Title :

Yukawa Couplings and Right-Handed Neutrinos in F -Theory Compactifications

Radu Tatar, University of Liverpool

String Phenomenology Conference, June 17, 2009
based on hep-th/0602238, arXiv:0805.1057,0901.4941, 0905.2289

Outline

- 1. Yukawa Couplings and Bundles in Heterotic String
- 2. Yukawa Couplings and Singularities in F-theory
- 3. Extending Heterotic - F-theory Duality
- 3. Right Handed Neutrinos as Complex Structure Moduli
- 4. Yukawa Couplings for Neutral Fields
- SU(5): up-type quarks Yukawa couplings $10^{i j} 10^{k l} H(5)^{m} \epsilon_{i j k l m}$
- $\epsilon^{i j k l m}$ cannot be realised in brane configurations
- We can this term from a coset $E_{6} / S U(5)$ and then embed E_{6} into E_{8}.
- Need the E_{8} group obtained in Heterotic, M theory and F-theory
- We need to describe the breaking of E_{8} to $S U(5)_{G U T}$. This can be done in both Heterotic and F-theory
- In heterotic $E_{8} \times E_{8}$ turn on an $S U(5)$ vector bundle within one E_{8}
- The correspondence between the representations $\rho(V)$ and and those of the unbroken $S U(5)_{G U T}$ is:
- $V \leftrightarrow 10(V$ is the 5 of vector bundle $\mathrm{SU}(5)), \wedge^{2} V \leftrightarrow \overline{5}$
- How to explicitly build the vector bundle?
- Consider an elliptic fibered Calabi-Yau 3-fold $\mathrm{Z}, \pi_{Z}: Z \rightarrow B_{2}$ and a rank-N vector bundle V on Z .

Need to build a spectral surface of degree N over B_{2} and a line bundle \mathcal{N}_{v} over C_{V}

- The chiral multiplets in the low energy theory are identified with $H^{1}(Z, \rho(V))$. This is non-zero only along the matter curves $\bar{c}_{\rho(V)}=C_{\rho(V)} \sigma$
- Specific example: Rank-5 Bundles

Spectral surface C_{V} of rank-5 bundle V is given by $s=a_{0}(u, v)+a_{2}(u, v) x+a_{3}(u, v) y+a_{4}(u, v) x^{2}+a_{5}(u, v) x y=0 ;$

The matter curve of the fundamental representation $\bar{c}_{V}=C_{V} \cdot \sigma$ is given by the zero locus of a_{5}.

The matter curve of $\wedge^{2} V$: defining equation of the spectral surface factorises locally as
$s=(A x+B)(P y+Q x+R)$
The factorisation condition is equivalent to $P^{(5)}:=a_{0} a_{5}^{2}-a_{2} a_{3} a_{5}+a_{4} a_{3}^{2}=0$

The two matter curves \bar{c}_{V} and $\bar{c}_{\wedge^{2} V}$ intersect in B_{2} with two different types of intersections:
(a)Multiplicity 1: $a_{5}=0$ and $a_{4}=0$, and hence $P^{(5)}=0$
(d)Multiplicity 2: $a_{5}=0$ and $a_{3}=0$, and hence $P^{(5)}=0$.

The form of $P^{(5)}$ reveals that $\bar{c}_{\wedge^{2} V}$ forms a double point at each type (d) intersection point.
The covering matter curve $\tilde{\bar{c}}_{\wedge^{2} V}$ is obtained by blowing up the double points of the matter curve $\bar{c}_{\wedge^{2} V}$, and the map $\tilde{\pi}_{D}: D \rightarrow \tilde{\bar{c}}_{\wedge^{2} V}$ becomes a degree-2 cover.

Lesson: use the covering matter curves to describe Yukawa couplings

Yukawa couplings in F-theory

- Hints from Heterotic String but valid for models with no Heterotic dual
- $\mathcal{N}=1$ supersymmetry: F-theory is compactified on an elliptic fibered Calabi-Yau 4-fold $\pi: X \rightarrow B_{3}$
- The discriminant Δ of this elliptic fibration may have several irreducible components
$\Delta=\sum_{i} n_{i} S_{i}, S_{i}$ are divisors of B_{3}, n_{i} their multiplicities For $\Delta=n S+D^{\prime}$, matter multiplets charged under the gauge group on S at $S \cdot D^{\prime}$
- F-theory phenomenology: Beasley-Heckmann-Vafa and Donagi-Weijnholt
- Many aspects of gauge theory associated with the discriminant locus S, only on the geometry of X around S.
- The study of F-theory on X reduces to the study of an 8-dimensional field theory on S times Minkowski.
The matter multiplets "see" only the geometry along the $S \cdot D^{\prime}$ codimension2 loci of B_{3}
- The Yukawa couplings -from codimension-3 loci of B_{3}. Thus, one can go a long way in phenomenology by studying only the local geometry of F-theory compactification.
- Suppose a zero mode exists for $\phi_{m n}\left(u_{1}, u_{2}\right) d u_{m} \wedge d u_{n}$ on S - transverse fluctuation of D7-branes in Type IIB orientifold compactification on a Calabi-Yau 3-fold $X\left(\left(u_{1}, u_{2}\right)\right.$ coordinates of $\left.S\right)$.
- This corresponds to deforming geometry of $X, \Delta=n^{\prime \prime} S^{\prime \prime}+S^{\prime}+D^{\prime}$
- Singularity along the irreducible discriminant locus S is reduced from g to the commutant $g^{\prime \prime}$ of ϕ in g.

Example: Generic Rank-2 Deformation of A_{N+1} Singularity
The most generic form of deformation to A_{N-1} is given by two parameters, s_{1} and s_{2} :

$$
\begin{equation*}
Y^{2}=X^{2}+Z^{N}\left(Z^{2}+s_{1} Z+s_{2}\right) \tag{1}
\end{equation*}
$$

An alternative parametrization of deformation

$$
\begin{equation*}
2 \alpha \phi_{12}\left(u_{1}, u_{2}\right)=\left(0, \cdots, 0^{N}, \tau_{N+1}, \tau_{N+2}\right) \tag{2}
\end{equation*}
$$

Easy case: $s_{1}\left(u_{1}, u_{2}\right)=F_{1} u_{1}+F_{2} u_{2}, \quad s_{2}\left(u_{1}, u_{2}\right)=F_{1} F_{2} u_{1} u_{2}$ so $2 \alpha \phi_{12}=\left(0, \cdots, 0^{N}, F_{1} u_{1}, F_{2} u_{2}\right)$,

The irreducible decomposition of $s u(N+2)$ is
$s u(N+2)$ - $\mathbf{a d j} . \rightarrow s u(N)-\mathbf{a d} \mathbf{j}+\left[N^{(-, 0)}+N^{(0,-)}+\mathbf{1}^{(+,-)}\right]+$h.c.

Zero-mode equations give solutions:

- For the $N^{(-, 0)}$ and $\bar{N}^{(+, 0)}$ components,
$\tilde{\chi}_{\mp}=c_{\mp} \exp \left[-F_{1}\left|u_{1}\right|^{2}\right], \quad \tilde{\psi}_{\overline{1} \mp}= \pm c_{\mp} \exp \left[-F_{1}\left|u_{1}\right|^{2}\right], \quad \tilde{\psi}_{\overline{2}}=0$.
- For the $N^{(0,-)}$ component,
$\tilde{\chi}=c\left(u_{1}\right) \exp \left[-F_{2}\left|u_{2}\right|^{2}\right], \quad \tilde{\psi}_{\overline{2}}=c\left(u_{1}\right) \exp \left[-F_{2}\left|u_{2}\right|^{2}\right], \quad \tilde{\psi}_{\overline{1}}=0$.
- This simple case has a IIB interpretation in terms of open strings between $N---N+1$ D7-branes
$N---N+2$ D7 branes respectively

Complicated Case:
$s_{1}=2 u_{1}, \quad s_{2}=u_{2}$,
This second case of the deformation of A_{N+1} singularity is described by the field theory on a local patch of S with $2 \alpha \phi_{12}$ given by

$$
\begin{equation*}
\tau_{+} \equiv \tau_{N+1}=-u_{1}+\sqrt{u_{1}^{2}-u_{2}}, \quad \tau_{-} \equiv \tau_{N+2}=-u_{1}-\sqrt{u_{1}^{2}-u_{2}} \tag{5}
\end{equation*}
$$

The decomposition is

$$
\begin{equation*}
s u(N+2)-\mathbf{a d j} . \rightarrow s u(N)-\mathbf{a d j} .+s u(2)-\mathbf{a d j} .+(\mathbf{2}, N)+(\mathbf{2}, \bar{N}) \tag{6}
\end{equation*}
$$

Resolve A_{N+1} with $N+1$ cycles, 2 of them being

$$
\begin{gather*}
C_{ \pm}:(x, y, z)=(r(z) i \cos \theta, r(z) \sin \theta, z) z \in\left[0, z_{ \pm}\right] \quad \theta \in[0,2 \pi](7) \\
r(z) \equiv \sqrt{z^{N}\left(z-z_{-}\right)\left(z-z_{+}\right)} \tag{8}
\end{gather*}
$$

The vev of $2 \alpha \phi_{12}$,

$$
\begin{equation*}
\left(+\sqrt{u_{1}^{2}-u_{2}},-\sqrt{u_{1}^{2}-u_{2}}\right) \tag{9}
\end{equation*}
$$

becomes $\times(-1)$ of its own around the branch locus $u_{1}^{2}-u_{2}=0$.
Overall, we need to introduce a branch cut extending out from the branch locus $u_{1}^{2}-u_{2}=0$
su($N+2$)-adj. fields are glued to themselves after twisting by Weyl group of $s u(2) \subset s u(N+2)$ algebra—across the branch cut (cf. Katz-Morrison identification).

This is not a simple theory of fields in the $s u(N+2)$-adj. representation.

Introduce a new surface: $C(u, x), \quad(u, x)=\left(u_{1}, \sqrt{u_{1}^{2}-u_{2}}\right)$ as the space of all possible values for ϕ. This is a covering space similar to the Heterotic covering matter curve.
Apply this observation to $E_{6}, D_{6} \rightarrow A_{4}$:
$A_{4}: y^{2}=x^{3}+a_{5} x y+a_{4} z x^{2}+a_{3} z^{2} y+\ldots$, and consider case when
$a_{4} \rightarrow 0, a_{5} \rightarrow 0$ i.e. $E_{6} \rightarrow A_{4}:$ up-type Yukawa
$a_{3} \rightarrow 0, \quad a_{5} \rightarrow 0$ i.e. $D_{6} \rightarrow A_{4}$: down-type Yukawa
The zero-mode wavefunctions of $\operatorname{SU}(5)$ - 10 representation are determined as $\operatorname{diag}\left(-a_{4} / 2 \pm \sqrt{\left.a_{4} / 2\right)^{2}-a_{5}}\right)$ and at small a_{4} is goes like $e^{-\left|a_{5}\right|^{3 / 2}}$ The zero-mode wavefunctions of $\operatorname{SU}(5)$ - 5 representation are determined as $-a_{4}$ and has a Gaussian normal to the matter curve $e^{-\left|a_{4}\right|^{2}}$

For the $D_{6} \rightarrow A_{4}$ there is no branch-cut and it can be represented by flat D7-branes intersecting at angles.

These are local models with wavefunctions defined on the surface S. The 0 -modes should also be defined as line bundles of globally defined curves. Main observation: the charged matter multiplets in F-theory are sheaves on spectral covers and not on matter curves.

The spectral surfaces are key notion to generalize objects like D-branes and gauge bundles on them.

Supersymmetric compactification of F-theory is described by 8-dim. field theory with a Higgs bundle (F, ϕ) as background.
$\bar{\partial}_{\bar{m}} \phi=0, \partial_{m} \bar{\phi}=0, F-i[\phi, \bar{\phi}]=0$
are Hitchin equations for Higgs bundles.
For Higgs bundles, the techniques are very similar as the ones for spectral covers and one needs to build a pair $\left(C_{V}, \mathcal{N}_{V}\right)$ denoted $\left(C_{V}, \mathcal{N}_{V}\right)^{\mathrm{F}}$

Heterotic - F Theory duality. The duality map is simply stated:

$$
\begin{equation*}
\left(C_{V}, \mathcal{N}_{V}\right)^{\mathrm{Het}}=\left(C_{V}, \mathcal{N}_{V}\right)^{\mathrm{F}} \tag{10}
\end{equation*}
$$

The spectral data is used in both sides of the duality and is mapped under duality.

Avoids some subtleties related to del Pezzo fibrations usually used in discussing Heterotic-F theory duality.
Important to map the heterotic $\mathcal{N}_{V}=\mathcal{O}\left(\frac{1}{2} r+\gamma\right)$ into F -theory
γ corresponds to four-form fluxes in F-theory.

Four Form Fluxes and Neutrino Masses

Right-handed neutrinos \bar{N} are not charged under $S U(5)_{G U T}$

$$
\Delta \mathcal{L}=\lambda_{i j}^{(\nu)} \bar{N}_{i} l_{j} h_{u}+\text { h.c. }
$$

l_{j} are lepton doublets and h_{u} the Higgs doublet.
Any moduli chiral multiplet in supersymmetric string compactification can be identified with chiral multiplets of right-handed neutrinos, as long as they have the trilinear interactions.

For measured value of atmospheric neutrino oscillation

$$
\Delta m^{2} \sim 2-3 \times 10^{-3}
$$

the lightest right-handed neutrino is not heavier than about

$$
\frac{\left(v \lambda_{\nu}\right)^{2}}{\sqrt{\Delta m^{2}}}=\lambda_{\nu}^{2} \times(5.5-6.7) \times 10^{14}
$$

Here, λ_{ν} is the neutrino Yukawa couplings.

The complex structure moduli have interactions in the superpotential

$$
\Delta W=W_{\mathrm{GVW}}=\int_{X} \Omega \wedge G
$$

A generic flux G determine a mass for all the complex structure moduli from the Gukov-Vafa-Witten superpotential.

In Type IIB string compactification on Calabi-Yau orientifolds, complex structure moduli acquire masses

$$
m_{c s}^{2} \sim m_{\mathrm{KK}}^{6} l_{s}^{4}=\left[m_{\mathrm{KK}} \times\left(\frac{l_{s}}{R_{6}}\right)^{2}\right]^{2}
$$

The complex structure moduli of F-theory compactifications contain both complex structure moduli and D7-brane moduli of Type IIB orientifolds.

The 4-form fluxes of F-theory correspond both to the 3-form fluxes and to gauge bundles on D7-branes in Type IIB orientifolds

$$
\text { By using } i \frac{1}{g_{s, \mathrm{IIB}}}=i \frac{\rho_{\beta}}{\rho_{\alpha}} \quad M_{*}=\frac{1}{g_{s} l_{s}^{4}}=\frac{\rho^{2}}{l_{11}^{6}}
$$

we find that $m_{c s} \sim \frac{1}{R_{6}^{3} M_{*}^{2}}$ is valid as an estimate of all the complex structure moduli masses in F-theory compactification.

$$
\begin{gathered}
\text { Set } \\
\epsilon \equiv\left(\frac{R_{\mathrm{GUT}}}{R_{6}}\right)^{3}=\frac{\sqrt{4 \pi} M_{\mathrm{GUT}}}{\alpha_{\mathrm{GUT}} c M_{\mathrm{Pl}}} \sim 0.35 \times\left(\frac{M_{\mathrm{GUT}}}{c 10^{16} \mathrm{GeV}}\right)
\end{gathered}
$$

with R_{6} the size of B_{3} and $R_{G U T}^{4}$ the volume of the locus of A_{4} singularity, the masses of complex structure moduli become

$$
\begin{aligned}
& m_{c s} \sim M_{\mathrm{GUT}} \times \frac{\sqrt{\alpha_{\mathrm{GUT}}}}{c} \times\left(\epsilon^{\gamma=1}\right)^{0-3} \\
& \text { with } \frac{1}{\alpha_{G U T}}=24, M_{G U T}=10^{16} \mathrm{GeV} \\
& M_{P l}^{2}=4 \pi R_{6}^{6} M_{*}^{8}=\left(2.4 \times 10^{18} \mathrm{GeV}\right)^{2} .
\end{aligned}
$$

The $S U(5)_{G U T}$ singlet field in the Yukawa couplings - fluctuations from the vacuum in $H^{1,2}(X, C)$ and $H^{3,1}(X, C)$

The $H^{1,2}(X, C)$ fluctuations are calculated by the overlap integral
$\int_{S} \operatorname{tr}\left(\chi_{U} \wedge \psi_{\operatorname{adj}(U)} \wedge \psi_{\bar{U}}\right)$ with χ_{U}, ψ_{U} coming from the fluctuations of the chiral matter multiplet min the $(U, \overline{5})$ of $G \times S U(5)_{G U T}$

The $H^{3,1}(X, C)$ fluctuations are calculated by the overlap integral

$$
\int_{S} \operatorname{tr}\left(\psi_{U} \wedge \chi_{a d j(U)} \wedge \psi_{\bar{U}}\right)
$$

1. Heterotic Strings: It is important to extend the spectral sequence constructions to include other representations of V besides the fundamental.

Singularities need to resolved by considering the covering matter curves
2. F-theory picture: based on the 8-dimensional field theory plus the uplift of S to covering spaces.

Extend the Heterotic - F theory duality beyond orientifold limit. Use Higgs Bundles.
4. Right-hand handed neutrinos - complex moduli space

