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Compensators and Warping
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The Ubiquitous Throat
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Inflation, sequestered DM, ...
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Various BSM scenarios

D3 D7s

ε µ

Figure 3: The SM gauge fields live in the worldvolume of D7-branes.

coordinates zi in which the defining equation of the deformed conifold geometry is

4
∑

i=1

z2
i = ε2, (2.2)

then we embed a stack of K D7-branes on the divisor defined by the equation

z4 = µ . (2.3)

The extended quiver which captures the field content of the gauge theory dual to K
such D7-branes in the warped deformed conifold geometry is shown in Figure 4. In the

non-compact throat, the SU(K) gauge group on the D7’s is a global (flavor) symmetry
group, and the additional matter fields are flavors in the SU(N + M) × SU(N) gauge
theory. When the throat is glued into a compact Calabi-Yau manifold, the SU(K)

becomes weakly gauged.

N KN+M

A1,2

B1,2 χ

χ̃

⊃ SU(5)

Figure 4: Quiver diagram for the conifold flavored by Kuperstein D7-branes.

The superpotential of the flavored theory becomes6

6This expression can be obtained from the N = 2 parent theory, where the superpotential is fixed,
upon mass deformation for the adjoint scalars. Strictly speaking, (2.4) is correct for U(N) groups
while for SU(N) there are 1/N suppressed double trace terms.

8

Holographic gauge mediation:

e.g., Benini, Dymarsky, Franco,
  Kachru, Simic, Verlinde

     McGuirk, GS, Sumitomo 
(in progress)



η ≡M2
P

V ′′

V
∼ O(1)

Inflation and UV Physics

δV ∼

V

M2

P

φ2

sensitive to dimension 6, Planck suppressed corrections:

such corrections may come from the Kahler potential
which is not protected by holomorphy.



m0 ∼ m1/2 ∼ m3/2 ∼
< F >

MP

BSM and UV Physics

In gravity mediation, soft terms are generated by  
Planck suppressed operators:

Issue of FCNC can only be addressed with 
knowledge of UV physics.

Again, the Kahler potential comes into play.



α′

Z ≡ e−4A = 1 +
gsNα′2

r4

gs & α′

Warping Corrections

In addition to     and     , yet another correction:gs

Warp Factor:

Warping corrections can 
be important even for small    

For example: N D3-branes
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Warped Closed Strings

!One can quantify such effect in terms of a modified 4D EFT, 

including a “warped Kähler potential” Kw  

!Closed string/gravity sector: 

" Many subtle issues 

" Simple expressions for certain subsectors                              

(universal Kähler modulus)

Giddings and Maharana’05
Burgess, Cámara, de Alwis, Giddings, Maharana, Quevedo’06

GS, Torroba, Underwood, Douglas’08
Douglas, Torroba’08

Question:

What is the effect of warping 
in string models?

Frey, Torroba, Underwood, Douglas’08
Chen, Nakayama, GS ’09



Warped Open Strings

D3-moduli

D-brane Inflation Warped Extra Dimensions

D7-moduli

Chen, Nakayama, GS Marchesano, McGuirk, GS

!Open string/gauge sector of the theory: Kw unexplored

!Many immediate applications to particle physics & cosmology



Warped Extra Dimensions

slide from Sundrum

Are there new features when 
embedded in string theory?Q: 

Analogous ideas for F-theory, magnetized/intersecting branes, twisted tori, etc, 

see talks of Heckman, Marchesano, Kobayashi, Bourjaily, Camara, Ohki,...



Warped Open Strings

Idea: 

D7-branes wrap

S4 ⊂ X6

Type IIB warped background: 

ds2
10 = ∆−1/2ηµνdxµdxν + ∆1/2eΦĝmndymdyn

Consistency requires:

F5 = (1 + ∗10)F int
5 F int

5 = ∗̂6d
(
∆eΦ

)



Warped Open Strings

"Compute the open string wavefunctions in a 
warped background

" Deduce the open string Kähler potential

Idea: 

D7-branes wrap

S4 ⊂ X6



! Introduce a probe D7-brane in this background, see how its 

internal fluctuations are affected by the presence of Z and F5

Warmup: Warped Flat Space

D3

D7



! Introduce a probe D7-brane in this background, see how its 

internal fluctuations are affected by the presence of Z and F5

Warmup: Warped Flat Space

D3

D7

Our results will be 

generalized later to 

warped Calabi-Yau and 

backgrounds with other 

SUGRA and/or

worldvolume fluxes



! Introduce a probe D7-brane in this background, see how its 

internal fluctuations are affected by the presence of Z and F5

Warmup: Warped Flat Space

D3

D7
Q: How do the D7 wavefunctions 

couple to F5?

Our results will be 

generalized later to 

warped Calabi-Yau and 

backgrounds with other 

SUGRA and/or

worldvolume fluxes



D7-brane action

!Bosonic action

!Fermionic action 

see also Graña’02

Marolf, Martucci, Silva’03

Sbos
D7 = SDBI

D7 + SCS
D7

S fer
D7 = τD7

∫
d8ξ eΦ

√
|det G| Θ̄PD7

−

(
ΓαDα +

1
2
O

)
Θ

Martucci, Rosseel, Van den Bleeken, Van Proeyen’05  
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D7 = SDBI

D7 + SCS
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S fer
D7 = τD7

∫
d8ξ eΦ

√
|det G| Θ̄PD7

−

(
ΓαDα +

1
2
O

)
Θ

Martucci, Rosseel, Van den Bleeken, Van Proeyen’05  

Θ =
(

θ1

θ2

)
10D MW bispinor  (type IIB superspace)

PD7
± =

1
2

(I∓ Γ8D ⊗ σ2) halves the dof’s down to N=1 8D SYM

δεψM = DM ε

δελ = Oε
type IIB gravitino variation

type IIB dilatino variation
(contain Fp)

Contains the coupling of fermions to RR fluxes



D7-brane action

!Bosonic action

!Fermionic action 

see also Graña’02

Marolf, Martucci, Silva’03

Sbos
D7 = SDBI

D7 + SCS
D7

S fer
D7 = τD7

∫
d8ξ eΦ

√
|det G| Θ̄PD7

−

(
ΓαDα +

1
2
O

)
Θ

Martucci, Rosseel, Van den Bleeken, Van Proeyen’05  

Θ =
(

θ1

θ2

)
10D MW bispinor  (type IIB superspace)

PD7
± =

1
2

(I∓ Γ8D ⊗ σ2) halves the dof’s down to N=1 8D SYM

Θ→ Θ + PD7
− κ-symmetryκ

Convenient 

choices:
Θ =

(
θ
0

)
PD7
− Θ =0or



D7-brane action

! In warped flat space:

!The D7-brane sees the warped metric

O = 0

DM = ∇M +
1
8
/F int

5 ΓM iσ2

ds2
D7 = Z−1/2ηµνdxµdxν + Z1/2

7∑

a,b=4

δab dyadyb

along 4-cycle

Z Z



D7-brane action

! In warped flat space:

!The D7-brane sees the warped metric

!                                 , the 8D Dirac action is given by 

O = 0

DM = ∇M +
1
8
/F int

5 ΓM iσ2

ds2
D7 = Z−1/2ηµνdxµdxν + Z1/2

7∑

a,b=4

δab dyadyb

along 4-cycle

S fer
D7 = τD7 eΦ0

∫

R1,3
d4x

∫
d4y θ̄ /Dwθ

/Dw =
∑

µ

ΓµDµ +
∑

a

ΓaDa +
1
2
O

= /∂ext
4 + /∂int

4 − 1
8
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4 lnZ
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(1 + 2ΓExtra)
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κ-fixing Θ =
(

θ
0
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D7-brane zero modes

If one now decomposes the 10D MW spinor as

and performs a KK reduction, the 4D mass eigenstate eq. is

θ = χ + B∗χ∗ χ = θ4D ⊗ θ6D B: Majorana matrix

[
/∂int
4 − 1

8

(
/∂int
4 lnZ

)
(1 + 2ΓExtra)

]
θ 0
6D = 0



D7-brane zero modes

If one now decomposes the 10D MW spinor as

and performs a KK reduction, the 4D mass eigenstate eq. is

and so the 4D zero modes are

in contrast to                      , the result in the absence of F5 

θ = χ + B∗χ∗ χ = θ4D ⊗ θ6D B: Majorana matrix

θ0
6D = Z1/8η

Acharya, Benini, Valandro’06 

[
/∂int
4 − 1

8

(
/∂int
4 lnZ

)
(1 + 2ΓExtra)

]
θ 0
6D = 0

θ0
6D = Z−1/8η− for ΓExtra η− = −η−

θ0
6D = Z3/8η+ for ΓExtra η+ = η+



D7-brane zero modes

S fer
D7 = τD7 eΦ0

∫

R1,3
d4x θ̄4D/∂R1,3θ4D

∫
d4y Zη†+η+

θ0
6D = Z−1/8η−

θ0
6D = Z3/8η+

S fer
D7 = τD7 eΦ0

∫

R1,3
d4x θ̄4D∂/R1,3θ4D

∫
d4y η†−η−

!Upon dimensional red., such fermion zero modes

imply the following kinetic terms

that indeed match the kinetic terms of the bosonic zero modes 

(e.g., fD7 ~ ! Z + i C4). This allows to identify them in terms of 

their bosonic superpartners.
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D7-brane zero modes

S fer
D7 = τD7 eΦ0

∫

R1,3
d4x θ̄4D/∂R1,3θ4D

∫
d4y Zη†+η+

!ilsonin"
#augino + modulino ,A!

Aaθ0
6D = Z−1/8η−

θ0
6D = Z3/8η+

usual volu
me

warped volu
meS fer
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A subtlety

!Our strategy to compute the zero modes appears to be:

!For a 10D MW spinor, ! and ! cannot be varied independently.

!For example:

both give                     since 

!Naively, the warp factor dependence drops out in eom. 

!But a careful analysis gives: 

S fer
D7 =

∫
d8ξ θ̄ /Dwθ → /Dwθ0 = 0

τD7

∫
d8ξ θ̄Γα∂αθ and τD7

∫
d8ξ θ̄Γα

(
∂α − ∂α ln f

)
θ

Γα∂αθ = 0 θΓa1...anθ != 0 only if n = 3, 7

δS fer
D7 = τD7 eΦ0

∫
d8ξ δθD/wθ + θ̄D/wδθ = 2τD7 eΦ0

∫
d8ξ δθD/wθ



A subtlety

! Implicitly a choice of gauge is made in the D-brane fermionic 

action (choice of supercoord. system)

!The gauge choice should be consistent with the gauge 

choices in the bosonic sector. One can check this by 

dimensionally reducing the SUSY variations

see Bandos and Sorokin’06

δεAα=µ = ε̄Γα=µθ → δεAµ = ε̄λ
8D 4D

Z0 = Z−
1
8−

1
4+ 3

8

ex: gau
ge boson

No warp factor 

PD7
−

(
ΓαDE

α +
1
2
OE

)
Θ =0



Recap

! In general, the open string wavefunctions have an internal 

profile of the form

!Their kinetic terms group into 4D N=1 multiplets

ψint = Zpη, η = const.

∫

R1,3
d4x φ̄Dφ

∫
d4yZq



Recap

! In general, the open string wavefunctions have an internal 

profile of the form

!Their kinetic terms group into 4D N=1 multiplets

RS D7
4D Field p q 4D Field p q

gauge boson 0
1/4

gauge boson/modulus 0
1

gaugino 3/8 gaugino/modulino 3/8
matter scalar (3− 2c)/8

(1− c)/2
Wilson line 0

0
matter fermion (2− c)/4 Wilsonino −1/8

Table 1: Warp factor dependence for internal wavefunctions (p) and Kähler metric (q) in the RS
scenario and the D-brane construction consdered here. In RS, the gauge boson and gaugino come
from a 5D vector multiplet while the matter scalar and fermion come from a 5D hypermultiplet.
The 5D mass of the fermion in the hypermultiplet is cK with K the AdS curvature. The additional
degrees of freedom from these supermultiplets are projected out by the orbifold action is RS. The
wavefunctions in SUSY RS are worked out in [24] (our conventions differ slightly from theirs in that
we take the ansatz for the 5D fermion to be ΨL,R (x, y) = ψL,R (x)χL,R (y) while [24] uses a power
of the warp factor in the decomposition.)

2.2.3 Summary and comparison to RS

In the previous subsections we have analyzed the zero modes of a D7 brane wrapping a
4-cycle in a warped compactification. One could see this as a step towards a string theory
realization of an extended supersymmetric RS scenario [24]. In the standard WED setup,
4D fields result from the dimensional reduction of the zero modes of 5D fields propagating
in the bulk of AdS5.10 Unlike for flat space, the supersymmetry algebra in AdS5 implies
that component fields have different 5D masses [25]. In particular, the 4D gauge boson and
gaugino come from a 5D N = 1 vector supermultiplet. Gauge invariance requires that the
5D vector component is massless, while SUSY requires that the 5D gaugino has mass 1

2K

where K = 1/R is the AdS curvature. Similarly, the matter fields result from the reduction
of a 5D hypermultiplet, the component fields of which each have a different mass.

The D7-brane construction here differs not only because of the existence of additional
spatial dimensions, but also because of the presence of additional background fields, namely
the RR potential C4 that couples to open string modes via the D7-brane CS and fermionic
action. This results into a different behavior of the internal wavefunctions when compared
to the analogous RS zero modes, as shown in Table 1. For each field, the wavefunction can
be written as Zpη where η is a constant function with the appropriate Lorentz structure.
The kinetic terms for each 4D field can then be written schematically as

∫

R1,3
d4xφ̄Dφ

∫

int
dv̂olint Zqη̄η (2.51)

where φ is a 4D field with kinetic operator D, η is the corresponding constant internal
wavefunction and ‘int’ denotes the unwarped internal space (S1/Z2 for RS or T4 here).
Since both the D-brane construction considered here and the extended SUSY RS model
are supersymmetric, the 4D fields can be arranged into supermultiplets with the same value
of q for each component field. These are also given in Table 1.

10These bulk RS models also involve an orbifold S1/Z2. The effect of the orbifold is however to project

out certain zero modes and does not effect the dependence on the warp factor of the surviving modes.

– 14 –

ψint = Zpη, η = const.

∫

R1,3
d4x φ̄Dφ

∫
d4yZq



Comparison to RS

RS D7
4D Field p q 4D Field p q

gauge boson 0
1/4

gauge boson/modulus 0
1

gaugino 3/8 gaugino/modulino 3/8
matter scalar (3− 2c)/8

(1− c)/2
Wilson line 0

0
matter fermion (2− c)/4 Wilsonino −1/8

Table 1: Warp factor dependence for internal wavefunctions (p) and Kähler metric (q) in the RS
scenario and the D-brane construction consdered here. In RS, the gauge boson and gaugino come
from a 5D vector multiplet while the matter scalar and fermion come from a 5D hypermultiplet.
The 5D mass of the fermion in the hypermultiplet is cK with K the AdS curvature. The additional
degrees of freedom from these supermultiplets are projected out by the orbifold action is RS. The
wavefunctions in SUSY RS are worked out in [16] (our conventions differ slightly from theirs in that
we take the ansatz for the 5D fermion to be ΨL,R (x, y) = ψL,R (x)χL,R (y) while [16] uses a power
of the warp factor in the decomposition.)

2.2.3 Summary and comparison to RS

In the previous subsections, we analyzed the zero modes for the open string fluctuations
of a D7 brane wrapping a 4-cycle in a warped compactification. This is a step towards
a string theory implementation of an extended supersymmetric RS scenario [16]. In such
scenarios, 4D fields result from the dimensional reduction of the zero modes of 5D fields
propagating in the bulk of AdS5.10 However, the construction here differs from the RS
scenario in not only the existence of additional spatial dimensions, but also the presence
of additional background fields, namely the RR potential C4 and the axiodilaton τ (which
for now we take to be constant).

Unlike the flat space case, the supersymmetry algebra in AdS5 implies that component
fields have different 5D masses [15]. In particular, the 4D gauge boson and gaugino come
from a 5D N = 1 vector supermultiplet. Gauge invariance requires that the 5D vector
component is massless, while SUSY requires that the 5D gaugino has mass 1

2K where
K = 1/R is the AdS curvature.11 Similarly, the matter fields result from the reduction of
a 5D hypermultiplet, the component fields of which each have a different mass.

The differences between the RS scenario and string theory implementations of the
scenario result in different behavior of the internal wavefunctions (Table 1). For each field,
the wavefunction can be written as Zpη where η is a constant function with the appropriate
Lorentz structure. The kinetic terms for each 4D field can be written schematically as

∫

R1,3
d4xφ̄Dφ

∫

int
dvolint Zqη̄η (2.51)

where φ is a 4D field with kinetic operator D, η is the corresponding internal wavefunction
and “int” denotes the unwarped internal space (S1/Z2 for RS or T4 here). Since both the D-

10The RS model is actually built on an orbifold S1/Z2. The orbifold action acts to project out certain

zero modes and will not effect the dependence on the warp factor of the surviving modes.
11There is a slight complication when the internal dimension is orbifolded, but this does not effect the

dependence of the zero modes on the warp factor which is what we are focusing on here. The orbifold action

also projects out the zero modes from the other component fields in the 5D vector supermultiplet.

– 14 –



Comparison to RS

Planck
brane IR brane

c > 1/2 c < 1/2 H
Yukawa

couplings

Figure 20: Fermion zero-mode profiles for different 5D fermion masses

Thus even without large hierarchies at the 5D level, hierarchical effective
Yukawa couplings are naturally generated. In the real world, we can identify
light fermions as chiral modes arising from bulk fermions with c > 1/2,
and heavy fermions with chiral modes arising from bulk fermions with c <
1/2. Therefore light fermion profiles are suppressed at the IR brane. This
suppresses their wave-function overlap with low-lying KK excitations of all
bulk fields, thereby suppressing a host of dangerous KK-mediated effects.
This is the central part of an automatic GIM mechanism suppressing flavor-
changing neutral currents. On the other hand one can predict that the heavy
top quark in this scenario should display significant non-standard corrections
to its couplings.
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Table 1: Warp factor dependence for internal wavefunctions (p) and Kähler metric (q) in the RS
scenario and the D-brane construction consdered here. In RS, the gauge boson and gaugino come
from a 5D vector multiplet while the matter scalar and fermion come from a 5D hypermultiplet.
The 5D mass of the fermion in the hypermultiplet is cK with K the AdS curvature. The additional
degrees of freedom from these supermultiplets are projected out by the orbifold action is RS. The
wavefunctions in SUSY RS are worked out in [16] (our conventions differ slightly from theirs in that
we take the ansatz for the 5D fermion to be ΨL,R (x, y) = ψL,R (x)χL,R (y) while [16] uses a power
of the warp factor in the decomposition.)

2.2.3 Summary and comparison to RS

In the previous subsections, we analyzed the zero modes for the open string fluctuations
of a D7 brane wrapping a 4-cycle in a warped compactification. This is a step towards
a string theory implementation of an extended supersymmetric RS scenario [16]. In such
scenarios, 4D fields result from the dimensional reduction of the zero modes of 5D fields
propagating in the bulk of AdS5.10 However, the construction here differs from the RS
scenario in not only the existence of additional spatial dimensions, but also the presence
of additional background fields, namely the RR potential C4 and the axiodilaton τ (which
for now we take to be constant).

Unlike the flat space case, the supersymmetry algebra in AdS5 implies that component
fields have different 5D masses [15]. In particular, the 4D gauge boson and gaugino come
from a 5D N = 1 vector supermultiplet. Gauge invariance requires that the 5D vector
component is massless, while SUSY requires that the 5D gaugino has mass 1

2K where
K = 1/R is the AdS curvature.11 Similarly, the matter fields result from the reduction of
a 5D hypermultiplet, the component fields of which each have a different mass.

The differences between the RS scenario and string theory implementations of the
scenario result in different behavior of the internal wavefunctions (Table 1). For each field,
the wavefunction can be written as Zpη where η is a constant function with the appropriate
Lorentz structure. The kinetic terms for each 4D field can be written schematically as

∫

R1,3
d4xφ̄Dφ

∫

int
dvolint Zqη̄η (2.51)

where φ is a 4D field with kinetic operator D, η is the corresponding internal wavefunction
and “int” denotes the unwarped internal space (S1/Z2 for RS or T4 here). Since both the D-

10The RS model is actually built on an orbifold S1/Z2. The orbifold action acts to project out certain
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Thus even without large hierarchies at the 5D level, hierarchical effective
Yukawa couplings are naturally generated. In the real world, we can identify
light fermions as chiral modes arising from bulk fermions with c > 1/2,
and heavy fermions with chiral modes arising from bulk fermions with c <
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suppresses their wave-function overlap with low-lying KK excitations of all
bulk fields, thereby suppressing a host of dangerous KK-mediated effects.
This is the central part of an automatic GIM mechanism suppressing flavor-
changing neutral currents. On the other hand one can predict that the heavy
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Thus even without large hierarchies at the 5D level, hierarchical effective
Yukawa couplings are naturally generated. In the real world, we can identify
light fermions as chiral modes arising from bulk fermions with c > 1/2,
and heavy fermions with chiral modes arising from bulk fermions with c <
1/2. Therefore light fermion profiles are suppressed at the IR brane. This
suppresses their wave-function overlap with low-lying KK excitations of all
bulk fields, thereby suppressing a host of dangerous KK-mediated effects.
This is the central part of an automatic GIM mechanism suppressing flavor-
changing neutral currents. On the other hand one can predict that the heavy
top quark in this scenario should display significant non-standard corrections
to its couplings.
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Thus even without large hierarchies at the 5D level, hierarchical effective
Yukawa couplings are naturally generated. In the real world, we can identify
light fermions as chiral modes arising from bulk fermions with c > 1/2,
and heavy fermions with chiral modes arising from bulk fermions with c <
1/2. Therefore light fermion profiles are suppressed at the IR brane. This
suppresses their wave-function overlap with low-lying KK excitations of all
bulk fields, thereby suppressing a host of dangerous KK-mediated effects.
This is the central part of an automatic GIM mechanism suppressing flavor-
changing neutral currents. On the other hand one can predict that the heavy
top quark in this scenario should display significant non-standard corrections
to its couplings.
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−→
∫

d4y |Z1/2 + ieΦ0/2b|2η†+η+

Magnetized D7-branes

!Finally, one can consider internally magnetized D7-branes, a 

necessary ingredient for 4D chirality in CY/F-theory models

!Result: 

(T2)i (T2)j (T2)k

e−Φ0/2F = Bi dvol(T2)i
+ Bj dvol(T2)j

F Bi Bj
Bi = e−Φ0/2Z−1/2bi

BPS ⇐⇒ bi = −bj

θ0
6D = Z−1/8

1+iBiΓT2
i

η−

θ0
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−→
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Wilsonino and modulino zero modes will have to solve a differential equation, that will
again relate them to the harmonic (1,0) and (2,0)-forms of S4, respectively.18

Finally, we can restore the warp factor dependence on the D7-brane fermionic action,
which amounts to add to (2.81) a piece of the form

(
/∂
int
4 lnZ

) (
1
8
− 1

2
PO3

+

)
(2.82)

exactly like in warped flat and Calabi-Yau spaces. As a result, we will again have that the
D7-brane gaugino and modulini depend on the warp factor as Z3/8, while the Wilsonini do
as Z−1/8. The generalization to F-theory backgrounds with fluxes is then straightforward.

2.6 Effects on the Kähler potential

Just like for closed strings, one can interpret the effect of warping in the open string
wavefunctions as a modification of the 4D Kähler potential and gauge kinetic functions.
In order to properly interpret the effect of warping, we must convert our results to the 4D
Einstein frame, which differs from the 10D Einstein frame by a Weyl transformation of the
unwarped 4D metric

ηµν →
α′3

Vw
ηµν (2.83)

where Vw is the warped volume of the internal 6D space

Vw =
∫

X6

dv̂olX6Z (2.84)

and α′3 can be thought of as a fiducial volume of the unwarped Calabi-Yau. This Weyl
transformation gives a canonical 4D Einstein-Hilbert action with 4D gravitational constant

1
2κ2

4

=
α′3

2κ2
10

(2.85)

Let us now analyze the different open string metrics. The D7-brane gauge kinetic
function for the gauge boson was deduced for the toroidal case in (2.46). From the results
of Sec 2.3, one can easily generalize this result to a D7-brane wrapping a 4-cycle S4 in a
warped Calabi-Yau as

fD7 =
(
8π3k2

)−1
∫

S4

dv̂olS4√
ĝS4

(
Z

√
ĝS4 + iC int

4

)
(2.86)

where ĝS4 is the unwarped induced metric on S4, and dv̂olS4 the corresponding volume
element. Since the gauge kinetic function is Weyl invariant, this is not modified when
moving to the 4D Einstein frame.

The position moduli and modulini combine to form N = 1 chiral supermultiplets, the
Kähler metric for which can be read from the kinetic term of the moduli, after converting

18See [31] for a derivation of this spectrum using twisted Yang-Mills theory.
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it to the 4D Einstein frame.19 Let us first consider the case where the D7 is wrapping
T4 =

(
T2

)
i
×

(
T2

)
j
⊂ T6, where each torus has a complex structure defined by the

holomorphic coordinate
zm = ym+3 + τmym+6 (2.87)

Then, from (2.34), the kinetic term in the 4D Einstein frame for the zero mode (dropping
the KK index 0 on the 4D fields) in the warped toroidal case is

S scal
D7 = − k2

κ2
4Vw

∫

R1,3
d4x ηµν∂µζ∂ν ζ∗

∫

T4
dv̂olT4 eΦ0Zs0s

∗
0

(
ĝT4

)
kk̄

(2.88)

where we have defined the complex field σ = (σ3+k + τkσ6+k) for i $= k $= j and extracted
the zero modes from the expansion (2.32). The Kähler metric is then

κ2
4Kζζ̄ =

k2

Vw

∫

T4
dv̂olT4 eΦ0Zs0s

∗
0 (ĝT4)kk̄ (2.89)

If we now consider a D7-brane wrapping a 4-cycle S4 in an unwarped Calabi-Yau, the
D7-brane moduli can be expanded in a basis {sA} of complex deformations of S4

σ
(
x, y

)
= ζA (x) sA (y) + ζ̄Ās̄Ā (y) (2.90)

Following [37], the Einstein frame kinetic term can then be written as

iτD7

∫

R1,3
eΦLAB̄ dζA ∧ ∗4dζ̄B̄ (2.91)

where

LAB̄ =

∫
S4

mA ∧mB̄∫
X6

ΩCY ∧ Ω̄CY
(2.92)

and {mA} is a basis of harmonic (2, 0)-forms related to {sA} via mA = ιsAΩCY. As we have
seen, in the toroidal case the effect of warping introduces a warp factor in the integral over
the internal wavefunctions and requires a Weyl rescaling with the warped volume rather
than the unwarped one. The appropriate generalization for the warped Calabi-Yau case
amounts then to

LAB̄ → Lw
AB̄ =

∫
S4

Z mA ∧mB̄∫
X6

Z ΩCY ∧ Ω̄CY
(2.93)

Let us now try to combine these open string Kähler metrics with the kinetic terms in
the closed string sector, studied in [12, 13, 14]. For the axio-dilaton, the result from [12] is

−
∫

R1,3
d4xKt̄t ∂µt̄ ∂µt (2.94)

where t is the axio-dilaton zero-mode, and the Kähler metric is given by

Kt̄t =
1

8 (Imτ)2 Vw

∫

X6
d6y Z Y 2

0 (2.95)

19The same philosophy has been applied in [35] to compute (unwarped) open string Kähler metrics in

the 10D SYM limit of type I theory, using the framework developed in [36].
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Unwarped kin. terms:

#S4 = sA

mA = ιsAΩCY

Couple to the dilaton as

where Y0 is the internal wavefunction for the zero mode. Since the equation of motion
admits a constant zero mode, the integral is proportional to the warped volume which is
canceled by the factor of Vw appearing in the denominator. That is, the kinetic term for
the zero mode of the axio-dilaton is unaffected by the presence of warping. In the presence
of D7 branes, the D7 geometric moduli and the axio-dilaton combine into a single Kähler
coordinate S. In the unwarped Calabi-Yau this combination is given by [37]

S = t− κ2
4τD7LAB̄ζAζ̄B̄ (2.96)

and so the appropriate part of the Kähler potential is

K " ln
[
−i

(
S − S̄

)
− 2iκ2

4τD7LAB̄ζAζ̄B̄
]

(2.97)

The kinetic term for t is not modified by warping, which suggests that in the presence of
warping we should identify

Sw = t− κ2
4τD7Lw

AB̄ζAζ̄B̄ (2.98)

and that the Kähler potential should be modified accordingly,

K " ln
[
−i

(
Sw − S̄w

)
− 2iκ2

4τD7Lw
AB̄ζAζ̄B̄

]
(2.99)

This correctly reproduces the quadratic-order kinetic terms for the axio-dilaton and D7
deformation moduli.

Turning now to the Wilson line and Wilsonini, their Kähler metric can be found from
the Wilson line action. In the S4 = T2

i ×T2
j case, the components of the 1-form potential

A in complex coordinates are

Aa =
i

2 Im (τa)
(
τ∗aAa+3 −Aa+6

)
(2.100)

for a = i, j. Converting (2.50) to the Einstein frame, we find that the action for the
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d4x ĝab̄
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∗
b̄
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T4
dv̂olT4W (0)

a W ∗(0)
b̄
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which finally gives the Kähler metric

κ2
4Kab̄ =
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Vw

∫

T4
dv̂olT4W (0)

a W ∗(0)
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ĝab̄
T4 (2.102)

where the indices a and b are not summed over.
In the Calabi-Yau case, the Wilson lines of a D7 wrapping S4 can be expanded as

AadAa = wI (x)W I (y) + wĪ (x) W
Ī (y) (2.103)

where
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W I

}
is a basis of harmonic (1, 0)-forms on S4. The kinetic term for the Wilson

lines in the unwarped case is [37]

i
2τD7k2

V

∫

R1,3
CIJ̄

α vαdwI ∧ ∗4dwJ̄ (2.104)
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where Y0 is the internal wavefunction for the zero mode. Since the equation of motion
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⇒
see, e.g., Jockers and Louis’04
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it to the 4D Einstein frame.19 Let us first consider the case where the D7 is wrapping
T4 =

(
T2

)
i
×

(
T2

)
j
⊂ T6, where each torus has a complex structure defined by the

holomorphic coordinate
zm = ym+3 + τmym+6 (2.87)

Then, from (2.34), the kinetic term in the 4D Einstein frame for the zero mode (dropping
the KK index 0 on the 4D fields) in the warped toroidal case is

S scal
D7 = − k2

κ2
4Vw

∫

R1,3
d4x ηµν∂µζ∂ν ζ∗

∫

T4
dv̂olT4 eΦ0Zs0s

∗
0

(
ĝT4

)
kk̄

(2.88)

where we have defined the complex field σ = (σ3+k + τkσ6+k) for i $= k $= j and extracted
the zero modes from the expansion (2.32). The Kähler metric is then

κ2
4Kζζ̄ =

k2

Vw

∫

T4
dv̂olT4 eΦ0Zs0s

∗
0 (ĝT4)kk̄ (2.89)

If we now consider a D7-brane wrapping a 4-cycle S4 in an unwarped Calabi-Yau, the
D7-brane moduli can be expanded in a basis {sA} of complex deformations of S4

σ
(
x, y

)
= ζA (x) sA (y) + ζ̄Ās̄Ā (y) (2.90)

Following [37], the Einstein frame kinetic term can then be written as

iτD7

∫

R1,3
eΦLAB̄ dζA ∧ ∗4dζ̄B̄ (2.91)

where

LAB̄ =

∫
S4

mA ∧mB̄∫
X6

ΩCY ∧ Ω̄CY
(2.92)

and {mA} is a basis of harmonic (2, 0)-forms related to {sA} via mA = ιsAΩCY. As we have
seen, in the toroidal case the effect of warping introduces a warp factor in the integral over
the internal wavefunctions and requires a Weyl rescaling with the warped volume rather
than the unwarped one. The appropriate generalization for the warped Calabi-Yau case
amounts then to

LAB̄ → Lw
AB̄ =

∫
S4

Z mA ∧mB̄∫
X6

Z ΩCY ∧ Ω̄CY
(2.93)

Let us now try to combine these open string Kähler metrics with the kinetic terms in
the closed string sector, studied in [12, 13, 14]. For the axio-dilaton, the result from [12] is

−
∫

R1,3
d4xKt̄t ∂µt̄ ∂µt (2.94)

where t is the axio-dilaton zero-mode, and the Kähler metric is given by

Kt̄t =
1

8 (Imτ)2 Vw

∫

X6
d6y Z Y 2

0 (2.95)

19The same philosophy has been applied in [35] to compute (unwarped) open string Kähler metrics in

the 10D SYM limit of type I theory, using the framework developed in [36].
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Warped EFT

! Is all this compatible with the closed string results?

!Geometric moduli ζa
a = 1, . . . , h(0,2)(S4) S
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Warped kin. terms:

#S4 = sA

mA = ιsAΩCY

Suggest a coupling 

where Y0 is the internal wavefunction for the zero mode. Since the equation of motion
admits a constant zero mode, the integral is proportional to the warped volume which is
canceled by the factor of Vw appearing in the denominator. That is, the kinetic term for
the zero mode of the axio-dilaton is unaffected by the presence of warping. In the presence
of D7 branes, the D7 geometric moduli and the axio-dilaton combine into a single Kähler
coordinate S. In the unwarped Calabi-Yau this combination is given by [37]

S = t− κ2
4τD7LAB̄ζAζ̄B̄ (2.96)

and so the appropriate part of the Kähler potential is

K " ln
[
−i

(
S − S̄

)
− 2iκ2

4τD7LAB̄ζAζ̄B̄
]

(2.97)

The kinetic term for t is not modified by warping, which suggests that in the presence of
warping we should identify

Sw = t− κ2
4τD7Lw

AB̄ζAζ̄B̄ (2.98)

and that the Kähler potential should be modified accordingly,

K " ln
[
−i

(
Sw − S̄w

)
− 2iκ2

4τD7Lw
AB̄ζAζ̄B̄

]
(2.99)

This correctly reproduces the quadratic-order kinetic terms for the axio-dilaton and D7
deformation moduli.

Turning now to the Wilson line and Wilsonini, their Kähler metric can be found from
the Wilson line action. In the S4 = T2

i ×T2
j case, the components of the 1-form potential

A in complex coordinates are

Aa =
i

2 Im (τa)
(
τ∗aAa+3 −Aa+6

)
(2.100)

for a = i, j. Converting (2.50) to the Einstein frame, we find that the action for the
massless modes is

S wl
D7 = − k2

κ2
4Vw

∫

R1,3
d4x ĝab̄

T4ηµν∂µwa∂νw
∗
b̄

∫

T4
dv̂olT4W (0)

a W ∗(0)
b̄

(2.101)

which finally gives the Kähler metric

κ2
4Kab̄ =

k2

Vw

∫

T4
dv̂olT4W (0)

a W ∗(0)
b̄

ĝab̄
T4 (2.102)

where the indices a and b are not summed over.
In the Calabi-Yau case, the Wilson lines of a D7 wrapping S4 can be expanded as

AadAa = wI (x)W I (y) + wĪ (x) W
Ī (y) (2.103)

where
{
W I

}
is a basis of harmonic (1, 0)-forms on S4. The kinetic term for the Wilson

lines in the unwarped case is [37]

i
2τD7k2

V

∫

R1,3
CIJ̄

α vαdwI ∧ ∗4dwJ̄ (2.104)
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matches Martucci’06



Warped EFT

! Is all this compatible with the closed string results?

!Wilson line moduli

Couple to Kähler moduli as 

Unwarped kin. terms:
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AadAa = wI (x)W I (y) + wĪ (x) W
Ī (y) (2.103)

where
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where V is the (unwarped) Calabi-Yau volume. If we now expand the Kähler form in a
basis {ωα} of harmonic 2-forms

JCY = vαωα (2.105)

we can express CIJ̄
α as

CIJ̄
α =

∫

S4

P [ωα] ∧W I ∧W
J̄ (2.106)

In the warped toroidal case, the effect of the warping on the Wilson line kinetic terms is
to simply replace the volume with the warped volume. Again, from Sec 2.3, this result is
independent of the shape of unwarped internal geometry so that in the warped Calabi-Yau
case, the kinetic term for the Wilson lines is

i
2τD7k2

Vw

∫

R1,3
CIJ̄

α vαdwI ∧ ∗4dwJ̄ (2.107)

where now the warped volume Vw appears in the denominator.
One may again wonder how these open string modes combine with the closed string

ones in the full Kähler potential. In analogy with the results for the unwarped Calabi-Yau
case, we would now expect that Wilson lines combine with the Kähler moduli. However, as
pointed out in [37] it is not an easy problem to derive the Kähler metrics from the general
form of the Kähler potential. Let us instead consider the particular case of X6 = T6,
S4 =

(
T2

)
i
×

(
T2

)
j
. In the unwarped case, the Kähler potential can be written as

K $ − ln
[
TΛ + TΛ

]
− ln

[
Ti + T i − 6iκ2

4τD7k
2CIJ̄

i wIwJ̄

]
(2.108)

− ln
[
Tj + T j − 6iκ2

4τD7k
2CIJ̄

j wIwJ̄

]

where Tα are a combination of Kähler moduli and D7’s Wilson lines. Indeed,

Tα + Tα =
3
2
Kα + 6iκ2

4τD7k
2CIJ̄

α wIwJ̄ (2.109)

where Kα control the the volume of the 4-cycles of the compactification. More precisely, if
we express an unwarped Calabi-Yau volume in terms of the vα defined in (2.105),

V =
1
6
Iαβγvαvβvγ (2.110)

then we have that, in general,
Kα = Iαβγvβvγ (2.111)

and in particular this expression applies for the Kähler moduli of T6.
Expanding (2.108) up to second order in the D7-brane Wilson lines wI we obtain that

their unwarped Kähler metrics are given by

κ2
4τD7k

2
∑

α

3iCIJ̄
α

Tα + Tα
wIwJ̄ (2.112)

Comparing to our result (2.107), it is easy to see that the obvious generalization that would
reproduce the Wilson line warped metric is to replace

Tα + Tα → Tw
α + T

w
α =

3
2
Iw

αβγvβvγ + 6iκ2
4τD7k

2CIJ̄
α wIwJ̄ (2.113)
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see again Jockers and Louis’04
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Warped EFT

! Is all this compatible with the closed string results?

!Wilson line moduli

Suggest the following def. for “warped Kähler modulus” 

where Y0 is the internal wavefunction for the zero mode. Since the equation of motion
admits a constant zero mode, the integral is proportional to the warped volume which is
canceled by the factor of Vw appearing in the denominator. That is, the kinetic term for
the zero mode of the axio-dilaton is unaffected by the presence of warping. In the presence
of D7 branes, the D7 geometric moduli and the axio-dilaton combine into a single Kähler
coordinate S. In the unwarped Calabi-Yau this combination is given by [37]

S = t− κ2
4τD7LAB̄ζAζ̄B̄ (2.96)

and so the appropriate part of the Kähler potential is

K " ln
[
−i

(
S − S̄

)
− 2iκ2

4τD7LAB̄ζAζ̄B̄
]

(2.97)

The kinetic term for t is not modified by warping, which suggests that in the presence of
warping we should identify

Sw = t− κ2
4τD7Lw

AB̄ζAζ̄B̄ (2.98)

and that the Kähler potential should be modified accordingly,

K " ln
[
−i

(
Sw − S̄w

)
− 2iκ2

4τD7Lw
AB̄ζAζ̄B̄

]
(2.99)

This correctly reproduces the quadratic-order kinetic terms for the axio-dilaton and D7
deformation moduli.

Turning now to the Wilson line and Wilsonini, their Kähler metric can be found from
the Wilson line action. In the S4 = T2

i ×T2
j case, the components of the 1-form potential

A in complex coordinates are

Aa =
i

2 Im (τa)
(
τ∗aAa+3 −Aa+6

)
(2.100)

for a = i, j. Converting (2.50) to the Einstein frame, we find that the action for the
massless modes is

S wl
D7 = − k2

κ2
4Vw

∫

R1,3
d4x ĝab̄

T4ηµν∂µwa∂νw
∗
b̄

∫

T4
dv̂olT4W (0)

a W ∗(0)
b̄

(2.101)

which finally gives the Kähler metric

κ2
4Kab̄ =

k2

Vw

∫

T4
dv̂olT4W (0)

a W ∗(0)
b̄

ĝab̄
T4 (2.102)

where the indices a and b are not summed over.
In the Calabi-Yau case, the Wilson lines of a D7 wrapping S4 can be expanded as

AadAa = wI (x)W I (y) + wĪ (x) W
Ī (y) (2.103)

where
{
W I

}
is a basis of harmonic (1, 0)-forms on S4. The kinetic term for the Wilson

lines in the unwarped case is [37]

i
2τD7k2

V

∫

R1,3
CIJ̄

α vαdwI ∧ ∗4dwJ̄ (2.104)

– 26 –
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where now the warped volume Vw appears in the denominator.
One may again wonder how these open string modes combine with the closed string
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Warped kin. terms:

w
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w

w

in (2.108). Here we have defined the warped intersection product

Iw
αβγ =

∫

X6
Z ωα ∧ ωβ ∧ ωγ (2.114)

that defines the warped volume as

Vw =
1
6
Iw

αβγvαvβvγ (2.115)

Given this, one may wonder if the modification (2.113) due to warping of the Kähler
modulus is a particular feature of toroidal-like compactifications or if it is more general.
One possible caveat is that this modification is clearly different from the modification to the
gauge kinetic function (2.86). In particular, the warp factor of the gauge kinetic function
is integrated only over S4, while the warp factor in the definition of Tw is integrated over
the entire internal space. In fact, both definition of warped volume can be put in the same
form

Volwξ (S4) = −1
2

∫

X6

ξ ∧ J ∧ J (2.116)

where ξ is Poincaré dual to [S4], and J = Z1/2JCY is the warped version of the Kähler
form. Because J2 is not closed, (2.116) depends on which representative for ξ we consider.
In particular, for the definition of Tw ξ is the harmonic representative, while for the gauge
kinetic function ξ should have a δ-function support on S4.

Despite this discrepancy there is no contradiction between (2.86) and our definition of
Tw. Indeed, as seen in [23] (see also [38]) one can express the warped volume of S4 as

Vw
S4

=
∫

S4

Z dvolS4 = Tw
α + T

w
α + [ϕ + ϕ] (2.117)

where ϕ is a holomorphic function of the D-brane position moduli. The real part of such
function is precisely the difference between both choices of ξ.

Another situation in which one can test our definition of a warped Kähler modulus is
the case where X6 has a single Kähler modulus. There, the relevant piece of the unwarped
Kähler potential is given by [37]

−3 ln
[
TΛ + TΛ − 6iκ4τD7k

2CIJ̄
Λ wIwJ̄

]
(2.118)

where the single four-cycle SΛ is wrapped by the D7 brane. According to our prescription
(2.113), in the warped case this should be modified to

−3 ln
[
Tw

Λ + T
w
Λ − 6iκ4τD7k

2CIJ̄
Λ wIwJ̄

]
(2.119)

and, in the absence of a D7 brane where wI = 0, this becomes

−3 ln
[
Tw

Λ + T
w
Λ

]
(2.120)

Note that this reproduces is the results of [14]. Indeed, from our definition of Tw
α we have

that, in the absence of D7-branes,

twΛ =
3
4
I w

ΛΛΛ

(
vΛ

)2 (2.121)
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! Is all this compatible with the closed string results?

! In addition, for a single Kähler modulus $ we have that

the fluctuation of such modulus is 

⇒

Giddings and Maharana’05

K = −3 ln
[
Tw

Λ + T̄w
Λ

]
" −3 ln

Vw

vΛ

⇒Vw(x) = V0
w + c(x)VCY

reproduces Frey, Torroba, Underwood, Douglas’08

Chen, Nakayama, Shiu, 09

Z(x, y) = Z0(y) + c(x)

K ! −3 ln
(

c +
V0

w

VCY

)
− 3 ln

VCY

vΛ



Holographic SUSY Breaking

D3 D7s

ε µ

Figure 3: The SM gauge fields live in the worldvolume of D7-branes.

coordinates zi in which the defining equation of the deformed conifold geometry is

4
∑

i=1

z2
i = ε2, (2.2)

then we embed a stack of K D7-branes on the divisor defined by the equation

z4 = µ . (2.3)

The extended quiver which captures the field content of the gauge theory dual to K
such D7-branes in the warped deformed conifold geometry is shown in Figure 4. In the

non-compact throat, the SU(K) gauge group on the D7’s is a global (flavor) symmetry
group, and the additional matter fields are flavors in the SU(N + M) × SU(N) gauge
theory. When the throat is glued into a compact Calabi-Yau manifold, the SU(K)

becomes weakly gauged.

N KN+M

A1,2

B1,2 χ

χ̃

⊃ SU(5)

Figure 4: Quiver diagram for the conifold flavored by Kuperstein D7-branes.

The superpotential of the flavored theory becomes6

6This expression can be obtained from the N = 2 parent theory, where the superpotential is fixed,
upon mass deformation for the adjoint scalars. Strictly speaking, (2.4) is correct for U(N) groups
while for SU(N) there are 1/N suppressed double trace terms.
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Strongly coupled 

hidden sector
Warped Throat

Messengers 37 strings

Metastable SUSY

state

Backreacted D3

background

Visible sector

Gauge Multiplets
D7-brane fields

Via gauge/gravity duality, analyze strong dynamics 

from a weak coupling gravity dual !

However, using the backreacted D3 background valid in large r region:

Benini, Dymarsky, Franco, Kachru, Simic, Verlinde 

one finds the leading gravity computation gives vanishing gaugino mass.

DeWolfe, Kachru, Mullugan

McGuirk, GS, Sumitomo, in progress



zi → e−iαzi

4∑

i=1

z2
i = ε2

ε→ 0

Z2

Tr(λ2)
(
G3

123

)∗

m3/2 ∼
∫

Ω ∧G3

Z3/8η+

Holographic SUSY Breaking
McGuirk, GS, Sumitomo, in progress

R-symmetry:

Deformed Conifold:

exact as

is broken to only in the IR.

Backreacted solution in the IR sources (0,3)+(3,0) besides 

the (1,2)+(2,1) fluxes already present in the UV.

Gaugino mass:

Gaugino mass:

Gravitino mass:

c.f. Camara, Ibanez, Uranga
See also: Grana, Grimm, Jockers, Louis;

Lust, Reffert, Stieberger

Using gaugino wavefunction Marchesano, McGuirk, GS



P(g)µν = e2A(Y,u)+2Ω(u)
{
g̃µν(x) + 2∂µ∂νuI(x)KI(Y ) + 2BiI(Y )∂µuI(x)∂νY i

}

+ e−2A(Y,u)g̃ij(Y, u)∂µY i∂νY j .

DM
(
h−1/2πMα

)
= 0 ,

DM (h−1/2πMi) + κ2
10δ

(6)(y − Y )
Pi√
h

= 0 .

κ2
4K(ρ, Y ) = −3 log

[
ρ + ρ̄− γk(Y, Y ) + 2

V 0
W

VCY

]
, γ =

T3κ2
4

3
,

ρ =
(
c +

γ

2
k(Y, Y )

)
+ iχ .

Open+Closed String Fluctuations
Chen, Nakayama, GS

Hamiltonian constraints:

Combined Kahler potential:

Gaugino mass:

suggests a convenient gauge B=0

where

“breathing mode” axion



Summary

!Effective action for warped compactifications is much needed 

in drawing precise predictions of such models. 

!Many subtleties in deriving warped Kahler potential. Inclusion 

of open string moduli essential for several applications to 

warped string models of particle physics and cosmology.

!Computed open string wavefunctions in warped backgrounds, 

and extracted the open string wEFT. Results agree with closed 

string computation.

!Combined Kahler potential involving both D3 and universal 

Kahler modulus.



THANKS


