Resolution of T⁶/Z_{6-II} Heterotic (MSSM) orbifolds

Michele Trapletti LPT - Université Paris-Sud XI, CPHT - École Polytechnique

ÉCOLE POLYTECHNIQUE

Based on: 0901.3059 - JHEP03 (2009) 005 In collaboration with: S. Groot Nibbelink, J. Held, F. Ruehle, P.K.S. Vaudrevange

Introduction

Two main different paths to heterotic string phenomenology

See also Stefan's talk tomorrow

Outline

1) Getting the smooth CY space 1.1) Resolution of orbifold singularities using toric geometry - Local resolution of orbifold singularities - Gluing the resolved singularities 1.2) The T^{6}/Z_{6-II} case (a source of MSSM's) 2) 10d SUGRA on the smooth CY space 2.1) Consistency conditions (flux quantization, SYM e.o.m, ...) 2.2) Matching the orbifold models 3) Matching in the T^6/Z_{6-II} case: the fate of the hypercharge 4) Conclusions and outlook

1 - Getting the smooth CY space: orbifold resolutions

1.1 Resolution: the spirit

Ia - Given the orbifold

Ib - Cut apart each singularity and resolve it: characterize the local geometric structure "hidden" in the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved singularities: characterize the topology of the whole CY space (non-localized cycles)

> Get a smooth compact CY space (having the original orbifold as singular limit)

$Resolution \ of \ local \ C^n/Z_m \ singularities \ {\tt see e.g. Fulton's \ book}$

- Before resolution, the space has n divisors D_i,
- The resolution is obtained by providing
 - r new "exceptional" divisors, E_i:
 - with n linear relations: $D_i \sim a_{ij} E_j$.
- and giving all the intersection numbers.

Gluing together the singularities into T^{2n}/Z_m

Lust, Reffert, Scheidegger, Stieberger

- For ach resolved singularity:
- a set {D_i, E_j} with $D_i \sim a_{ij} E_j$ and local intersection #.
- Gluing:
- -"put together" the divisors in a single set
- extend the linear equivalences to include all the objects
- compute the intersections among the various divisors.
- Caveats:
 - T^{2n} is topologically different than C^n

- extra "inherited" divisors R_i.

- Divisors may be "shared" between different singularities.

1.2 - The T^6/Z_{6-II} case

- $T^6 = T^2 \times T^2 \times T^2$, complex coordinates z_1 , z_2 , z_3 .
- Z_{6-II} has $1 \times 3 \times 4$ C³/Z₆ singularities,

- but there are also $C^2/\ Z_2$ and $C^2/\ Z_3$ singularities to be resolved

Resolve all the singularities and glue them together.

Counting the E's:

 E_1 - localized in the 12 Z_6 singularities, one each: 12

E₃ - "shared" in the second torus: 4 from the Z₆ singularities $+ 3/3 \times 4 = 4$ from the Z₂ singularities not "inside" Z₆

 $\mathbf{E}_{2/4}$ - "shared" in the third torus: 3 from the \mathbf{Z}_6 singularities + $2/2 \times 3 = 3$ from the \mathbf{Z}_3 singularities not "inside" \mathbf{Z}_6

Counting the (1,1) forms: 32 E's + 3 R's = 35

What about the (1,2) forms?

These can be reconstructed from the "untwisted" 1-form dz_i and the non-orbifold-invariant exceptional divisors E_i (i = 2, 3, 4): we have exactly 10 of them (+ an extra "untwisted" 3 form): 11

Complete reconstruction of the Hodge diamond Including the intersection number - but this depends on the triangulations we choose!

Summary:

Divisors: $R_1, R_2, R_3; D_{1,1}, D_{1,2}, D_{1,3}, D_{2,\beta}, D_{3,\gamma};$ $E_{1,\beta\gamma}, E_{2/4,1\beta}, E_{2/4,3\beta}, E_{3,1\gamma}, E_{3,2\gamma}$

Linear equivalences: $R_1 \sim 6D_{1,1} + \sum_{\beta=1}^3 \sum_{\gamma=1}^4 E_{1,\beta\gamma} + \sum_{\beta=1}^3 (2E_{2,1\beta} + 4E_{4,1\beta}) + 3\sum_{\gamma=1}^4 E_{3,1\gamma}$

$$R_1 \sim 2D_{1,2} + \sum_{\gamma=1}^4 E_{3,2\gamma} , \qquad R_1 \sim 3D_{1,3} + \sum_{\beta=1}^3 (E_{2,3\beta} + 2E_{4,3\beta}) ,$$

$$R_2 \sim 3D_{2,\beta} + \sum_{\gamma=1}^4 E_{1,\beta\gamma} + \sum_{\alpha=1,3} (2E_{2,\alpha\beta} + E_{4,\alpha\beta}) ,$$

$$R_3 \sim 2D_{3,\gamma} + \sum_{\beta=1}^3 E_{1,\beta\gamma} + \sum_{\alpha=1,2} E_{3,\alpha\gamma} ,$$

Triple intersection numbers:

- triangulation independent

$$R_{1}R_{2}R_{3} = 6, \qquad R_{2}E_{3,1\gamma}^{2} = -2, \qquad R_{2}E_{3,2\gamma}^{2} = -6, \qquad R_{3}E_{2,1\beta}^{2} = -2, R_{3}E_{2,3\beta}^{2} = -4, \qquad R_{3}E_{4,1\beta}^{2} = -2, \qquad R_{3}E_{4,3\beta}^{2} = -4, \qquad R_{3}E_{2,1\beta}E_{4,1\beta} = 1 R_{3}E_{2,3\beta}E_{4,3\beta} = 2.$$

- triangulation dependent (here one specific choice)

Characteristic classes

$$c(X) = \prod_{J=1}^{10} \prod_{r=1}^{32} (1+D_J)(1+E_r)(1-R_1)(1-R_2)(1-R_3)^2$$

- first Chern class: 0
- integrated second Chern class:

$$c_{2}(X)E_{1,\beta\gamma} = 0, \quad c_{2}(X)E_{2,1\beta} = -4, \quad c_{2}(X)E_{3,1\gamma} = -4, \quad c_{2}(X)E_{4,1\beta} = -4, \\ c_{2}(X)E_{2,3\beta} = 0, \quad c_{2}(X)E_{3,2\gamma} = 0, \quad c_{2}(X)E_{4,3\beta} = 0, \\ c_{2}(X)R_{1} = 0, \quad c_{2}(X)R_{2} = 24, \quad c_{2}(X)R_{3} = 24.$$

- Euler number: $\chi(X) = 48$

2 - 10d SUGRA on the resolved space

2.1 - Consistency conditions 1) Flux quantization: $\int_{a}^{b} F \in \mathbf{Z}$

2) Equations of motion/SUSY: - F must be a (1,1)-form, fulfilling the DUY condition $\int J \wedge J \wedge F = 0$ (6d case), $\int J \wedge F = 0$ (4d case)

3) The Bianchi Identity for H must be fulfilled $dH \sim F \wedge F - R \wedge R$ implies $\int_{\gamma} F \wedge F - R \wedge R = 0$

In the language of divisors:

- F can be written as $F = E_i V_i^{gI} H^I$
 - E_i the localized (1,1)-forms (flux invisible in blow-down)
 - H^I elements in the Cartan algebra of SO(32) or $E_8 \times E_8$
- Quantization: Vi^{gI} must be integers (half-integers)

- E.o.m.: conditions on the Kaehler moduli:

 $J = \sum_{i} \tau_i X_i \Rightarrow \int J \wedge J \wedge F = P_2(\tau_i), \quad \int J \wedge F = P_1(\tau_i)$ quadratic (linear) polinomial equation in the moduli (+ loop corrections, see e.g. Blumenhagen et al. '05)

- Bianchi Identity: use the splitting principle and the F definition

$$R \wedge R \sim \prod_{i} (1 + X_i)_{|\text{q.o.}}, \quad F = E_i V_i^{gI} H^I$$

we can write

 $\int_{\gamma} (F \wedge F - R \wedge R) = Y_{\gamma} \left(E_{i} E_{j} V_{i}^{g} \cdot V_{j}^{g} \right) - Y_{\gamma} \prod_{i} (1 + X_{i})_{|q.o.} = Q_{2}(V_{i}) = 0$ a quadratic polinomial equation in the V's (for each cycle)

Spectrum: from the Dirac index (reduction of the 10d anomaly polynomial): all the states from the adjoint of SO(32) or $E_8 \times E_8$

2.2 - Matching the orbifolds

Local Informations:

- on the orbifold side there are non-trivial identifications "going "round" the singularity, dictated by the embedding of the orbifold action in the gauge degrees of freedom

 $g: T^a \rightarrow e^{2\pi i H^I V_I/n} T^a e^{-2\pi i H^I V_I/n}$

- on the bundle side the same identifications are generated by the presence of the flux (depending on how it is embedded in SO(32) or $E_8 \times E_8$)

"Simple" example: C³/Z₃

- the resolution is obtained adding a single exceptional divisor E.
- take then $\mathcal{F} = V_I^g H^I E/3$, quantization fixes the vector to integer or half integer values, the boundary effect (and identification) is

$$\int_{D_2 D_3} \mathcal{F} = \frac{V_I^g}{3} H^I E D_2 D_3 = \frac{V_I^g}{3} H^I \sim \frac{V_I}{3} H^I$$

N.B. The Bianchi identity is $V^{g^2} = 12$, to be compared with the modular invariance condition $V^2 = 0 \mod 6$!

3 - The T^6/Z_{6-II} case

3.1 - Flux identification

 Z_6 singularity

- Orbifold side: a shift vector V
- Resolution side: 4 shift vectors V^{g_i} , one for each line bundle E_i
- E_1 is identified with a genuine Z_6 "action": $V^{g_1} \equiv V$ D_2 E_{2/4} are identified with the C²/Z₃ action in Z₆: V^g_{2/4} = ± 2 V see also T.-W. Ha, S. Groot Nibbelink, MT E_4 E₃ is identified with the C^2/Z_2 action . . . : $V^{g_3} \equiv 3 V$ where A=B means A = B + Λ , Λ being some E8×E8 E_2 E_1 lattice element E_3 D_1 D_3 D_3 D_1 $E_4 E_2$ E_3 Z_3 / Z_2 singularity "out of a Z_6 singularity" - As for the $\mathbb{Z}_3 / \mathbb{Z}_2$ singularity "inside a \mathbb{Z}_6 singularity": $Vg_{2/4} \equiv \pm 2 V, Vg_3 \equiv \pm 3 V$

Addition of discrete Wilson lines by just giving different shift vectors in different (resolved) singularities.

3.2 - Bianchi Identity ... we can find a solution We have, in principle

- 32 different shift vectors, one per "exceptional" line bundle
- 35 different compact 4-cycles giving rise to 35 Bianchi Identity conditions
- 35 quadratic equations in 32 "variable" vectors, made of 16 integer entries each

But we also have, luckily

- not all the 35 equations are independent: we can reduce to 24
- a large reduction of the 32 shifts from the orbifold identifications (still freedom on the E₈×E₈ lattice elements Λ, but the freedom is largely reduced once we require the SM group to remain unbroken in the resolution)
- the quadratic equations can be cast in sum of squares!
- we can find a good choice of gauge fluxes and identify the "resolved version" of the MSSM models listed in th/0611095
- we did so for the so-called "Benchmark Model II" and find . . .

3.3 - MSSM's in blow-up

Gauge Symmetry

benchmark model II of 0611095 (Lebedev et al.)

- Orbifold: $SU(3) \times SU(2) \times U(1)_Y \times U(1)^4 \times SO(8) \times SU(2) \times U(1)^3$
- Blow-up: $SU(3) \times SU(2) \times U(1)_Y \times U(1)^4 \times SU(4) \times U(1)^4$ gauge symmetry breaking in the "hidden" E8 $SO(8) \times SU(2) \rightarrow SU(4) \times U(1)$
 - + the "breaking" of some U(1)'s that are (now) anomalous (from the orbifold perspective it's the usual fact that "blow-up" means giving a vev to some (charged) twisted fields, and this induces a Higgs mechanism)

Spectrum

- SM chiral spectrum
- SM vector-like exotics (chiral with respect to some hidden U(1))
- 2 additional singlets with non-trivial hypercharge (extra r.h. electrons)! \Rightarrow The U(1)_Y is anomalous!

Focus on the anomalous hypercharge

- In the orbifold model a unified SU(5) symmetry is broken to SM "locally", in some of the singularities (while others preserve a unified group)
- In the SUGRA version this breaking is realized by U(1) fluxes, and U(1)_Y is in SU(5) \Rightarrow U(1)_Y is anomalous

Orbifold perspective

The blow-up modes of the singularities where SU(5) is broken are all charged under the SM gauge group
 ⇒ no blow-up without breaking the SM gauge group

see also S. Groot Nibbelink, H.P. Nilles, M. T. `07

3.4 - Solving the U(1)_Y "problem"

Simple way out: just do not resolve the "bad" singularities

- Orbifold perspective: $U(1)_Y$ breaking particle at zero vev \rightarrow no breaking
- Resolved perspective: U(1)_Y is anomalous, but the anomalous mass is zero (but out of the SUGRA perspective studied in Blumenhagen et al. '05)

More complicated, still keeping the Z_{6-II} construction: consider models where U(1)_Y is not embedded "standardly" in SU(5) (see e.g. S. Raby and A. Wingerter '07)

Complicated & more interesting

consider orbifold geometries where all the fixed points preserve GUT, and SU(5) is broken "truly non-locally"

-- in progress ... see Patrick's talk

3.4 - "Delocalized" orbifold breaking: a simple Z₂×Z₂' model

A. Hebecker and M.T. '04

Basic idea: the orbifold actions breaking the GUT group must have free action (no fixed points)

- We need at least two different orbifold operators 1) g', breaking the GUT group, acting as a translation in some internal dimension 2) g, acting as a rotation in that direction otherwise too much SUSY -- N=2

- Minimal construction $Z_2 \times Z_2' = \{I, g', g, g \times g'\}$, with action on T⁶

$z_1 \rightarrow z_1 + \pi R_1$	$z_1 \rightarrow - z_1$	$z_1 \rightarrow -z_1 + \pi R_1$
g': $z_2 \rightarrow - z_2 + \pi R_2$	g: $z_2 \rightarrow - z_2$	$g \times g': z_2 \rightarrow z_2 + \pi R_2$
$Z_3 \rightarrow Z_3$	$Z_3 \rightarrow Z_3$	$Z_3 \rightarrow -Z_3$
free action	fixed points	free action!
GUT breaking gauge embedding	GUT preserv gauge embed	ving gauge embedding fixed ding to be GUT breaking

Byproduct: split M_{GUT} from m_s

Due to the de-localization the scale of gauge symmetry breaking is decoupled from the string scale

 $M_{GUT} \sim (R_1 R_2)^{-1/2}$

But usual problem with "large" volumes in heterotic string

4 - Conclusions & Outlook

... see also Stefan's talk on friday

- Reproduced the heterotic orbifold models as SUGRA construction with gauge bundles (metric resolution and toric geometry resolution).

- local C^n/Z_m and $C^n/Z_m \times Z_p$

- global case T⁶/Z₃
 S. Groot Nibbelink, D. Klevers, F. Ploger, MT, P. K. S. Vaudrevenge
 K3 with U(1) bundles
 G. Honecker, MT.
- K3 with generic bundles (and "jumping" between bundles)
 - S. Groot Nibbelink, F. Paccetti, MT
- the pheno appealing T⁶/Z_{6-II} model

S. Groot Nibbelink, MT, J.Held, F. Ruehle, P. K. S. Vaudrevange

- The breaking of SU(5) to the SM group by U(1) fluxes is problematic (anomalous hypercharge)

- consider different orbifolds (e.g. A. Hebecker, MT '04) with "de-localized" gauge symmetry breaking

... Patrick's talk

S. Groot Nibbelink, MT, M. Walter; T.-W. Ha, S. Groot Nibbelink, MT.