#### **Dark Matter**

#### **Between Now and Never**

Leszek Roszkowski

Univ. of Sheffield, England and Soltan Institute for Nuclear Studies, Warsaw, Poland

#### **Dark Matter Programme at GGI**

#### **Dark Matter Programme at GGI**

- venue: Galileo Galilei Institute, Florence
- dates: 26 April 19 June 2010
- organizers: H. Baer, L. Covi, L. Roszkowski and P. Ullio

#### **Cosmology After WMAP...**

Post WMAP-5yr (April 08) ...+ACBAR+CBI+SN+LSS+...  $\Omega_i = \rho_i / \rho_{crit}$ 

Hubble  $H_0 = 100 h \text{ km/s/Mpc}$ 

### **Cosmology After WMAP...**

Post WMAP-5yr (April 08)

...+ACBAR+CBI+SN+LSS+...

 $\Omega_i = 
ho_i / 
ho_{crit}$ 

Hubble  $H_0 = 100 \, h \, {
m km/s/Mpc}$ 

assume simplest  $\Lambda\text{CDM}$  model

- matter  $\Omega_{
  m m}h^2=0.1378\pm 0.0043$
- $\checkmark$  baryons  $\Omega_{
  m b}h^2=0.02263\pm0.00060$

- $\ \, \boldsymbol{\Omega}_{\Lambda}=0.715\pm0.20\ldots$



LSS (2dF, SDSS, Lyman- $\alpha$ )



# **Cosmology After WMAP...**

Post WMAP-5yr (April 08)

...+ACBAR+CBI+SN+LSS+...

 $\Omega_i = 
ho_i / 
ho_{crit}$ 

Hubble  $H_0 = 100 \, h \, {
m km/s/Mpc}$ 

CMB (WMAP, ACBAR, CBI,...)

assume simplest  $\Lambda\text{CDM}$  model

- matter  $\Omega_{
  m m}h^2=0.1378\pm 0.0043$
- $\checkmark$  baryons  $\Omega_{
  m b}h^2=0.02263\pm0.00060$

$$\ \, \boldsymbol{\Omega}_{\Lambda}=0.715\pm0.20\ldots$$



LSS (2dF, SDSS, Lyman- $\alpha$ )



- concordance model works well
- main components: dark energy and dark matter

factor of 4-10 improvement expected from Planck

#### **Cosmic Pie**







DM candidates and particle physics models

- DM candidates and particle physics models
- SUSY neutralino most popular candidate

- DM candidates and particle physics models
- SUSY neutralino most popular candidate
- prospects for direct detection

- DM candidates and particle physics models
- SUSY neutralino most popular candidate
- prospects for direct detection
- indirect detection
  - PAMELA
  - Fermi/GLAST

- DM candidates and particle physics models
- SUSY neutralino most popular candidate
- prospects for direct detection
- indirect detection
  - PAMELA
  - Fermi/GLAST
- EWIMPs/superWIMPs

- DM candidates and particle physics models
- SUSY neutralino most popular candidate
- prospects for direct detection
- indirect detection
  - PAMELA
  - Fermi/GLAST
- EWIMPs/superWIMPs
- summary

Is evidence for DM convincing?

Is evidence for DM convincing?
 Yes, through its gravitational effects.

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
   Economical assumption (Occam's razor).

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
   Economical assumption (Occam's razor).
- Is DM cold?

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
   Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
   Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

Has DM been detected yet?

- Is evidence for DM convincing?
   Yes, through its gravitational effects.
- Is DM made up of particles?
   Suggested by clustering but otherwise an assumption.
- Is DM made up of only/predominantly one species?
   Economical assumption (Occam's razor).
- Is DM cold?

CDM: claimed problems not unsurmountable.

Has DM been detected yet?
 Some anomalies and hints – DM origin of 'signal' not convincing.

### **DM: The Big Picture**

\* – not invented to solve the DM problem

well-motivated\* particle candidates with  $\Omega \sim 0.1$ 

# **DM: The Big Picture**

#### L.R. (2000), hep-ph/0404052



- neutrino  $\nu$  hot DM
- neutralino  $\chi$
- "generic" WIMP
- axion a
- $\checkmark$  axino  $\widetilde{a}$
- $oldsymbol{s}$  gravitino  $\widetilde{oldsymbol{G}}$
- vast ranges of interactions and masses
- different production mechanisms in the early Universe (thermal, non-thermal)
- need to go beyond the Standard Model
- WIMP candidates testable at present/near future
- axino, gravitino EWIMPs/superWIMPs not directly testable, but some hints from LHC

No shortage of ideas...

...but few good ones, ...and even fewer longer-lasting

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

Iightest neutralino  $\chi$  of supersymmetry

 $m_\chi \sim M_{
m SUSY}~(\sim 0.1-1~{
m TeV})$ , interactions sub-weak (  $\lesssim 10^{-4}\sigma_{weak})$ 

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

 $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$ 

lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

 $m_{
m KK} \sim 0.4 - 1~{
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

- $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\mathrm{SUSY}} \ (\sim 0.1 1 \, \mathrm{TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$
- lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

 $m_{
m KK} \sim 0.4 - 1 \, {
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

massive (almost) sterile sneutrino  $\tilde{\nu}_R$ Dirac-type,  $m_{\tilde{\nu}_R} \sim M_{\rm SUSY}$  (~ 0.1 - 1 TeV), interactions  $\ll$  those of  $\chi$ , non-thermal relic, not easily testable

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

- $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$
- lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

 $m_{
m KK} \sim 0.4 - 1~{
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

 $\begin{array}{ll} \bullet & \text{massive (almost) sterile sneutrino } \tilde{\nu}_R \\ & \text{Dirac-type, } m_{\tilde{\nu}_R} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \, \text{interactions} \ll \text{those of } \chi, \end{array}$ 

non-thermal relic, not easily testable

as attractive as is old..., search in progress

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

- $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$
- lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

axino  $\widetilde{a}$ , gravitino G

 $m_{
m KK} \sim 0.4 - 1~{
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

 $\begin{array}{ll} \bullet & \text{massive (almost) sterile sneutrino } \tilde{\nu}_R \\ & \text{Dirac-type, } m_{\tilde{\nu}_R} \sim M_{\rm SUSY} \ (\sim 0.1 - 1 \, {\rm TeV}), \, \text{interactions} \ll \text{those of } \chi, \end{array}$ 

non-thermal relic, not easily testable

as attractive as is old..., search in progress

extremely-weakly interacting relics

warm ( $\sim \text{keV}$ ) or cold, not directly testable (but hints from LHC) add your own...

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

- $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$
- lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

axino  $\widetilde{a}$ , gravitino G

 $m_{
m KK} \sim 0.4 - 1~{
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

 $\begin{array}{ll} \mbox{massive (almost) sterile sneutrino $ \tilde{\nu}_R$ \\ \hline \mbox{Dirac-type, $ m_{\tilde{\nu}_R} \sim M_{\rm SUSY}$ ($ \sim 0.1 - 1$ TeV), interactions $ \ll$ those of $\chi$,} \end{array}$ 

non-thermal relic, not easily testable

as attractive as is old..., search in progress

extremely-weakly interacting relics

warm ( $\sim \text{keV}$ ) or cold, not directly testable (but hints from LHC) **add your own...** 

several other interesting candidates: well-tempered neutralino, multiple (UPT) DM, little Higgs DM, mirror DM, shadow DM, sequestered DM, secluded DM, flaxino DM, Higgs portal DM, inflation and DM, etc etc. – no nonsense but not superior either

No shortage of ideas... ...but few good ones, ...and even fewer longer-lasting

- $\begin{array}{ll} \textbf{Iightest neutralino } \chi \text{ of supersymmetry} \\ m_{\chi} \sim M_{\rm SUSY} \ (\sim 0.1 1 \, {\rm TeV}), \text{ interactions sub-weak} \ (\lesssim 10^{-4} \sigma_{weak}) \end{array} \end{array}$
- lightest Kałuża-Klein (KK) state from warped/universal extra dimensions

axion

axino  $\widetilde{a}$ , gravitino G

 $m_{
m KK} \sim 0.4 - 1~{
m TeV}$ , interactions  $\lesssim$  those of  $\chi$ , testable

a sub-class of WIMPs (eg. Dirac  $\nu$ , etc)

 $\begin{array}{ll} \mbox{massive (almost) sterile sneutrino $ \tilde{\nu}_R$ \\ \hline \mbox{Dirac-type, $ m_{\tilde{\nu}_R} \sim M_{\rm SUSY}$ ($ \sim 0.1 - 1$ TeV), interactions $ \ll$ those of $\chi$,} \end{array}$ 

non-thermal relic, not easily testable

as attractive as is old..., search in progress

extremely-weakly interacting relics

warm ( $\sim \text{keV}$ ) or cold, not directly testable (but hints from LHC) **add your own...** 

several other interesting candidates: well-tempered neutralino, multiple (UPT) DM, little Higgs DM, mirror DM, shadow DM, sequestered DM, secluded DM, flaxino DM, Higgs portal DM, inflation and DM, etc etc. – no nonsense but not superior either

#### It is fairly easy to invent a DM relic
#### It is fairly easy to invent a DM relic

it is much (!) harder to invent a (lasting) model of 'new physics'

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

indirect detection (ID):

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few left.

from within a few kpc

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

 gamma rays from WIMP pair-annihilation in the Galactic center
 depending on DM distribution in the GC

direct detection (DD): measure WIMPs scattering off a target

go underground to beat cosmic ray bgnd

- indirect detection (ID):
  - HE neutrinos from the Sun (or Earth)

WIMPs get trapped in Sun's core, start pair annihilating, only  $\nu$ 's escape

antimatter ( $e^+$ ,  $\bar{p}$ ,  $\bar{D}$ ) from WIMP pair-annihilation in the MW halo
from within a few

from within a few kpc

- gamma rays from WIMP pair-annihilation in the Galactic center
   depending on DM distribution in the GC
- other ideas: traces of WIMP annihilation in dwarf galaxies, in rich clusters, etc

more speculative











#### impressive experimental effort



Bayesian analysis, flat priors, MCMC scan of 8 params (4 SUSY+4 S

 $\begin{array}{c} m & \nu_0 \\ \hline \text{target} \\ \hline \text{target} \\ \hline \text{Cause target recoil} - detect it \\ \hline \end{array}$ 

Constrained MSSM (mSUGRA)



internal (external): 68% (95%) region

Bayesian analysis, flat priors, MCMC scan of 8 params (4 SUSY+4 S

Constrained MSSM (mSUGRA)



XENON-10 (June 07) and CDMS-II (Feb 08):  $\sigma_p^{SI} \lesssim 10^{-7} \, {\rm pb}:$ 

also Zeplin-III

target

Cause target recoil - detect it

 $\Rightarrow$  already explore 68% region

(large  $m_0 \gg m_{1/2} \Rightarrow$  heavy squarks) largely beyond LHC reach

internal (external): 68% (95%) region

Bayesian analysis, flat priors, MCMC scan of 8 params (4 SUSY+4 S

#### Constrained MSSM (mSUGRA)



internal (external): 68% (95%) region

XENON-10 (June 07) and CDMS-II (Feb 08):  $\sigma_p^{SI} \lesssim 10^{-7}$  pb:

also Zeplin-III

target

Cause target recoil - detect it

 $\Rightarrow$  already explore 68% region

(large  $m_0 \gg m_{1/2} \Rightarrow$  heavy squarks) largely beyond LHC reach



Bayesian analysis, flat priors, MCMC scan of 8 params (4 SUSY+4 S

Constrained MSSM (mSUGRA)



internal (external): 68% (95%) region  $\Rightarrow$  DD: prospects look very good XENON-10 (June 07) and CDMS-II (Feb 08):  $\sigma_p^{SI} \lesssim 10^{-7} \, {\rm pb}:$ 

also Zeplin-III

target

Cause target recoil - detect it

 $\Rightarrow$  already explore 68% region

(large  $m_0 \gg m_{1/2} \Rightarrow$  heavy squarks) largely beyond LHC reach



Bayesian analysis, flat priors

#### Bayesian analysis, flat priors

#### Constrained MSSM (mSUGRA)



#### Bayesian analysis, flat priors

#### Non-Universal Higgs Model (NUHM)

 $m_{H_u}^2, m_{H_d}^2 
eq m_0^2$ 



higgsino DM region at  $m_\chi \simeq 1 \, {
m TeV}$ 

#### Constrained MSSM (mSUGRA)



#### Bayesian analysis, flat priors

Non-Universal Higgs Model (NUHM)

 $m_{H_u}^2, m_{H_d}^2 
eq m_0^2$ 



Constrained MSSM (mSUGRA)

higgsino DM region at  $m_\chi \simeq 1 \, {
m TeV}$ 

 $\Rightarrow$  similar patterns, except 1 TeV higgsino in NUHM

#### Bayesian analysis, flat priors

Non-Universal Higgs Model (NUHM)

 $m_{H_u}^2, m_{H_d}^2 
eq m_0^2$ 



Constrained MSSM (mSUGRA)

higgsino DM region at  $m_{\chi} \simeq 1 \, {
m TeV}$ 

similar patterns, except 1 TeV higgsino in NUHM

collider signatures also similar

1.5

LHC, DM: it will be hard to distinguish models



- Iook for traces of WIMP annihilation in the MW halo ( $\gamma$ -rays,  $e^+$ 's,  $\bar{p}$ , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:



- Iook for traces of WIMP annihilation in the MW halo ( $\gamma$ -rays,  $e^+$ 's,  $\bar{p}$ , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

PAMELA



- Iook for traces of WIMP annihilation in the MW halo ( $\gamma$ -rays,  $e^+$ 's,  $\bar{p}$ , ...)
- detection prospects often strongly depend on astrophysical uncertainties (halo models, astro bgnd, ...)

Much activity in connection with:

- PAMELA
- Fermi (GLAST)

### e<sup>+</sup> data from PAMELA & DM

PAMELA satelite (since 2007)







O. Adriani et al., arXiv:0810.4995

no excess in  $ar{p}$  flux

puzzling: growth at large  $e^+$  energy



O. Adriani et al., arXiv:0810.4995

**9** no excess in  $ar{p}$  flux

puzzling: growth at large  $e^+$  energy

also indication from ATIC at  $\sim 0.7-1\,{\rm TeV}$ 

 $e^+$ : difficult measurement



Schubnell, Feb. 09

#### e<sup>+</sup> data from PAMELA & DM

no excess in  $ar{p}$  flux

**P** puzzling: growth at large  $e^+$  energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

no excess in  $ar{p}$  flux

puzzling: growth at large  $e^+$  energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

new  $e^+ - e^-$  Fermi-LAT data  $\Rightarrow$  DM origin severely restricted

(also ATIC excess not confirmed)



Grasso, et al., May 09

e<sup>+</sup> data from PAMELA & DM

no excess in  $ar{p}$  flux

puzzling: growth at large  $e^+$  energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

new  $e^+ - e^-$  Fermi-LAT data  $\Rightarrow$  DM origin severely restricted

(also ATIC excess not confirmed)

e.g., serious problems with extragal.  $\gamma$ -ray spectrum due to IC from cosmological DM-borne positrons



#### Profumo+Jeltema, May 09
### L. Roszkowski, String Pheno-09, Warsaw – p.1

## e<sup>+</sup> data from PAMELA & DM

DM origin of PAMELA  $e^+$  excess down but not (yet?) completely out

no excess in  $ar{p}$  flux

puzzling: growth at large  $e^+$  energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

new  $e^+ - e^-$  Fermi-LAT data  $\Rightarrow$  DM origin severely restricted

(also ATIC excess not confirmed)

e.g., serious problems with extragal.  $\gamma$ -ray spectrum due to IC from cosmological DM-borne positrons



Profumo+Jeltema, May 09

## $e^+$ data from PAMELA & DM

no excess in  $ar{p}$  flux

**P** puzzling: growth at large  $e^+$  energy

If excess genuine, explanations:

pulsars

Hooper+Serpico, Profumo, ...

DM (stable or not), leptophilic, ...

many theoretical speculations

new  $e^+ - e^-$  Fermi-LAT data  $\Rightarrow$  DM origin severely restricted

(also ATIC excess not confirmed)

e.g., serious problems with extragal.  $\gamma$ -ray spectrum due to IC from cosmological DM-borne positrons



Profumo+Jeltema, May 09

 $\Rightarrow$  DM origin of PAMELA  $e^+$  excess down but not (yet?) completely out

...pulsar explanation sufficient

### Fermi/GLAST



in orbit since 2008

## Fermi/GLAST



in orbit since 2008

- ${}$  full sky map in  $\gamma$ -ray spectrum,  $\sim 20\,{
  m MeV}$  to  $\sim 300\,{
  m GeV}$
- superior energy and angular resolution
- improve accuracy/energy range of EGRET by an order of magnitute
- Ist year data to be released in August 09

...stay tuned

e.g. CMSSM

boost factor BF=1

### e.g. CMSSM

boost factor BF=1

### Fermi: $\gamma$ -rays from Gal. Center



⇒ SUSY WIMP signal expected IF DM halo cuspy enough

### e.g. CMSSM

### boost factor BF=1

### Fermi: $\gamma$ -rays from Gal. Center



⇒ SUSY WIMP signal expected IF DM halo cuspy enough

#### PAMELA: positron fraction



 $\Rightarrow$  CMSSM DM: inconsistent with PAMELA's  $e^+$  claim

...even for unrealistically large BF

### e.g. CMSSM

### boost factor BF=1

### Fermi: $\gamma$ -rays from Gal. Center



⇒ SUSY WIMP signal expected IF DM halo cuspy enough

#### PAMELA: positron fraction



 $\Rightarrow$  CMSSM DM: inconsistent with PAMELA's  $e^+$  claim

...even for unrealistically large BF

...similar for NUHM, other unified SUSY models

# The great tragedy of Science – the slying of a beautiful hypothesis by an ugly fact

T.H. Huxley

# The great tragedy of Science – the slying of a beautiful hypothesis by an ugly fact

T.H. Huxley

# One should never believe any experiment until it has been confirmed by theory

A. Eddington

• predicted by SUSY  $\sqrt{}$ 

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem

- predicted by SUSY  $\sqrt{}$
- not invented to solve the DM problem
- In the section of the section of

- $\checkmark$  predicted by SUSY  $\checkmark$
- not invented to solve the DM problem
- In the second prospects of the second prospects of the second prospect of the second pr
- LHC: expected to discover SUSY  $\sqrt{}$

- predicted by SUSY  $\sqrt{}$
- In not invented to solve the DM problem
- In the section of the section of
- LHC: expected to discover SUSY  $\sqrt{}$

...What if Nature has made a different choice?

## **The Big Picture**

<u>well–motivated</u> particle candidates such that  $\Omega \sim 0.1$ 



- WIMP (neutralino, weakly int'ing states, ...): discoverable now
- EWIMP/superWIMP (axino, gravitino, super-weakly int'ing states, ...): hopeless in direct detection, but hints possible at LHC

**both**  $\widetilde{a}$  and  $\widetilde{G}$ : viable DM candidates (cold, warm)

**both**  $\widetilde{a}$  and  $\widetilde{G}$ : viable DM candidates (cold, warm)

| $LSP\setminusNLSP$ | neutralino $\chi$ | stau $\widetilde{	au}_1$ |
|--------------------|-------------------|--------------------------|
| $\widetilde{a}$    | $\checkmark$      | $\checkmark$             |
| $\widetilde{G}$    | Χ*                | $\checkmark$             |

\*: unless  $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$ 

both  $\widetilde{a}$  and  $\widetilde{G}$ : viable DM candidates (cold, warm)

| $LSP\setminusNLSP$ | neutralino $\chi$ | stau $\widetilde{	au}_1$ |
|--------------------|-------------------|--------------------------|
| $\widetilde{a}$    | $\checkmark$      | $\checkmark$             |
| $\widetilde{G}$    | Χ*                | $\checkmark$             |

\*: unless  $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$ 

● LHC: seemingly stable charged state ( $\tilde{\tau}_1$ ): ⇒ hint for EWIMP DM, either  $\tilde{a}$  or  $\tilde{G}$ 

both  $\widetilde{a}$  and  $\widetilde{G}$ : viable DM candidates (cold, warm)

| $LSP\setminusNLSP$ | neutralino $\chi$ | stau $\widetilde{	au}_1$ |
|--------------------|-------------------|--------------------------|
| $\widetilde{a}$    | $\checkmark$      | $\checkmark$             |
| $\widetilde{G}$    | Χ*                | $\checkmark$             |

\*: unless  $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$ 

- LHC: seemingly stable charged state  $(\tilde{\tau}_1)$ :  $\Rightarrow$  hint for EWIMP DM, either  $\tilde{a}$  or  $\tilde{G}$
- LHC: seemingly stable neutral state ( $\chi$ ) but no signal in DD/ID DM searches (also  $\Omega_{\chi}h^2 \neq 0.1$ ):  $\Rightarrow$  hint for only  $\tilde{a}$  DM

both  $\widetilde{a}$  and  $\widetilde{G}$ : viable DM candidates (cold, warm)

| $LSP \setminus NLSP$ | neutralino $\chi$ | stau $\widetilde{	au}_1$ |
|----------------------|-------------------|--------------------------|
| $\widetilde{a}$      | $\checkmark$      | $\checkmark$             |
| $\widetilde{G}$      | Χ*                | $\checkmark$             |

\*: unless  $m_{\widetilde{G}} \lesssim 1 \, {
m GeV}$ 

- LHC: seemingly stable charged state  $(\tilde{\tau}_1)$ :  $\Rightarrow$  hint for EWIMP DM, either  $\tilde{a}$  or  $\tilde{G}$
- LHC: seemingly stable neutral state ( $\chi$ ) but no signal in DD/ID DM searches (also  $\Omega_{\chi}h^2 \neq 0.1$ ): ⇒ hint for only  $\tilde{a}$  DM
- $\Rightarrow$  LHC: strong indications for EWIMP DM possible



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low) mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC
- direct detection:  $\sigma_n^{SI} \simeq 10^{-9\pm 1}\,{
  m pb}$



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC
- ${}_{igstaclescolorized}$  direct detection:  $\sigma_p^{SI}\simeq 10^{-9\pm1}\,{
  m pb}$

indirect detection: prospects strongly dependent on halo models and astro bgnd
generally somewhat less promising



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC
- ${}_{igstaclescolorized}$  direct detection:  $\sigma_p^{SI}\simeq 10^{-9\pm1}\,{
  m pb}$

- Indirect detection: prospects strongly dependent on halo models and astro bgnd generally somewhat less promising
- Fermi/GLAST should see diffuse  $\gamma$  radiation from Galactic center

...if DM halo cuspy enough



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC
- ${}_{igstaclescolorized}$  direct detection:  $\sigma_p^{SI}\simeq 10^{-9\pm1}\,{
  m pb}$

- Indirect detection: prospects strongly dependent on halo models and astro bgnd generally somewhat less promising
- Fermi/GLAST should see diffuse  $\gamma$  radiation from Galactic center

...if DM halo cuspy enough

PAMELA  $e^+$  result inconsistent with neutralino DM in unified SUSY

...astrophysical explanation (pulsars) appears sufficient?



- dark matter: possible choices, few well motivated
- neutralino of unified SUSY models: by far most attractive and well-motivated candidate for dark matter
- very good prospects for discovery in DM direct searches & (at low mass,  $m_\chi \lesssim 400 \, {
  m GeV}$ ) LHC
- ${}_{igstaclescolorized}$  direct detection:  $\sigma_p^{SI}\simeq 10^{-9\pm1}\,{
  m pb}$

- Indirect detection: prospects strongly dependent on halo models and astro bgnd generally somewhat less promising
- Fermi/GLAST should see diffuse  $\gamma$  radiation from Galactic center

...if DM halo cuspy enough

PAMELA  $e^+$  result inconsistent with neutralino DM in unified SUSY

...astrophysical explanation (pulsars) appears sufficient?

EWIMPs as DM relics ( $\widetilde{a}, \widetilde{G}, ...$ ): not directly testable but persuasive hints possible at LHC
L. Roszkowski, String Pheno-09, Warsaw – p.2