

Open String Dynamics in Warped Backgrounds Gary Sbiu
University of Wisconsin

Based on:

- Marchesano, McGuirk, GS, 0812.2247
- Chen, Nakayama, GS, 0905.4463
- McGuirk, GS, Sumitomo, in progress

See also:

- GS, Torroba, Underwood, Douglas, 0803.3068

Based on:

- Marchesano, McGuirk, GS, 0812.2247
- Chen, Nakayama, GS, 0905.4463
- McGuirk, GS, Sumitomo, in progress

See also:

- GS, Torroba, Underwood, Douglas

Based on:

- Marchesano, McGuirk, GS, 0812. i
- Chen, Nakayama, GS, 0905.4463
- McGuirk, GS, Sumitomo, in progr

See also:

- GS, Torroba, Underwood, Douglas

Compensators and Warping

$\begin{aligned} \delta G_{\nu}^{\mu}= & \delta_{\nu}^{\mu} u^{I} \delta_{I}\left\{e^{2 A}\left[-2 \tilde{\nabla}^{2} A+4(\widetilde{\nabla A})^{2}-\frac{1}{2} \tilde{R}\right]\right\}+e^{-2 A}\left(\partial^{\mu} \partial_{\nu} u^{I}-\delta_{\nu}^{\mu} \square u^{I}\right)\left(4 \delta_{I} A-\frac{1}{2} \delta_{I} \tilde{g}\right) \\ & +\left(\partial^{\mu} \partial_{\nu} u^{I}-\delta_{\nu}^{\mu} \square u^{I}\right) e^{2 A} \tilde{\nabla}^{p}\left(B_{I p}-\partial_{p} K_{I}\right) \\ & +e^{-2 A} f^{K} \delta_{K} G_{\nu}^{(4) \mu}-\frac{1}{2}\left(\delta_{K} g_{\nu}^{\mu}-\delta_{\nu}^{\mu} \delta_{K} g_{\lambda}^{\lambda}\right) e^{2 A} \tilde{\nabla}^{2} f^{K},\end{aligned}$

$$
\begin{align*}
\delta G_{m}^{\mu}=\delta R_{m}^{\mu}= & e^{-2 A} \partial^{\mu} u^{I}\left\{2 \partial_{m} \delta_{I} A-8 \partial_{m} A \delta_{I} A-\frac{1}{2} \partial_{m} \delta_{I} \tilde{g}+\partial_{m} A \delta_{I} \tilde{g}\right. \\
& -2 \partial^{\tilde{p}} A \delta_{I} \tilde{g}_{m p}+\frac{1}{2} \tilde{\nabla}^{p} \delta_{I} \tilde{g}_{m p} \\
& -\frac{1}{2} \tilde{\nabla}^{p}\left[e^{4 A}\left(\tilde{\nabla}_{p} B_{I m}-\tilde{\nabla}_{m} B_{I p}\right)\right]+2\left(\partial_{m} A B_{I p}-\partial_{p} A B_{I m}\right) \tilde{\nabla}^{p} e^{4 A} \\
& \left.+\frac{1}{2} e^{8 A} B_{I m} \tilde{\nabla}^{2} e^{-4 A}-e^{4 A} \tilde{R}_{m}^{n} B_{I n}\right\} \tag{A.15}
\end{align*}
$$

$$
\begin{aligned}
\delta G_{n}^{m}= & u^{I} \delta_{I}\left\{e^{2 A}\left[\tilde{G}_{n}^{m}+4(\widetilde{\nabla A})^{2} \delta_{n}^{m}-8 \nabla_{n} A \tilde{\nabla}^{m} A\right]\right\}-\frac{1}{2} e^{-2 A} \square u^{I} \tilde{g}^{m k} \delta_{I} \tilde{g}_{k n} \\
& +\delta_{n}^{m} e^{-2 A} \square u^{I}\left(-2 \delta_{I} A+\frac{1}{2} \delta_{I} \tilde{g}\right) \\
& \square u^{I}\left(\frac{1}{2} e^{-2 A}\left\{\tilde{\nabla}^{m}\left[e^{4 A}\left(B_{I n}-\partial_{n} K_{I}\right)\right]+\tilde{\nabla}_{n}\left[e^{4 A}\left(B_{I}^{\tilde{m}}-\partial^{\tilde{m}} K_{I}\right)\right]\right\}\right. \\
& \left.-\delta_{n}^{m} \tilde{\nabla}^{p}\left[e^{2 A}\left(B_{I p}-\partial_{p} K_{I}\right)\right]\right) \\
& +\frac{1}{2} \delta_{K} g_{\mu}^{\mu}\left\{-\frac{1}{2} e^{-2 A}\left[\tilde{\nabla}^{m}\left(e^{4 A} \partial_{n} f^{K}\right)+\tilde{\nabla}_{n}\left(e^{4 A} \partial^{\tilde{m}} f^{K}\right)\right]+\delta_{n}^{m} \tilde{\nabla}^{p}\left[e^{2 A} \partial_{p} f^{K}\right]\right\} \\
& -\frac{1}{2} \delta_{n}^{m} f^{K} e^{-2 A} \delta_{K} R^{(4)}
\end{aligned}
$$

$$
\begin{gather*}
\delta T_{\nu}^{\mu}=-\delta_{\nu}^{\mu} \frac{1}{4 \kappa_{10}^{2}}\left\{u^{I} \delta_{I}\left[e^{-6 A}(\widetilde{\nabla \alpha})^{2}\right]-2 e^{-6 A} \square u^{I} S_{I m} \partial^{\tilde{m}} \alpha-2 \square u^{I} K_{I} e^{-6 A}(\widetilde{\nabla \alpha})^{2}\right\} \tag{A.38}\\
\delta T_{m}^{\mu}=\frac{1}{2 \kappa_{10}^{2}} \partial^{\mu} u^{I} e^{-6 A}\left[\partial_{m} S_{I p}-\partial_{p} S_{I m}+\partial_{m} \alpha B_{I p}-\partial_{p} \alpha B_{I m}\right] \partial^{\tilde{p}} \alpha, \tag{A.37}
\end{gather*}
$$

$$
\begin{aligned}
\delta T_{n}^{m} & =-\frac{1}{2 \kappa_{10}^{2}} u^{I} \delta_{I}\left\{e^{-6 A}\left[\partial_{n} \alpha \partial^{\tilde{m}} \alpha-\frac{1}{2} \delta_{n}^{m}(\widetilde{\nabla \alpha})^{2}\right]\right\} \\
& +\frac{e^{-6 A}}{2 \kappa_{10}^{2}} \square u^{I}\left\{S_{I n} \partial^{\tilde{m}} \alpha+\partial_{n} \alpha S_{I}^{\tilde{m}}-\delta_{n}^{m} S_{I p} \partial^{\tilde{p}} \alpha+2 K_{I}\left[\partial_{n} \alpha \partial^{\tilde{m}} \alpha-\frac{1}{2} \delta_{n}^{m}(\widetilde{\nabla \alpha})^{2}\right]\right\}
\end{aligned}
$$

Based on:

- Marchesano, McGuirk, GS, 0812.2247
- Chen, Nakayama, GS, 0905.4463
- McGuirk, GS, Sumitomo, in progress

See also:

- GS, Torroba, Underwood, Douglas, 0803.3068

The Ubiquitous Throat

The Ubiquitous Throat

The Ubiquitous Throat

Cosmology

Inflation, sequestered DM,
see Langlois,
McAllister's talks

String Theory

Moduli stabilization
AdS/CFT, ...

The Ubiquitous Throat

The Ubiquitous Throat

The Ubiquitous Throat

Inflation and UV Physics

sensitive to dimension 6, Planck suppressed corrections:

$$
\delta V \sim \frac{V}{M_{P}^{2}} \phi^{2} \quad \rightleftarrows \quad \eta \equiv M_{P}^{2} \frac{V^{\prime \prime}}{V} \sim \mathcal{O}(1)
$$

such corrections may come from the Kahler potential which is not protected by holomorphy.

BSM and UV Physics

In gravity mediation, soft terms are generated by Planck suppressed operators:

$$
m_{0} \sim m_{1 / 2} \sim m_{3 / 2} \sim \frac{<F>}{M_{P}}
$$

Issue of FCNC can only be addressed with knowledge of UV physics.

Again, the Kahler potential comes into play.

Warping Corrections

In addition to g_{s} and α^{\prime}, yet another correction:
For example: N D3-branes

$$
\begin{aligned}
& \text { Warp Factor: } \\
& \qquad Z \equiv e^{-4 A}=1+\frac{g_{s} N \alpha^{\prime 2}}{r^{4}}
\end{aligned}
$$

Warping corrections can be important even for small

$$
g_{s} \quad \& \quad \alpha^{\prime}
$$

Warped Closed Strings

Question:

What is the effect of warping in string models?

Warped Closed Strings

Question:

What is the effect of warping in string models?

* One can quantify such effect in terms of a modified 4D EFT, including a "warped Kähler potential" Kw

Warped Closed Strings

Question:

> What is the effect of warping in string models?
$\%$ One can quantify such effect in terms of a modified 4D EFT, including a "warped Kähler potential" K ${ }^{\text {w }}$
$\%$ Closed string/gravity sector:
Giddings and Maharana'05
\uparrow Many subtle issues
Burgess, Cámara, de Alwis, Giddings, Maharana, Quevedo'06 GS, Torroba, Underwood, Douglas'08

Douglas, Torroba'08
\downarrow Simple expressions for certain subsectors (universal Kähler modulus)

Warped Open Strings

\because Open string/gauge sector of the theory: K^{w} unexplored
\because Many immediate applications to particle physics \& cosmology

D-brane Inflation

D3-moduli
Chen, Nakayama, GS

Warped Extra Dimensions

Marchesano, McGuirk, GS

Warped Extra Dimensions

Analogous ideas for F-theory, magnetized/intersecting branes, twisted tori, etc, see talks of Heckman, Marchesano, Kobayashi, Bourjaily, Camara, Ohki,...

Warped Open Strings

D7-branes wrap $S_{4} \subset X_{6}$

Type IIB warped background:

$$
d s_{10}^{2}=\Delta^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\Delta^{1 / 2} e^{\Phi} \hat{g}_{m n} d y^{m} d y^{n}
$$

Consistency requires:

$$
F_{5}=\left(1+*_{10}\right) F_{5}^{\text {int }} \quad F_{5}^{\text {int }}=\hat{*}_{6} d\left(\Delta e^{\Phi}\right)
$$

Warped Open Strings

- Compute the open string wavefunctions in a warped background
\checkmark Deduce the open string Kähler potential

Warmup: Warped Flat Space

\% Introduce a probe D7-brane in this background, see how its internal fluctuations are affected by the presence of Z and F_{5}

$1{ }^{1} 3$

Warmup: Warped Flat Space

\% Introduce a probe D7-brane in this background, see how its internal fluctuations are affected by the presence of Z and F_{5}

Our results will be generalized later to warped Calabi-Yau and backgrounds with other SUGRA and/or worldvolume fluxes

Warmup: Warped Flat Space

\& Introduce a probe D7-brane in this background, see how its internal fluctuations are affected by the presence of Z and F_{5}

Our results will be generalized later to warped Calabi-Yau and backgrounds with other SUGRA and/or worldvolume fluxes

Q: How do the D7 wavefunctions couple to F_{5} ?

D7-brane action

$\&$ Bosonic action $\quad S_{\mathrm{D} 7}^{\mathrm{bos}}=S_{\mathrm{D} 7}^{\mathrm{DBI}}+S_{\mathrm{D} 7}^{\mathrm{CS}}$
\&Fermionic action

Martucci, Rasseel, Van den Bleeken, Van Proeyen'05

$$
S_{\mathrm{D} 7}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} \int d^{8} \xi e^{\Phi} \sqrt{|\operatorname{det} G|} \bar{\Theta} P_{-}^{\mathrm{D} 7}\left(\Gamma^{\alpha} \mathcal{D}_{\alpha}+\frac{1}{2} \mathcal{O}\right) \Theta
$$

D7-brane action

\because Bosonic action $\quad S_{\mathrm{D} 7}^{\text {bos }}=S_{\mathrm{D7}}^{\mathrm{DBI}}+S_{\mathrm{D7}}^{\mathrm{CS}}$
\%Fermionic action

$$
\begin{aligned}
& S_{\mathrm{DT}}^{\text {fer }}=\tau_{\mathrm{D} 7} \int d^{8} \xi e^{\Phi} \sqrt{|\operatorname{det} G|} \bar{\Theta} P_{-}^{\mathrm{D} 7}\left(\Gamma^{\alpha} \mathcal{D}_{\alpha}+\frac{1}{2} \mathcal{O}\right) \Theta \\
& \text { Maralf, Martucci, Sikua'03 } \\
& \Theta=\binom{\theta_{1}}{\theta_{2}} \text { 10D MW bispinor (type IIB superspace) } \\
& P_{ \pm}^{\text {DT }}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{8 D} \otimes \sigma_{2}\right) \quad \text { halves the dof's down to } \mathbb{N}=18 \mathrm{D} \text { SYM } \\
& \delta_{\epsilon} \psi_{M}=\mathcal{D}_{M} \epsilon \quad \text { type IIB gravitino variation } \\
& \delta_{\epsilon} \lambda=\mathcal{O} \epsilon \quad \text { type IIB dilatino variation }
\end{aligned}
$$

D7-brane action

\because Bosonic action $\quad S_{\mathrm{D7}}^{\mathrm{bos}}=S_{\mathrm{D7}}^{\mathrm{DBI}}+S_{\mathrm{D7}}^{\mathrm{CS}}$
\because Fermionic action

$$
\begin{aligned}
& S_{\mathrm{DT}}^{\text {fer }}=\tau_{\mathrm{D} 7} \int d^{8} \xi e^{\Phi} \sqrt{|\operatorname{det} G|} \bar{\Theta} P_{-}^{\mathrm{DT}}\left(\Gamma^{\alpha} \mathcal{D}_{\alpha}+\frac{1}{2} \mathcal{O}\right) \Theta \\
& \text { Maralf, Martucci, Silua'03 } \\
& \Theta=\binom{\theta_{1}}{\theta_{2}} \text { 10D MW bispinor (type IIB superspace) } \\
& P_{ \pm}^{D 7}=\frac{1}{2}\left(\mathbb{I} \mp \Gamma_{8 D} \otimes \sigma_{2}\right) \quad \text { halves the dof's down to } \mathbb{N}=18 \mathrm{D} \text { SYM } \\
& \kappa \text {-symmetry } \quad \Theta \rightarrow \Theta+P_{-}^{D 7} \kappa \\
& \text { Convenient } \\
& \text { choices: } \\
& \Theta=\binom{\theta}{0} \quad \text { or } \quad P_{-}^{\mathrm{D} 7} \Theta=0
\end{aligned}
$$

D7-brane action

\% In warped flat space:

$$
\begin{aligned}
\mathcal{O} & =0 \\
\mathcal{D}_{M} & =\nabla_{M}+\frac{1}{8} F_{5}^{\mathrm{int}} \Gamma_{M} i \sigma_{2}
\end{aligned}
$$

\% The D7-brane sees the warped metric

$$
d s_{\mathrm{D} 7}^{2}=Z^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+Z^{1 / 2} \sum_{a, b=4}^{7} \delta_{a b} d y^{a} d y^{b}
$$

D7-brane action

٪ In warped flat space:

$$
\begin{aligned}
\mathcal{O} & =0 \\
\mathcal{D}_{M} & =\nabla_{M}+\frac{1}{8} F_{5}^{\mathrm{int}} \Gamma_{M} i \sigma_{2}
\end{aligned}
$$

\% The D7-brane sees the warped metric

$$
d s_{\mathrm{D} 7}^{2}=Z^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\mathbb{Z}^{1 / 2} \sum_{a, b=4}^{7} \delta_{a b} d y^{a} d y^{b}
$$

$\therefore \kappa$-fixing $\Theta=\binom{\theta}{0}$, the 8 D Dirac action is given by

$$
\begin{aligned}
S_{\mathrm{D} 7}^{\mathrm{fer}} & =\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \int d^{4} y \bar{\theta} \not D^{w} \theta \\
\not D^{w} & =\sum_{\mu} \Gamma^{\mu} \mathcal{D}_{\mu}+\sum_{a} \Gamma^{a} \mathcal{D}_{a}+\frac{1}{2} \mathcal{O} \\
& =\not \ddot{y}_{4}^{\mathrm{ext}}+\not \ddot{y}_{4}^{\mathrm{int}}-\frac{1}{8}\left(\not \ddot{y}_{4}^{\mathrm{int}} \ln Z\right)\left(1+2 \Gamma_{\text {Extra }}\right)
\end{aligned}
$$

D7-brane action

$\%$ In warped flat space:

$$
\begin{aligned}
\mathcal{O} & =0 \\
\mathcal{D}_{M} & =\nabla_{M}+\frac{1}{8} F_{5}^{\mathrm{int}} \Gamma_{M} i \sigma_{2}
\end{aligned}
$$

\% The D7-brane sees the warped metric

$$
d s_{\mathrm{D} 7}^{2}=Z^{-1 / 2} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\mathbb{Z}^{1 / 2} \sum_{a, b=4}^{7} \delta_{a b} d y^{a} d y^{b}
$$

$\therefore \kappa$-fixing $\Theta=\binom{\theta}{0}$, the 8 D Dirac action is given by

$$
\begin{aligned}
S_{\mathrm{D} 7}^{\mathrm{fer}} & =\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \int d^{4} y \bar{\theta} \not D^{w} \theta \\
\not D^{w} & =\sum_{\mu} \Gamma^{\mu} \mathcal{D}_{\mu}+\sum_{a} \Gamma^{a} \mathcal{D}_{a}+\frac{1}{2} \mathcal{O} \\
& =\ddot{y}_{4}^{\mathrm{ext}}+\not \ddot{y}_{4}^{\mathrm{int}}-\frac{1}{8}\left(\not \ddot{y}_{4}^{\mathrm{int}} \ln Z\right)\left(1+2 \Gamma_{\mathrm{Extra}}\right)
\end{aligned}
$$

D7-brane zero modes

If one now decomposes the 10D MW spinor as

$$
\theta=\chi+B^{*} \chi^{*} \quad \chi=\theta_{4 D} \otimes \theta_{6 D} \quad \text { B: Majorana matrix }
$$

and performs a KK reduction, the 4D mass eigenstate eq. is

$$
\left[\not \ddot{\partial}_{4}^{\text {int }}-\frac{1}{8}\left(\ddot{\partial}_{4}^{\text {int }} \ln Z\right)\left(1+2 \Gamma_{\text {Extra }}\right)\right] \theta_{6 D}^{0}=0
$$

D7-brane zero modes

If one now decomposes the 10D MW spinor as

$$
\theta=\chi+B^{*} \chi^{*} \quad \chi=\theta_{4 D} \otimes \theta_{6 D} \quad \text { B: Majorana matrix }
$$

and performs a KK reduction, the 4D mass eigenstate eq. is

$$
\left[\ddot{\phi}_{4}^{\text {int }}-\frac{1}{8}\left(\ddot{\partial}_{4}^{\mathrm{int}} \ln Z\right)\left(1+2 \Gamma_{\text {Extra }}\right)\right] \theta_{6 D}^{0}=0
$$

and so the 4D zero modes are

$$
\begin{array}{cll}
\theta_{6 D}^{0}=Z^{-1 / 8} \eta_{-} & \text {for } & \Gamma_{\text {Extra }} \eta_{-}=-\eta_{-} \\
\theta_{6 D}^{0}=Z^{3 / 8} \eta_{+} & \text {for } & \Gamma_{\text {Extra }} \eta_{+}=\eta_{+}
\end{array}
$$

in contrast to $\theta_{6 D}^{0}=Z^{1 / 8} \eta$, the result in the absence of F_{5}

D7-brane zero modes

※Upon dimensional red., such fermion zero modes

$$
\begin{aligned}
& \theta_{6 D}^{0}=Z^{-1 / 8} \eta_{-} \\
& \theta_{6 D}^{0}=Z^{3 / 8} \eta_{+}
\end{aligned}
$$

imply the following kinetic terms

$$
\begin{aligned}
S_{\mathrm{D} 7}^{\mathrm{fer}} & =\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D}{\not \mathbb{R}^{1,3}} \theta_{4 D} \int d^{4} y \eta_{-}^{\dagger} \eta_{-} \\
S_{\mathrm{D} 7}^{\mathrm{fer}} & =\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D} \partial_{\mathbb{R}^{1,3}} \theta_{4 D} \int d^{4} y Z \eta_{+}^{\dagger} \eta_{+}
\end{aligned}
$$

that indeed match the kinetic terms of the bosonic zero modes (e.g., $f_{D 7} \sim \int Z+i C_{4}$). This allows to identify them in terms of their bosonic superpartners.

D7-brane zero modes

※Upon dimensional red., such fermion zero modes

$$
\begin{aligned}
& \theta_{6 D}^{0}=Z^{-1 / 8} \eta_{-} \\
& \theta_{6 D}^{0}=Z^{3 / 8} \eta_{+}
\end{aligned}
$$

imply the following kinetic terms

$$
\begin{aligned}
& S_{\mathrm{DT}}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D} \partial_{\mathbb{R}^{1,3}} \theta_{4 D} \int d^{4} y \eta_{-}^{\dagger} \eta_{-} \\
& S_{\mathrm{D} 7}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D} \not \text { 敢 }^{1,3} \theta_{4 D} \int d^{4} y Z \eta_{+}^{\dagger} \eta_{+}
\end{aligned}
$$

that indeed match the kinetic terms of the bosonic zero modes (e.g., $f_{D 7} \sim \int Z+i C_{4}$). This allows to identify them in terms of their bosonic superpartners.

D7-brane zero modes

\% Upon dimensional red., such fermion zero modes

$$
\begin{array}{lccc}
\theta_{6 D}^{0}=Z^{-1 / 8} \eta_{-} & \text {Wísonini } & A_{a} \\
\theta_{6 D}^{0}=Z^{3 / 8} \eta_{+} & \text {gaugino }+ \text { modulino } & A_{\mu},
\end{array}
$$

imply the following kinetic terms

$$
\begin{aligned}
& S_{\mathrm{D} 7}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D}{\not \ddot{\mathbb{R}}^{1,3}} \theta_{4 D} \int d^{4} y \eta_{-}^{\dagger} \eta_{-} \\
& S_{\mathrm{D} 7}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int_{\mathbb{R}^{1,3}} d^{4} x \bar{\theta}_{4 D}{\not \mathscr{\mathbb { R }}^{1,3}} \theta_{4 D} \int d^{4} y Z \eta_{+}^{\dagger} \eta_{+}
\end{aligned}
$$

that indeed match the kinetic terms of the bosonic zero modes (e.g., fD7 $\sim \int Z+i C_{4}$). This allows to identify them in terms of their bosonic superpartners.

A subtlety

٪ Our strategy to compute the zero modes appears to be:

$$
S_{\mathrm{DT}}^{\mathrm{fer}}=\int d^{8} \xi \bar{\theta} D^{w} \theta \quad \rightarrow \quad D^{w} \theta^{0}=0
$$

\because For a 10D MW spinor, θ and $\bar{\theta}$ cannot be varied independently.
$\%$ For example:

$$
\tau_{\mathrm{D} 7} \int d^{8} \xi \bar{\theta} \Gamma^{\alpha} \partial_{\alpha} \theta \quad \text { and } \quad \tau_{D 7} \int d^{8} \xi \bar{\theta} \Gamma^{\alpha}\left(\partial_{\alpha}-\partial_{\alpha} \ln f\right) \theta
$$

both give $\Gamma^{\alpha} \partial_{\alpha} \theta=0$ since $\bar{\theta} \Gamma^{a_{1} \ldots a_{n}} \theta \neq 0$ only if $n=3,7$
\because Naively, the warp factor dependence drops out in eom.

* But a careful analysis gives:

$$
\delta S_{\mathrm{D} 7}^{\mathrm{fer}}=\tau_{\mathrm{D} 7} e^{\Phi_{0}} \int d^{8} \xi \overline{\delta \theta} D^{w} \theta+\bar{\theta} D^{\omega} \delta \theta=2 \tau_{\mathrm{D} 7} e^{\Phi_{0}} \int d^{8} \xi \overline{\delta \theta} D^{D^{w}} \theta
$$

A subtlety

\% Implicitly a choice of gauge is made in the D-brane fermionic action (choice of supercoord. system)

$$
P_{-}^{\mathrm{DT}}\left(\Gamma^{\alpha} \mathcal{D}_{\alpha}^{E}+\frac{1}{2} \mathcal{O}^{E}\right) \Theta=0
$$

\%The gauge choice should be consistent with the gauge choices in the bosonic sector. One can check this by dimensionally reducing the SUSY variations
ex: qauge boson $\delta_{\delta_{\epsilon} A_{\alpha=\mu}=}$

Recap

$\%$ In general, the open string wavefunctions have an internal profile of the form

$$
\psi^{\text {int }}=Z^{p} \eta, \quad \eta=\text { const. }
$$

*Their kinetic terms group into 4D $\mathbb{N}=1$ multiplets

$$
\int_{\mathbb{R}^{1}, 3} d^{4} x \bar{\phi} D \phi \int d^{4} y Z^{q}
$$

Recap

$\%$ In general, the open string wavefunctions have an internal profile of the form

$$
\psi^{\text {int }}=Z^{p} \eta, \quad \eta=\text { const. }
$$

$\%$ Their kinetic terms group into 4D $\mathbb{N}=1$ multiplets

$$
\int_{\mathbb{R}^{1,3}} d^{4} x \bar{\phi} D \phi \int d^{4} y Z^{q}
$$

D7		
4D Field	p	q
gauge boson/modulus	0	1
gaugino/modulino	$3 / 8$	
Wilson line	0	0
Wilsonino	$-1 / 8$	

Comparison to RS

RS			D7		
4D Field	p	q	4D Field	p	q
gauge boson gaugino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	$1 / 4$	gauge boson/modulus gaugino/modulino	$\begin{gathered} 0 \\ 3 / 8 \end{gathered}$	1
matter scalar matter fermion	$\begin{gathered} (3-2 c) / 8 \\ (2-c) / 4 \end{gathered}$	$(1-c) / 2$	Wilson line Wilsonino	$\begin{gathered} 0 \\ -1 / 8 \end{gathered}$	0

Comparison to RS

RS			D7		
4D Field	p	q	4D Field	p	q
gauge boson gaugino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	$1 / 4$	gauge boson/modulus gaugino/modulino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	1
matter scalar matter fermion	$\begin{gathered} (3-2 c) / 8 \\ (2-c) / 4 \end{gathered}$	$(1-c) / 2$	Wilson line Wilsonino	$\begin{gathered} 0 \\ -1 / 8 \end{gathered}$	0

Comparison to RS

RS			D7		
4D Field	p	q	4D Field	p	q
gauge boson gaugino	$\begin{gathered} \hline 0 \\ 3 / 8 \\ \hline \end{gathered}$	$1 / 4$	gauge boson/modulus gaugino/modulino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	1
matter scalar matter fermion	$\begin{gathered} (3-2 c) / 8 \\ (2-c) / 4 \end{gathered}$	$(1-c) / 2$	Wilson line Wilsonino	$\begin{gathered} 0 \\ -1 / 8 \end{gathered}$	0

Comparison to RS

RS			D7		
4D Field	p	q	4D Field	p	q
gauge boson gaugino	$\begin{gathered} \hline 0 \\ 3 / 8 \\ \hline \end{gathered}$	$1 / 4$	gauge boson/modulus gaugino/modulino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	1
matter scalar matter fermion	$\begin{gathered} (3-2 c) / 8 \\ (2-c) / 4 \end{gathered}$	$(1-c) / 2$	Wilson line Wilsonino	$\begin{gathered} 0 \\ -1 / 8 \end{gathered}$	0

Comparison to RS

RS			D7		
4D Field	p	q	4D Field	p	q
gauge boson gaugino	$\begin{gathered} \hline 0 \\ 3 / 8 \\ \hline \end{gathered}$	$1 / 4$	gauge boson/modulus gaugino/modulino	$\begin{gathered} \hline 0 \\ 3 / 8 \end{gathered}$	1
matter scalar matter fermion	$\begin{gathered} (3-2 c) / 8 \\ (2-c) / 4 \end{gathered}$	$(1-c) / 2$	Wilson line Wilsonino	$\begin{gathered} 0 \\ -1 / 8 \end{gathered}$	0

Generalizations

\because The same is obtained if, instead of warped flat space, one considers a warped Calabi-Yau and a BPS D7-brane

$$
\psi^{\text {int }}=Z^{p} \eta, \quad \eta=\text { const. } \quad \rightarrow \quad \eta=\text { cov.const. }
$$

Generalizations

$\%$ The same is obtained if, instead of warped flat space, one considers a warped Calabi-Yau and a BPS D7-brane

$$
\psi^{\text {int }}=Z^{p} \eta, \quad \eta=\text { const. } \quad \rightarrow \quad \eta=\text { cov.const. }
$$

\% In addition one may also consider type IIB backgrounds with G_{3} fluxes, as well as with varying dilaton.

Magnetized D7-branes

※ Finally, one can consider internally magnetized D7-branes, a necessary ingredient for 4D chirality in CY/F-theory models

6D Chiral fermion

Magnetized D7-branes

\% Finally, one can consider internally magnetized D7-branes, a necessary ingredient for 4D chirality in CY/F-theory models

Magnetized D7-branes

\% Finally, one can consider internally magnetized D7-branes, a necessary ingredient for 4D chirality in CY/F-theory models

$\begin{array}{ll}e^{-\Phi_{0} / 2} \mathcal{F}=B_{i} d \operatorname{vol}_{\left(\mathbf{T}^{2}\right)_{i}}+B_{j} d \operatorname{vol}_{\left(\mathbf{T}^{2}\right)_{j}} & B_{i}=e^{-\Phi_{0} / 2} Z^{-1 / 2} b_{i} \\ \text { \& Result: } & \end{array} \quad$ BPS $\Longleftrightarrow b_{i}=-b_{j}$.

$$
\begin{aligned}
& \theta_{6 D}^{0}=\frac{Z^{-1 / 8}}{1+i B_{i} \Gamma_{\mathrm{T}_{i}^{2}}^{2}} \eta_{-} \quad \begin{array}{c}
\text { Wísoniní } \\
\theta_{6 D}^{0}=Z^{3 / 8} \eta_{+}
\end{array} \quad \text { gaugino }+ \text { modulino }
\end{aligned} \longrightarrow \int d^{4} y \eta_{-}^{\dagger} \eta_{-}
$$

$$
\longrightarrow \int d^{4} y\left|Z^{1 / 2}+i e^{\Phi_{0} / 2} b\right|^{2} \eta_{+}^{\dagger} \eta_{+}
$$

Warped EFT

$\%$ Is all this compatible with the closed string results?
\% Let us consider a D7-brane wrapping a 4-cycle S_{4} in a warped Calabi-Yau, and with $\mathcal{F}=0$
\% Gauge kinetic function:

$$
f_{\mathrm{DT}}=\left(8 \pi^{3} k^{2}\right)^{-1} \int_{\mathcal{S}_{4}} \frac{\mathrm{dvol} l_{\mathcal{S}_{4}}}{\sqrt{\hat{g}_{\mathcal{S}_{4}}}}\left(Z \sqrt{\hat{g}_{\mathcal{S}_{4}}}+i C_{4}^{\mathrm{int}}\right) \quad k=2 \pi \alpha^{\prime}
$$

\rightarrow Can be understood as a holomorphic function

Warped EFT

\% Is all this compatible with the closed string results?
※Geometric moduli $\zeta^{a} \quad a=1, \ldots, h^{(0,2)}\left(\mathcal{S}_{4}\right)$
Unwarped kin. terms:

$$
\begin{gathered}
i \tau_{\mathrm{D} 7} \int_{\mathbb{R}^{1}, 3} \mathrm{e}^{\Phi} \mathcal{L}_{A \bar{B}} \mathrm{~d} \zeta^{A} \wedge *_{4} \mathrm{~d} \overline{\zeta^{\bar{B}}} \\
\mathcal{L}_{A \bar{B}}=\frac{\int_{\mathcal{S}_{4}} m_{A} \wedge m_{\bar{B}}}{\int_{X_{6}} \Omega^{\mathrm{CY}} \wedge \bar{\Omega}^{\mathrm{CY}}}
\end{gathered}
$$

Couple to the dilaton as

$$
S=t-\kappa_{A}^{2} \tau_{\mathrm{D} T} \mathcal{L}_{A \bar{B}} \zeta^{A} \bar{\zeta}^{\bar{B}} \Rightarrow \mathcal{K} \ni \ln \left[-i(S-\bar{S})-2 i \kappa_{4}^{2} \tau_{\mathrm{D} T} \mathcal{L}_{A \bar{B}} \zeta^{A} \bar{\zeta}^{\bar{B}}\right]
$$

Warped EFT

\% Is all this compatible with the closed string results?
© Geometric moduli $\zeta^{a} \quad a=1, \ldots, h^{(0,2)}\left(\mathcal{S}_{4}\right)$
Warped kin. terms:

$$
\begin{aligned}
& i \tau_{\mathrm{D} 7} \int_{\mathbb{R}^{1,3}} \mathrm{e}^{\Phi} \mathcal{L}_{A \bar{B}}^{\mathrm{w}} \mathrm{~d} \zeta^{A} \wedge *_{4} \mathrm{~d} \bar{\zeta}^{\bar{B}} \\
& \mathcal{L}_{A \bar{B}} \rightarrow \mathcal{L}_{A \bar{B}}^{\mathrm{w}}=\frac{\int_{\mathcal{S}_{4}} Z m_{A} \wedge m_{\bar{B}}}{\int_{X_{6}} Z \Omega^{\mathrm{CY}} \wedge \bar{\Omega}^{\mathrm{CY}}}
\end{aligned}
$$

Suggest a coupling

$$
S^{\mathbf{w}}=t-\kappa_{4}^{2} \tau_{\mathrm{D} 7} \mathcal{L}_{A \bar{B}}^{\mathbf{w}} \zeta^{A} \bar{\zeta}^{\bar{B}} \Rightarrow \mathcal{K} \ni \ln \left[-i\left(S^{\mathbf{w}}-\bar{S}^{\mathbf{w}}\right)-2 i \kappa_{4}^{2} \tau_{\mathrm{D} 7} \mathcal{L}_{A \bar{B}}^{\mathbf{w}} \zeta^{A} \bar{\zeta}^{\bar{B}}\right]
$$

Warped EFT

$\%$ Is all this compatible with the closed string results?
$\%$ Wilson line moduli $\quad W^{I} \quad I=1, \ldots, h^{(0,1)}\left(\mathcal{S}_{4}\right)$
Unwarped kin. terms:

$$
i \frac{2 \tau_{\mathrm{D} 7} k^{2}}{\mathcal{V}} \int_{\mathbb{R}^{1}, 3} \mathcal{C}_{\alpha}^{I \bar{J}^{\alpha}} v^{\alpha} \mathrm{d} w_{I} \wedge *_{4} \mathrm{~d} \bar{w}_{\bar{J}} \quad \mathcal{C}_{\alpha}^{I \bar{J}}=\int_{\mathcal{S}_{4}} P\left[\omega_{\alpha}\right] \wedge W^{I} \wedge \bar{W}^{\bar{J}} .
$$

Couple to Kähler moduli as

$$
\begin{array}{ll}
T_{\alpha}+\bar{T}_{\alpha}=\frac{3}{2} \mathcal{K}_{\alpha}+6 i \kappa_{4}^{2} \tau_{\mathrm{D} 7} k^{2} \mathcal{C}_{\alpha}^{I \bar{J}} w_{I} \bar{w}_{\bar{J}} & \mathcal{K}_{\alpha}=\mathcal{I}_{\alpha \beta \gamma} v^{\beta} v^{\gamma} \\
& \mathcal{V}=\frac{1}{6} \mathcal{I}_{\alpha \beta \gamma} v^{\alpha} v^{\beta} v^{\gamma}
\end{array}
$$

Warped EFT

$\%$ Is all this compatible with the closed string results?
\therefore Wilson line moduli $\quad W^{I} \quad I=1, \ldots, h^{(0,1)}\left(\mathcal{S}_{4}\right)$
Warped kin. terms:

$$
i \frac{2 \tau_{\mathrm{D} 7} k^{2}}{\mathcal{V}_{\mathrm{w}}} \int_{\mathbb{R}^{1}, 3} \mathcal{C}_{\alpha}^{I \bar{J}^{\alpha}} v^{\alpha} \mathrm{d} w_{I} \wedge *_{4} \mathrm{~d} \bar{w}_{\bar{J}} \quad \mathcal{C}_{\alpha}^{I \bar{J}}=\int_{\mathcal{S}_{4}} P\left[\omega_{\alpha}\right] \wedge W^{I} \wedge \bar{W}^{\bar{J}} .
$$

Suggest the following def. for "warped Kähler modulus"

$$
\begin{aligned}
& T_{\alpha}^{\mathbf{w}}+\bar{T}_{\alpha}^{\mathbf{w}}= \frac{3}{2} \mathcal{I}_{\alpha \beta \gamma}^{\mathbf{w}} \gamma^{\beta} v^{\gamma}+6 i \kappa_{4}^{2} \tau_{\mathrm{D} 7} k^{2} \mathcal{C}_{\alpha}^{I \bar{J}} w_{I} \bar{w}_{\bar{J}} \\
& \mathcal{I}_{\alpha \beta \gamma}^{\mathbf{w}}=\int_{X^{6}} Z \omega_{\alpha} \wedge \omega_{\beta} \wedge \omega_{\gamma} \Rightarrow \quad V_{\mathbf{w}}=\frac{1}{6} \mathcal{I}_{\alpha \beta \gamma}^{\mathbf{w}} v^{\alpha} v^{\beta} v^{\gamma}
\end{aligned}
$$

Warped EFT

$\%$ Is all this compatible with the closed string results?
\% In addition, for a single Kähler modulus \wedge we have that

$$
K=-3 \ln \left[T_{\Lambda}^{\mathrm{w}}+\bar{T}_{\Lambda}^{\mathrm{w}}\right] \simeq-3 \ln \frac{\mathcal{V}_{\mathrm{w}}}{v^{\Lambda}}
$$

the fluctuation of such modulus is $\quad Z(x, y)=Z_{0}(y)+c(x)$
$\Rightarrow \mathcal{V}_{\mathrm{w}}(x)=\mathcal{V}_{\mathrm{w}}^{0}+c(x) \mathcal{V}_{\mathrm{CY}} \Rightarrow K \simeq-3 \ln \left(c+\frac{\mathcal{V}_{\mathrm{w}}^{0}}{\mathcal{V}_{\mathrm{CY}}}\right)-3 \ln \frac{\mathcal{V}_{\mathrm{CY}}}{v^{\Lambda}}$

Holographic SUSY Breaking

McGuirk, GS, Sumitomo, in progress

Via gauge/gravity duality, analyze strong dynamics from a weak coupling gravity dual !

However, using the backreacted $\overline{\mathrm{D} 3}$ background valid in large r region:
DeWolfe, Kachru, Mullugan
one finds the leading gravity computation gives vanishing gaugino mass.

Holographic SUSY Breaking

Deformed Conifold: $\quad \sum_{i=1}^{4} z_{i}^{2}=\epsilon^{2} \quad$ McGuirk, GS, Sumitomo, in progress
R-symmetry: $\quad z_{i} \rightarrow e^{-i \alpha} z_{i} \quad$ exact as $\epsilon \rightarrow 0$ is broken to \mathbb{Z}_{2} only in the IR .

Backreacted solution in the IR sources $(0,3)+(3,0)$ besides the $(1,2)+(2,1)$ fluxes already present in the $U V$.

Using gaugino wavefunction $Z^{3 / 8} \eta_{+} \quad$ Marchesano, McGuirk, GS
Gaugino mass: $\operatorname{Tr}\left(\lambda^{2}\right)\left(G^{3}\right)^{*}$ c.f. Camara, lbanez, Uranga LI $\lambda)(G \overline{123})$ See also: Grana, Grimm, Jockers, Louis;
Lust, Reffert, Stieberger
Gravitino mass: $\quad m_{3 / 2} \sim \int \Omega \wedge G_{3}$

Open+Closed String Fluctuations

Chen, Nakayama, GS

$$
\begin{aligned}
\mathrm{P}(g)_{\mu \nu} & =e^{2 A(Y, u)+2 \Omega(u)}\left\{\tilde{g}_{\mu \nu}(x)+2 \partial_{\mu} \partial_{\nu} u^{I}(x) \mathbf{K}_{I}(Y)+2 \mathbf{B}_{i I}(Y) \partial_{\mu} u^{I}(x) \partial_{\nu} Y^{i}\right\} \\
& +e^{-2 A(Y, u)} \tilde{g}_{i j}(Y, u) \partial_{\mu} Y^{i} \partial_{\nu} Y^{j} \cdot \text { suggests a convenient gauge B=0 }
\end{aligned}
$$

Hamiltonian constraints:

$$
\begin{aligned}
& D^{M}\left(h^{-1 / 2} \pi_{M \alpha}\right)=0, \\
& D^{M}\left(h^{-1 / 2} \pi_{M i}\right)+\kappa_{10}^{2} \delta^{(6)}(y-Y) \frac{P_{i}}{\sqrt{h}}=0 .
\end{aligned}
$$

Combined Kahler potential:

$$
\kappa_{4}^{2} \mathcal{K}(\rho, Y)=-3 \log \left[\rho+\bar{\rho}-\gamma k(Y, \bar{Y})+2 \frac{V_{W}^{0}}{V_{C Y}}\right], \quad \gamma=\frac{T_{3} \kappa_{4}^{2}}{3}
$$

where

$$
\rho=\left(c+\frac{\gamma}{2} k(Y, \bar{Y})\right)+i \chi
$$

Summary

\% Effective action for warped compactifications is much needed in drawing precise predictions of such models.
\because Many subtleties in deriving warped Kahler potential. Inclusion of open string moduli essential for several applications to warped string models of particle physics and cosmology.
$\%$ Computed open string wavefunctions in warped backgrounds, and extracted the open string wEFT. Results agree with closed string computation.
\%Combined Kahler potential involving both D3 and universal Kahler modulus.

THANKS

