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Introduction
Two main different paths to heterotic string phenomenology 

Orbifold 
compactifications

My task:

Reconciliate
them!

Smooth manifold
compactifications

Reproduce the orbifold models in a SUGRA
language, i.e. as 

- compactifications of  10d SUGRA/SYM 
- on smooth manifolds (blown-up orbifolds)
- in the presence of  gauge fluxes.

See also Stefan’s talk tomorrow



Outline

1)  Getting the smooth CY space
  1.1) Resolution of  orbifold singularities using toric geometry
             - Local resolution of  orbifold singularities
             - Gluing the resolved singularities
  1.2) The T6/Z6-II  case (a source of  MSSM’s)

2) 10d SUGRA on the smooth CY space
  2.1) Consistency conditions (flux quantization, SYM e.o.m, ... )
  2.2) Matching the orbifold models
3) Matching in the T6/Z6-II case:
              the fate of  the hypercharge
4) Conclusions and outlook



1 - Getting the smooth CY space:
       orbifold resolutions



Ia - Given the orbifold

Ib - Cut apart each singularity and resolve it:
        characterize the local geometric structure “hidden” in
        the singularity (localized (1,1)-cycles)

Ic - Glue together the resolved singularities:
        characterize the topology of  the whole CY space
        (non-localized cycles)

Trieste
16 May 2007

Introduction
Motivations

Outline

Orbifolds
Geometry

Gauge symmetry
breaking/spectrum

Constraints and
classification

Smooth
manifolds
The guiding principle

Gauge symmetry
breaking/spectrum

Constraints and
classification

Matching the
approaches
6d example

4d example

Conclusions and
Outlook

A 4d example:
blow-up of the T 6/Z3 singularities

Groot Nibbelink, M.T., Walter

Take the original orbifold, “cut apart” one of the
singularities, blow it up:

⇒ Get a smooth (non-compact) space
⇒ Use it as internal K 6 space in the compactification with

gauge fluxes

The whole smooth manifold will be given by patching the
blown-up singularities.

1.1 Resolution: the spirit

Get a smooth compact CY space
(having the original orbifold as singular limit)



Resolution of  local Cn/Zm singularities
-  Before resolution, the space has n divisors Di, 
-  The resolution is obtained by providing
    - r new “exceptional” divisors, Ei :                .
    - with n linear relations: Di ~ aij Ej.
-  and giving all the intersection numbers.

see e.g. Fulton’s book

- For ach resolved singularity:
  a set {Di, Ej} with Di ~ aij Ej and local intersection #.
- Gluing:
 -“put together” the divisors in a single set
 - extend the linear equivalences to include all the objects
 - compute the intersections among the various divisors.
- Caveats:
  -  T2n is topologically different than Cn

             - extra “inherited” divisors Ri .
  -  Divisors may be “shared” between different singularities.

Gluing together the singularities into T2n/Zm
Lust, Reffert, Scheidegger, Stieberger



1.2 - The T6/Z6-II case
- T6 = T2 × T2 × T2, complex coordinates z1, z2, z3. 
- Z6-II has 1 × 3 × 4  C3/Z6  singularities,

- but there are also C2/ Z2 and C2/ Z3 singularities to be resolved

Resolve all the singularities and glue them together.



- C2/Z3 singularities: 2 exceptional divisors

- C2/Z2 singularities: 1 exceptional divisor

- C3/Z6 singularities: 4 exceptional divisor
5 different possible triangulations (resolutions)

given that there are 12 such singularities, each
with 5 options, we have “many” ways of

resolving the T6/Z6-II orbifold.    
D1 D3

D2

E1

E4

E2

E3

D1 D2
E4 E2

D1 D3
E3



Counting the E’s:
E1    - localized in the 12  Z6  singularities, one each:  12

E3    - “shared” in the second torus: 4 from the Z6 singularities
          + 3/3 × 4 = 4 from the Z2  singularities not “inside” Z6 

E2/4 - “shared” in the third torus: 3 from the Z6 singularities
           + 2/2 × 3 = 3 from the Z3  singularities not “inside” Z6 

Counting the (1,1) forms: 32 E’s + 3 R’s = 35

What about the (1,2) forms?
These can be reconstructed from the “untwisted” 1-form dzi

and the non-orbifold-invariant exceptional divisors Ei (i = 2, 3, 4):
we have exactly 10 of  them (+ an extra “untwisted” 3 form): 11

Complete reconstruction of  the Hodge diamond
Including the intersection number - but this depends on the
triangulations we choose!



R1R2R3 = 6 , R2E2
3,1 γ = − 2 , R2E2

3,2 γ = − 6 , R3E2
2,1 β = − 2 ,

R3E2
2,3 β = − 4 , R3E2

4,1 β = − 2 , R3E2
4,3 β = − 4 , R3E2,1 βE4,1 β = 1 ,

R3E2,3 βE4,3 β = 2 .

Table 6: The triangulation independent intersections of Res
(
T 6/Z6–II

)
. Intersection numbers not

listed involving E’s with α "= 1 or R’s are zero.

E3
1,βγ = 6 , E3

2,1 β = 8 , E3
3,1 γ = 8 , E3

4,1 β = 8 ,
E1,βγE2

2,1 β = − 2 , E1,βγE2
3,1 γ = − 2 , E1,βγE2

4,1 β = − 2 , E1,βγE2,1 βE4,1 β = 1 ,
E2

2,1 βE4,1 β = − 2 .

Table 7: The intersection numbers for the case that all fixed points have triangulation i). Only divisors
with α = 1 are involved; all other intersections are zero.

This can now be easily integrated using
∫
S c2(X) = c2(X)S to give

c2(X)E1,βγ = 0 , c2(X)E2,1 β = − 4 , c2(X)E3,1 γ = − 4 , c2(X)E4,1 β = − 4 ,
c2(X)E2,3 β = 0 , c2(X)E3,2 γ = 0 , c2(X)E4,3 β = 0 ,
c2(X)R1 = 0 , c2(X)R2 = 24 , c2(X)R3 = 24 .

(50)

The first line of (50) is triangulation dependent, whereas the other results hold for all triangulations.
Finally, we derive the restrictions on the expansion coefficients ai, br of the Kähler form J defined

in (47) by using the integrals of the Kähler form given in (48). Taking the integral over all curves
in any triangulation, we get as a result that all ai and br are larger than zero for all triangulations.
Furthermore, only if an exceptional divisor E gets a volume larger than zero, the fixed point corre-
sponding to this divisor gets a finite size. Therefore the corresponding integral has to be larger than
zero. On the other hand since the R’s are associated to the cycles of the torus, their volume should be
larger than zero in any case, unless one wants to shrink one complex dimension of the torus to zero.
The results of the integrals (48) are listed in appendix B.

3.6 Summary of the resolution procedure

We want to summarize the results obtained in the previous Subsections. Using local resolutions of fixed
points and fixed lines and the globally defined divisors R, which are inherited from the torus, we were
able to construct resolutions of the T 6/Z6–II orbifold. These resolutions are described by the linear
equivalence relations (38), which are independent of the triangulations chosen, and the intersection
ring, which is highly triangulation dependent. The knowledge of the intersection numbers is essential
for our later computations since it allows us to calculate integrals of quantities that can be expanded
in terms of divisors, such as the Chern classes, the gauge field strength and the Kähler form. Since
the intersection numbers do depend on the chosen triangulation, in general every calculation that we
perform later is triangulation dependent.

This raises the question about how many different possibilities to resolve the orbifold there are.
A rough estimate would be 512 since there are five triangulations possible at each of the twelve fixed
points. But since there are permutation symmetries between the fixed points, this number gets reduced
to 1.797.090. This can be interpreted as a large number of distinct Calabi–Yau manifolds or as phases
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Summary:
Divisors:   R1, R2, R3 ;   D1,1 , D1,2 , D1,3 , D2,β , D3,γ ;

E1,βγ , E2/4,1β , E2/4,3β , E3,1γ, E3,2γ 

Linear equivalences: 

Triple intersection numbers:
- triangulation independent

- triangulation dependent (here one specific choice)

with β = 1). Since N2 = 3, one obtains from (33)

R2 ∼ 3D2,1 +
4∑

γ=1

E1,1γ +
∑

α=1,3

(2E2,α 1 + E4,α 1) . (37)

Note that the sum over γ is taken over E1 only since it is the only divisor involved that depends on γ.
D1,3 locally belongs to the three C2/Z3 orbifolds only. A further subtlety arises here since D1,3 is

the sum of D̃1,3 and D̃1,5 (Table 3). In such a case one has to divide the group order by the number
of elements the divisor is built of. Since N1 = 6 and D1,3 is built out of two elements, one obtains
R1 ∼ 3D1,3+

∑
β(E2,3 β +2E4,3 β). Proceeding in this way it is possible to obtain all linear equivalence

relations for the resolution of T 6/Z6–II

R1 ∼ 6D1,1 +
3∑

β=1

4∑

γ=1

E1,βγ +
3∑

β=1

(2E2,1 β + 4E4,1 β) + 3
4∑

γ=1

E3,1 γ ,

R1 ∼ 2D1,2 +
4∑

γ=1

E3,2 γ , R1 ∼ 3D1,3 +
3∑

β=1

(E2,3 β + 2E4,3 β) , (38)

R2 ∼ 3D2,β +
4∑

γ=1

E1,βγ +
∑

α=1,3

(2E2,αβ + E4,αβ) , β = 1, 2, 3 ,

R3 ∼ 2D3,γ +
3∑

β=1

E1,βγ +
∑

α=1,2

E3,αγ , γ = 1, 2, 3, 4 .

These relations can be seen as the outcome of the gluing procedure since on the one hand we combined
several local equivalence relations into one relation and on the other hand they are related to the
inherited divisors, which represent the global properties of the torus. Furthermore, if one specifies one
fixed point (i.e. α, β, and γ) and sets all divisors with different labels to zero, one obtains exactly
the local equivalence relation associated with that fixed point. This can be seen as a cross check that
the gluing procedure respects the properties of the local resolutions. Finally (38) does not depend on
the triangulation of the C3/Z6–II orbifolds, which will play a role when we consider the intersection
numbers of the resolution of T 6/Z6–II.

As in Section 3.1, after having obtained the linear equivalence relations, we turn to the intersection
properties of the compact orbifold. Again, we use information of the local resolutions together with the
globally defined inherited divisors Ri to obtain the intersection ring. A very useful method introduced
in [27] is to construct an auxiliary polyhedron for every local non–compact orbifold one has to consider.
This is done in accordance with the following rules:

1. Take a lattice N ∼= Z3 with basis fi = miei, ei being the standard basis vectors and mi > 0 such
that m1m2m3 = N1N2N3/ |G|, where Ni is the order of the action of the orbifold group G on
the i–th coordinate–plane and |G| is the number of elements of G.

2. Rotate and rescale the toric diagram of C3/G in such a way that the divisors Di correspond to
vectors vi+3 = Nifi. The position of the E’s has to be transformed accordingly.

3. Add vertices at vi = −fi for every inherited divisor Ri.

18



possible to calculate the integral of the second Chern class c2(X) over a divisor S by making use of
the adjunction formula [40] ∫

S
c2(X) = c2(X)S = χ(S) − S3 . (44)

Therefore, c2(X)S can be computed, if one knows the topology of S and the intersection number S3.
The topology of S depends on the orbifold under consideration and the divisor. It can be found in [27];
the intersection number can be calculated using the tools from Section 3.2.

Although in this way we can obtain all information needed about the Chern classes, it is useful
to note that the same results can be obtained if one uses a slightly modified splitting principle to
calculate the total Chern class c(X). Since all divisors are associated to complex line bundles a first
guess for the total Chern class, motivated by toric geometry in the non–compact case (see e.g. [41]),
would be c(X) =

∏

all divisors
(1 + S). However, this does not give c1(X) = 0 and χ(X) = 48 as expected.

We use10

c(X) =
10∏

J=1

32∏

r=1

(1 + DJ)(1 + Er)(1 − R1)(1 − R2)(1 − R3)
2 . (45)

This gives the expansion for the Chern classes

c1(X) =
10∑

J=1

DJ +
32∑

r=1

Er − R1 − R2 − 2R3 = 0 ,

c2(X) =
1

2!

∑

all divisors

(c1(X) − Si)Si = − 1

2

∑

all divisors

S2
i , (46)

c3(X) =
1

3!

∑

all divisors

(c1(X) − Si − Sj)SiSj = − 1

6

∑

all divisors

S2
i Sj + SiS

2
j .

If one now replaces all D’s via the relations (38) one obtains c1(X) = 0 (as indicated), χ(X) = 48
and the right values for the integrals over c2(X). Using this we can express all integrals over Chern
classes as linear combinations of intersection numbers.

Kähler form J

Since we have a basis of (1, 1)–forms we can give the Kähler form (see for example [42,46]) expanded
in R’s and E’s

J =
3∑

i=1

aiRi −
32∑

r=1

brEr , (47)

where we have introduced a shorthand for sums involving all exceptional divisors by giving them a
multi–index r running from 1 to 32. For r = 1, . . . , 12 the sum runs over E1,βγ (E1 = E1,1 1, E2 =
E1,1 2, . . .). r = 13, . . . , r = 18 corresponds to E2,αβ, r = 19, . . . , r = 26 to E3,αγ, and r = 27, . . . , 32

10The replacement Ri → −Ri is due to the fact that one is free to consider instead of the line bundle over Ri the
inverse line bundle, which results in an extra minus sign. Squaring the R3–term takes into account that there are more
degrees of freedom in the z3–plane, since the two cycles along e5 and e6 are independent.
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A phenomenologically appealing orbifold T6/Z6−II

The resolved CY has hodge diamond

1
0 0

0 35 0
1 11 11 1

0 35 0
0 0

1

The first Chern class is 0 (ok, a good CY space)
The third Chern class is 48
We have at hand all the second Chern classes, so that we
can compute

∫
γ4

R ∧R on any 4-cycle
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Summary:
Hodge diamond

Characteristic classes

 - first Chern class:   ....... 0
 - integrated second Chern class:

- Euler number:
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listed involving E’s with α "= 1 or R’s are zero.

E3
1,βγ = 6 , E3

2,1 β = 8 , E3
3,1 γ = 8 , E3

4,1 β = 8 ,
E1,βγE2

2,1 β = − 2 , E1,βγE2
3,1 γ = − 2 , E1,βγE2

4,1 β = − 2 , E1,βγE2,1 βE4,1 β = 1 ,
E2

2,1 βE4,1 β = − 2 .

Table 7: The intersection numbers for the case that all fixed points have triangulation i). Only divisors
with α = 1 are involved; all other intersections are zero.

This can now be easily integrated using
∫
S c2(X) = c2(X)S to give

c2(X)E1,βγ = 0 , c2(X)E2,1 β = − 4 , c2(X)E3,1 γ = − 4 , c2(X)E4,1 β = − 4 ,
c2(X)E2,3 β = 0 , c2(X)E3,2 γ = 0 , c2(X)E4,3 β = 0 ,
c2(X)R1 = 0 , c2(X)R2 = 24 , c2(X)R3 = 24 .

(50)

The first line of (50) is triangulation dependent, whereas the other results hold for all triangulations.
Finally, we derive the restrictions on the expansion coefficients ai, br of the Kähler form J defined

in (47) by using the integrals of the Kähler form given in (48). Taking the integral over all curves
in any triangulation, we get as a result that all ai and br are larger than zero for all triangulations.
Furthermore, only if an exceptional divisor E gets a volume larger than zero, the fixed point corre-
sponding to this divisor gets a finite size. Therefore the corresponding integral has to be larger than
zero. On the other hand since the R’s are associated to the cycles of the torus, their volume should be
larger than zero in any case, unless one wants to shrink one complex dimension of the torus to zero.
The results of the integrals (48) are listed in appendix B.

3.6 Summary of the resolution procedure

We want to summarize the results obtained in the previous Subsections. Using local resolutions of fixed
points and fixed lines and the globally defined divisors R, which are inherited from the torus, we were
able to construct resolutions of the T 6/Z6–II orbifold. These resolutions are described by the linear
equivalence relations (38), which are independent of the triangulations chosen, and the intersection
ring, which is highly triangulation dependent. The knowledge of the intersection numbers is essential
for our later computations since it allows us to calculate integrals of quantities that can be expanded
in terms of divisors, such as the Chern classes, the gauge field strength and the Kähler form. Since
the intersection numbers do depend on the chosen triangulation, in general every calculation that we
perform later is triangulation dependent.

This raises the question about how many different possibilities to resolve the orbifold there are.
A rough estimate would be 512 since there are five triangulations possible at each of the twelve fixed
points. But since there are permutation symmetries between the fixed points, this number gets reduced
to 1.797.090. This can be interpreted as a large number of distinct Calabi–Yau manifolds or as phases

25

possible to calculate the integral of the second Chern class c2(X) over a divisor S by making use of
the adjunction formula [40] ∫

S
c2(X) = c2(X)S = χ(S) − S3 . (44)

Therefore, c2(X)S can be computed, if one knows the topology of S and the intersection number S3.
The topology of S depends on the orbifold under consideration and the divisor. It can be found in [27];
the intersection number can be calculated using the tools from Section 3.2.

Although in this way we can obtain all information needed about the Chern classes, it is useful
to note that the same results can be obtained if one uses a slightly modified splitting principle to
calculate the total Chern class c(X). Since all divisors are associated to complex line bundles a first
guess for the total Chern class, motivated by toric geometry in the non–compact case (see e.g. [41]),
would be c(X) =

∏

all divisors
(1 + S). However, this does not give c1(X) = 0 and χ(X) = 48 as expected.

We use10

c(X) =
10∏

J=1

32∏

r=1

(1 + DJ)(1 + Er)(1 − R1)(1 − R2)(1 − R3)
2 . (45)

This gives the expansion for the Chern classes

c1(X) =
10∑

J=1

DJ +
32∑

r=1

Er − R1 − R2 − 2R3 = 0 ,

c2(X) =
1

2!

∑

all divisors

(c1(X) − Si)Si = − 1

2

∑

all divisors

S2
i , (46)

c3(X) =
1

3!

∑

all divisors

(c1(X) − Si − Sj)SiSj = − 1

6

∑

all divisors

S2
i Sj + SiS

2
j .

If one now replaces all D’s via the relations (38) one obtains c1(X) = 0 (as indicated), χ(X) = 48
and the right values for the integrals over c2(X). Using this we can express all integrals over Chern
classes as linear combinations of intersection numbers.

Kähler form J

Since we have a basis of (1, 1)–forms we can give the Kähler form (see for example [42,46]) expanded
in R’s and E’s

J =
3∑

i=1

aiRi −
32∑

r=1

brEr , (47)

where we have introduced a shorthand for sums involving all exceptional divisors by giving them a
multi–index r running from 1 to 32. For r = 1, . . . , 12 the sum runs over E1,βγ (E1 = E1,1 1, E2 =
E1,1 2, . . .). r = 13, . . . , r = 18 corresponds to E2,αβ, r = 19, . . . , r = 26 to E3,αγ, and r = 27, . . . , 32

10The replacement Ri → −Ri is due to the fact that one is free to consider instead of the line bundle over Ri the
inverse line bundle, which results in an extra minus sign. Squaring the R3–term takes into account that there are more
degrees of freedom in the z3–plane, since the two cycles along e5 and e6 are independent.

22



2 - 10d SUGRA on the resolved space



1)  Flux quantization: 

2)  Equations of  motion/SUSY:
      -     must be a (1,1)-form, fulfilling the DUY condition
                                     (6d case),                       (4d case)

3) The Bianchi Identity for H must be fulfilled
                 implies

In the language of  divisors:
- F can be written as  F = Ei VigI HI

        - Ei the localized (1,1)-forms (flux invisible in blow-down)
        - HI elements in the Cartan algebra of  SO(32) or E8 × E8

- Quantization: VigI must be integers (half-integers)

F (1)

Eij′

i (2)

Dj′

1 (3)

Dj′

1 (4)

Di
2 (5)

Ejk′

i (6)

R1 ∼ 3Dj′

1 , R2 ∼ 3Dj
2 (7)

R1 ∼ 3Dj′

1 +
3∑

i=1

(
Eij′

2 + 2Eij′

1

)
, R2 ∼ 3Di

2 +
3′∑

j′=1′

(
Eij′

1 + 2Eij′

2

)
(8)

R1 ∼ 3Dj′

1 (9)

c(R) = (1 + R1)(1 + R2)
3∏

i=1

(1 + Di
2)

3′∏

j′=1′
(1 + Dj′

1 )
3∏

i=1

3′∏

j=1′
(1 + Eij′

1 )(1 + Eij′

2 )(10)

c1(R) = 0, c2(R) = 24. (11)

∫

γ
F ∈ Z (12)

∫
J ∧ . . . ∧ F = 0 (13)

Eij′

1 Epq′

2 = δipδj′q′
, Eij′

1 Epq′

1 = Eij′

2 Epq′

2 = −2δipδj′q′
, (14)

R1R2 = 3, R1R1 = R2R2 = 0, RiE
pq′

j = 0. (15)

1

∫

C2

(R ∧R− F ∧ F ) = 0 (29)

∫

E1

(R ∧R− F ∧ F ) = E1




3∏

i=1

(1 + Di)
2∏

j=1

(1 + Ei)





2

− E1F
2 = 0 (30)

∫

γ
F ∈ Z (31)
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2.1 - Consistency conditions
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- E.o.m.: conditions on the Kaehler moduli:

              quadratic (linear) polinomial equation in the moduli 
              (+ loop corrections, see e.g. Blumenhagen et al. ‘05)
- Bianchi Identity: use the splitting principle and the F definition

                             we can write

               a quadratic polinomial equation in the V’s (for each cycle)

Spectrum: from the Dirac index (reduction of  the 10d anomaly
                   polynomial): all the states from the adjoint of  SO(32)
                   or E8× E8



g : Ta → e2πiHIVI/n Ta e−2πiHIVI/n
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∫
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HI ED2D3 =
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Vg2 = 12

V2 = 0 mod 6
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∫
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F = HIVIF
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ziz̄i

u1 =
z1
z3
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g : Ta → e2πiHIVI/n Ta e−2πiHIVI/n

g F

g

Local Informations: 
- on the orbifold side there are non-trivial identifications “going 
  “round” the singularity, dictated  by the embedding of
  the orbifold action in the gauge degrees of  freedom
              g

                                    - on the bundle side the same
                                      identifications are generated by the
                                      presence of  the flux (depending on how
                                      it is embedded in SO(32) or E8 × E8)
“Simple” example: C3/Z3

- the resolution is obtained adding a single exceptional divisor E.
- take then                        , quantization fixes the vector to integer
  or half  integer values, the boundary effect (and identification) is

N.B. The Bianchi identity is                 , to be compared with the
        modular invariance condition                       !

2.2 - Matching the orbifolds 



3 - The T6/Z6-II case



3.1 - Flux identification
Z6 singularity
- Orbifold side: a shift vector V
- Resolution side: 4 shift vectors Vgi, one for each line bundle Ei

E1 is identified with a genuine Z6 “action”: Vg1 ≡ V
E2/4 are identified with the C2/Z3 action in Z6: Vg2/4 ≡ ±2 V

see also T.-W. Ha, S. Groot Nibbelink, MT 
E3 is identified with the C2/Z2 action . . . : Vg3 ≡ 3 V

where A≡B means A = B +Λ, Λ being some E8×E8
lattice element

Z3 / Z2  singularity “out of  a Z6 singularity”
- As for the Z3 / Z2  singularity “inside a Z6 singularity”:

Vg2/4 ≡ ±2 V, Vg3 ≡ ±3 V 

Addition of  discrete Wilson lines by just giving different shift 
vectors in different (resolved) singularities.

D1 D3

D2

E1

E4

E2

E3 D1 D2
E4 E2

D1 D3
E3



3.2 - Bianchi Identity   ... we can find a solution
We have, in principle
- 32 different shift vectors, one per “exceptional” line bundle 
- 35 different compact 4-cycles giving rise to 35 Bianchi
        Identity conditions
- 35 quadratic equations in 32 “variable” vectors, made of  16 integer
       entries each ..... 

But we also have, luckily
- not all the 35 equations are independent: we can reduce to 24
- a large reduction of  the 32 shifts from the orbifold identifications
  (still freedom on the E8×E8 lattice elements Λ, but the freedom
   is largely reduced once we require the SM group to remain
   unbroken in the resolution)
- the quadratic equations can be cast in sum of  squares!
- we can find a good choice of  gauge fluxes and identify the
  “resolved version” of  the MSSM models listed in th/0611095
- we did so for the so-called “Benchmark Model II” and find . . .



3.3 - MSSM’s in blow-up
Gauge Symmetry
- Orbifold: SU(3)×SU(2)×U(1)Y×U(1)4 × SO(8)×SU(2)×U(1)3

- Blow-up: SU(3)×SU(2)×U(1)Y×U(1)4 × SU(4)×U(1)4

  gauge symmetry breaking in the “hidden” E8
        SO(8)×SU(2) → SU(4)×U(1)
  + the “breaking” of  some U(1)’s that are (now) anomalous
  (from the orbifold perspective it’s the usual fact that “blow-up”
  means giving a vev to some (charged) twisted fields, and this
  induces a Higgs mechanism)

Spectrum
- SM chiral spectrum 
- SM vector-like exotics (chiral with respect to some hidden U(1))
- 2 additional singlets with non-trivial hypercharge (extra r.h. electrons)!
  ⇒ The U(1)Y is anomalous!

benchmark model II of  0611095 (Lebedev et al.) 



Focus on the anomalous hypercharge
 -  In the orbifold model a unified SU(5) symmetry is broken to SM
    “locally”, in some of  the singularities (while others preserve a
     unified group)
 -  In the SUGRA version this breaking is realized by U(1) fluxes,
    and U(1)Y is in SU(5) ⇒ U(1)Y is anomalous

Orbifold perspective
 -  The blow-up modes of  the singularities where SU(5) is broken
    are all charged under the SM gauge group
    ⇒ no blow-up without breaking the SM gauge group

see also S. Groot Nibbelink, H.P. Nilles, M. T. `07



3.4 - Solving the U(1)Y “problem”
Simple way out: just do not resolve the “bad” singularities
- Orbifold perspective: U(1)Y breaking particle at zero vev → no breaking
- Resolved perspective: U(1)Y is anomalous, but the anomalous mass
  is zero (but out of  the SUGRA perspective studied in Blumenhagen et al. ‘05 )

More complicated, still keeping the Z6-II construction:
consider models where U(1)Y is not embedded “standardly” in SU(5)
(see e.g. S. Raby and A. Wingerter ‘07)

Complicated & more interesting
consider orbifold geometries where all the fixed points preserve GUT,
and SU(5) is broken “truly non-locally” 

-- in progress ... see Patrick’s talk



3.4 - “Delocalized” orbifold breaking:
         a simple Z2×Z2’ model             A. Hebecker and M.T. ‘04

Basic idea: the orbifold actions breaking the GUT group must have 
free action (no fixed points)
- We need at least two different orbifold operators
  1) g’, breaking the GUT group,
     acting as a translation in some internal dimension
  2) g, acting as a rotation in that direction
      otherwise too much SUSY  -- N=2
- Minimal construction Z2×Z2’ = {I, g’, g, g×g’}, with action on T6

       z1 ➝    z1+π R1             z1 ➝  - z1                               z1 ➝ - z1+π R1
g’:  z2 ➝  - z2+π R2           g :  z2 ➝  - z2                    g×g’:  z2 ➝    z2+π R2

          z3 ➝    z3                                z3 ➝    z3                                      z3 ➝  - z3

      free action                    fixed points                   free action!
    GUT breaking              GUT preserving         gauge embedding fixed
    gauge embedding         gauge embedding        to be GUT breaking
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Byproduct: split MGUT from ms

Due to the de-localization the scale of  gauge symmetry breaking
is decoupled from the string scale
                           MGUT ~ (R1 R2)-½

But usual problem with “large” volumes in heterotic string

MZ
ms

GUTM ms



 -  Reproduced the heterotic orbifold models as SUGRA
    construction with gauge bundles (metric resolution and
    toric geometry resolution).
     - local Cn/Zm and Cn/Zm × Zp        S. Groot Nibbelink, MT, M. Walter;

T.-W. Ha, S. Groot Nibbelink, MT.
      - global case T6/Z3 

S. Groot Nibbelink, D. Klevers, F. Ploger, MT, P. K. S. Vaudrevenge
      - K3 with U(1) bundles                                        G. Honecker, MT.
        - K3 with generic bundles (and “jumping” between bundles)    

S. Groot Nibbelink, F. Paccetti, MT
      - the pheno appealing T6/Z6-II model

S. Groot Nibbelink, MT, J.Held, F. Ruehle, P. K. S. Vaudrevange
    
 -  The breaking of  SU(5) to the SM group by U(1) fluxes is 
    problematic (anomalous hypercharge)
      - consider different orbifolds  (e.g. A. Hebecker, MT ‘04)
        with “de-localized” gauge symmetry breaking

... Patrick’s talk  

4 - Conclusions & Outlook
... see also Stefan’s talk on friday


