Instanton induced Yukawa couplings in MSSM-like orientifold models

based on:

M. Cvetič, J. Halverson, R.R. arXiv:0905.3379

related earlier work:

L. E. Ibáñez, R.R.

arXiv:0811.1583

Robert Richter

University of Pennsylvania

Warsaw, 18.06.2009 – p. 1/1

Motivation

Intersecting Brane worlds provide geometrically appealing model building framework

- (1) gauge group: each stack of N_a D6-branes carries $U(N_a) = SU(N_a) \times U(1)_a$ gauge theory
- (2) chirality: two intersecting branes give rise to chiral fermions
- (3) replication: in the compact manifold two branes might intersect several times

Many realization of globsl MSSMlike three family models

Motivation

What about superpotential?

computation string amplitudes suppressed by world-sheet instantons \rightsquigarrow hierarchy Global U(1)'s forbid various desired couplings ! E2-instantons induce couplings: $e^{-S_{E2}} \prod_{I} \Phi_{I} \rightsquigarrow$ hierarchy

 $Blumenhagen, Cvetic, Weigand \ hep-th/0609191, \ Ibanez, \ Uranga \ hep-th/0609213$

- Majorana mass term for righthanded Neutrinos
- μ -term
- 10 10 5 Yukawa coupling in SU(5) GUT-like models

Blumenhagen, Cvetic, Weigand hep-th/0609191, Ibanez, Uranga hep-th/0609213, Cvetic, Weigand, R.R. hep-th/0703028, Ibanez, Schellekens, Uranga arXiv:0704.1079, Blumenhagen, Cvetic, Lüst, Weigand, R.R. arXiv:0707.1871, Cvetic, Weigand arXiv:0711.0209

Motivation

Missing couplings in realistic D-brane-quivers?

previous work:

• Madrid quiver

Ibanez, R.R. arXiv:0811.1583

• specific three-stack quiver

Leontaris arXiv:0903.3691

• mass hierarchies in Madrid quiver

Anastasopoulos, Kiritsis, Lionetto arXiv:0905.3044

Here: systematic bottom-up analysis of multi-stack MSSM quivers

3- and 4-stack quivers

 $U(3)_a \times U(2)_b \times U(1)_c \qquad U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$

anomalous U(1)'s become massive via GS-mechanism massless $U(1)_Y$ puts constraints on cycles the D-branes wrap resulting gauge theory in 4D: $SU(3) \times SU(2) \times U(1)_Y$

global embedding \rightsquigarrow Hidden sector

Top-down constraints

Tadpole cancellation: $\sum_{x} N_x (\pi_x + \pi'_x) - 4\pi_{O6} = 0$ → constraints on transformation behavior of chiral matter $#(a) - #(\overline{a}) + (N_a - 4) #(\square_a) + (N_a + 4) #(\square_a) = 0$ usual anomaly cancellation for $N_a \geq 3$ also true for $N_a = 2$ $N_a = 1$ condition is relaxed $\#(a) - \#(\overline{a}) + 5\#(\square_a) = 0$ $\mathsf{mod}\,3$ Massless U(1): $\sum_{x} q_x N_x(\pi_x - \pi'_x) = 0$ → constraints on transformation behavior of chiral matter $q_a N_a \left(\#(\Box_a) + \#(\Box_a) \right) = \sum_{x \neq a} q_x N_x \left(\#(a, \overline{x}) - \#(a, x) \right)$ for $N_a = 1$ condition takes a slightly different form Only necessary conditions, not sufficient!

Bottom-up constraints

Spectrum: exact MSSM + 3 N_R
 no chiral exotics charged under the MSSM D-branes
 all MSSM + 3 N_R only charged under the MSSM D-branes
 → top-down constraints are satisfied within the MSSM-branes
 righthanded quarks can transform as □_a
 righthanded leptons can transform as □_b, □□_c, □□_d

- MSSM Superpotential: MSSM superpotential is realized perturbatively or non-perturbatively Yukawa couplings for all three families
- Top Yukawa: require the presence of top Yukawa coupling
- R-parity: No R-parity violating couplings neither on perturbative nor non-perturbative level
 a large class of quivers are ruled out

Bottom-up constraints

• Neutrino masses: Setup must allow for mechanism which explains the smallness of neutrino masses

Seesaw or non-pert. Dirac neutrino mass Seesaw mechanism $M_{N_R} N_R N_R L H_u N_R$ non-pert. Dirac neutrino mass Langacker, Cvetič arXiv:0803.2876 $e^{-S_{E2}} L H_u N_R$ suppr. factor $e^{-S_{E2}} \sim 10^{-13}$

• μ -term: instanton generating desired Yukawa must not induce μ -term \rightsquigarrow otherwise too large μ term allowing for a second Higgs pair might relax this condition Ibanez, R.R. arXiv:0811.1583

Stick to the exact MSSM \rightsquigarrow large class of quivers ruled out

Results

Classify all possible hypercharge embeddings

Anastosopoulos, Dijkstra, Kiritsis, Schellekens hep-th/0605226

Top-down constraints give of order 10000 D-brane quiver with exact MSSM + 3 N_R

around 50 models satisfy all the bottom-up constraints different origins for different families are unfavorable due to absence of R-parity and realistic μ -term

Bad news for mass hierarchies! See later!

Potential problem: Presence of additional massless U(1)'s \rightsquigarrow various couplings cannot induced non-perturbatively (non-chiral) singlets under SM-gauge groups can induce Yukawas via higher order couplings

Anastasopoulos, Kiritsis, Lionetto arXiv:0905.3044

Madrid embedding most promising quiver

Results

Solution #	q_L		d_R			u_R		L			E_R			N_R				H_u				H_d
	(a,b)	(a,\overline{b})	(\overline{a}, c)	$(\overline{a}, \overline{d})$	\exists_a	$(\overline{a},\overline{c})$	(\overline{a}, d)	(b,\overline{c})	(b,d)	(\overline{b}, d)	(c,\overline{d})	\square_c	\Box_d	b	\Box_b	(c,d)	$(\overline{c},\overline{d})$	(b,c)	(\overline{b}, c)	(b,\overline{d})	$(\overline{b},\overline{d})$	$(\overline{b},\overline{c})$
1	3	0	3	0	0	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
2	3	0	2	0	1	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
3	3	0	1	0	2	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
4	3	0	0	0	3	0	3	0	0	3	0	0	3	2	0	0	1	0	0	0	1	1
5	3	0	0	0	3	0	3	0	0	3	0	0	3	3	0	0	0	1	0	0	0	1
6	3	0	3	0	0	2	1	0	0	3	0	2	1	2	0	1	0	0	0	0	1	1
7	3	0	3	0	0	3	0	0	0	3	2	1	0	2	0	0	1	0	1	0	0	1
8	3	0	3	0	0	3	0	0	0	3	0	2	1	2	0	0	1	0	1	0	0	1
9	3	0	3	0	0	3	0	0	0	3	1	2	0	2	0	1	0	0	1	0	0	1
10	2	1	3	0	0	1	2	0	0	3	0	0	3	0	0	0	3	1	0	0	0	1
11	2	1	3	0	0	1	2	0	0	3	3	0	0	0	0	3	0	1	0	0	0	1
12	2	1	3	0	0	3	0	0	0	3	3	0	0	0	0	0	3	1	0	0	0	1
13	2	1	3	0	0	3	0	0	1	2	3	0	0	0	0	0	3	0	1	0	0	1
14	1	2	3	0	0	3	0	0	3	0	3	0	0	0	0	0	3	1	0	0	0	1
15	0	3	0	3	0	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
16	0	3	0	0	3	0	3	0	3	0	0	0	3	0	3	0	0	1	0	0	0	1
17	0	3	0	0	3	0	3	1	2	0	1	0	2	0	3	0	0	0	0	1	0	1
18	0	3	0	0	3	0	3	3	0	0	2	0	1	0	3	0	0	0	0	1	0	1
19	0	3	0	0	3	0	3	3	0	0	0	1	2	0	3	0	0	0	0	1	0	1
20	0	3	0	0	3	1	2	1	2	0	2	0	1	0	3	0	0	1	0	0	0	1
21	0	3	0	0	3	1	2	1	2	0	0	1	2	0	3	0	0	1	0	0	0	1
22	0	3	0	0	3	1	2	3	0	0	3	0	0	0	3	0	0	1	0	0	0	1
23	0	3	0	0	3	1	2	3	0	0	1	1	1	0	3	0	0	1	0	0	0	1
24	0	3	0	0	3	2	1	0	3	0	3	0	0	0	3	0	0	1	0	0	0	1
25	0	3	0	0	3	2	1	0	3	0	1	1	1	0	3	0	0	1	0	0	0	1
26	0	3	0	0	3	2	1	2	1	0	2	1	0	0	3	0	0	1	0	0	0	1
27	0	3	0	0	3	2	1	2	1	0	0	2	1	0	3	0	0	1	0	0	0	1
28	0	3	0	3	0	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
29	0	3	0	2	1	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
30	0	3	0	1	2	3	0	3	0	0	0	3	0	0	3	0	0	1	0	0	0	1
31	0	3	0	0	3	3	0	1	2	0	1	2	0	0	3	0	0	1	0	0	0	1

Solutions for hypercharge $U(1)_Y = \frac{1}{6}U(1)_a + \frac{1}{2}U(1)_c - \frac{1}{2}U(1)_d$

Warsaw, 18.06.2009 - p. 10/1

Results - Yukawa textures

• different origins for different families

Kiritsis Talk, Anastasopoulos, Kiritsis, Lionetto arXiv:0905.3044

e.g. q_L : $2 \times (\overline{3}, \overline{2})$ $1 \times (\overline{3}, 2)$ u_R : $2 \times (\overline{3}, 1_c)$ $1 \times (\overline{3}, 1_d)$ $\begin{pmatrix} A & B & B \\ C & D & D \\ C & D & D \end{pmatrix} \begin{pmatrix} A & B & C \\ A & B & C \\ A & B & C \end{pmatrix} \begin{pmatrix} A & B & C \\ D & E & F \\ D & E & F \end{pmatrix} \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix}$

different entries induced by different instantons \rightsquigarrow hierarchy Splitting not favorable! \rightsquigarrow higher-stack models?

instanton induced Yukawa matrix factorizes
Y^{IJ} ~ Y^I Y^J ~ needs 3 instantons ~ hierarchy
quarks: if realized as antisymmetric □_a
leptons: (1) if E_R realized as □_b or □□_c
(2) if instanton exhibits vector-like modes

Summary and Outlook

classified and analyzed (local) MSSM D-brane quiver pert. missing couplings are induced via D-instantons large class of quivers exhibit R-parity violating couplings or a too large μ -term

order 10000 globally consistent quivers

→ only 50 quiver survive bottom up constraints

Quest for global embedding!

splitting of families not favorable higher stack models ?

but D-instanton effects lead to factorizable Yukawa matrices

→ can explain mass hierarchies within families

- increase number of stacks \rightsquigarrow mass hierarchies!
- allowing for additional fields doubled Higgs sector or singlets
- relaxing R-parity