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)
- application: this
 - generates a suppressed μ term

 $\mu \sim \langle \mathscr{W} \rangle \sim m_{3/2}$

• fixes the gauge coupling / dilaton

Embedding into the MiniLandscape

- We analyzed a couple of models
- $<\!\!\!>$ We find $\langle \mathscr{W}_{pert} \rangle \sim \langle s \rangle^N$ with $N = 9 \dots 26$
- $<\!\!\! < \!\!\! <$ Assuming that the FI term sets the scale of the $\sim \langle s \rangle$ this leads to

$$\langle \mathscr{W} \rangle \sim \langle \mathscr{W}_{\text{pert}} \rangle \sim 10^{-\mathcal{O}(10)}$$

- ote: the solutions of *F*-term equations are points in field space (no moduli in s_i-space)
- application: this
 - generates a suppressed μ term

 $\mu \sim \langle \mathscr{W} \rangle \sim m_{3/2}$

- fixes the gauge coupling / dilaton
- question: is the dilaton fixed at realistic values?

Large hierarchies from approximate R symmetries

Summary & outlook

Gauge coupling vs. scale of hidden sector strong dynamics

Hidden sector strong dynamics

 $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\!$ Relation between $m_{3/2} \ll M_P$ and the scale of hidden sector strong dynamics

Gauge coupling vs. scale of hidden sector strong dynamics

Hidden sector strong dynamics

- $<\!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! < \!\!\! > \!\!\! > \!\!\! Relation between <math display="inline">m_{3/2} \ll M_P$ and the scale of hidden sector strong dynamics
- We estimate the scale of hidden sector strong dynamics (i.e. calculate the βfunction)

Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

 Distribution of the (naive) scale of hidden sector strong dynamics

Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

Distribution of the (naive) scale of hidden sector strong dynamics

Note: hidden sector usually stronger coupled

Gauge coupling vs. scale of hidden sector strong dynamics

Properties of the hidden sector

Distribution of the (naive) scale of hidden sector strong dynamics

Note: hidden sector usually stronger coupled

bottom-line:

statistical preference for intermediate scale of condensation / a realistic gauge coupling