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Suffezynski P, Crone NE, Franaszczuk PJ. Afferent inputs to
cortical fast-spiking interneurons organize pyramidal cell network
oscillations at high-gamma frequencies (60-200 Hz). J Neuro-
physiol 112: 3001-3011, 2014. First published September 10,
2014; doi:10.1152/jn.00844.2013.—High-gamma activity, ranging in
frequency between ~60 Hz and 200 Hz, has been observed in local
field potential, electrocorticography, EEG and magnetoencephalogra-
phy signals during cortical activation, in a variety of functional brain
systems. The origin of these signals is yet unknown. Using compu-
tational modeling, we show that a cortical network model receiving
thalamic input generates high-gamma responses comparable to those
observed in local field potential recorded in monkey somatosensory
cortex during vibrotactile stimulation. These high-gamma oscillations
appear to be mediated mostly by an excited population of inhibitory
fast-spiking interneurons firing at high-gamma frequencies and pacing
excitatory regular-spiking pyramidal cells, which fire at lower rates
but in phase with the population rhythm. The physiological correlates
of high-gamma activity, in this model of local cortical circuits, appear
to be similar to those proposed for hippocampal ripples generated by
subsets of interneurons that regulate the discharge of principal cells.

cortex; high-gamma; model; oscillations

THERE IS ABUNDANT EXPERIMENTAL evidence that functional acti-
vation of cortex is associated with increased EEG activity at
frequencies in the so-called high-gamma range (60-200 Hz),
and that non-phase-locked power augmentation in this fre-
quency range can serve as a general-purpose index of task-
related cortical processing (Crone et al. 2011). In human
intracranial EEG, these responses have been observed in a
variety of functional brain systems, including motor, somato-
sensory, auditory, visual, language, default mode network and
memory systems (Crone et al. 2011; Lachaux et al. 2012).
Additionally, responses with the same or very similar spectral
features have also been observed in humans with magnetoen-
cephalography (MEG) (e.g., Kaiser and Lutzenberger 2005)
and even with scalp EEG (e.g., Darvas et al. 2010). At the other
end of the spatial scale, recent animal studies have confirmed
the presence of high-gamma responses in local field potential
(LFP) recordings similar to those observed in human intracra-
nial EEG (Belitski et al. 2008; Grenier et al. 2001; Liu and
Newsome 2006; Ray et al. 2008a, 2008b; Ray and Maunsell
2011).

Despite the apparent ubiquity of high-gamma EEG re-
sponses and their practical utility for functional mapping and
cognitive neurophysiology in humans, little is known about
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their neurophysiological bases. Recent studies (Ray et al.
2008a, 2008b) attempted to shed some light on this. The
authors recorded single-unit and LFP activity from monkey
somatosensory cortex while presenting vibrotactile stimulation
to the finger. Time-frequency analysis of the LFP signals
showed an increase in high-gamma power following stimulus
onset. To further investigate the origin of high-gamma re-
sponses, a model of electrocorticography (ECoG) generators
was postulated (Ray et al. 2008b). In that model, high-gamma
power resulted from the temporal summation of sharp extra-
cellular action potential waveforms having broadband power.
However, it is traditionally assumed that LFP and ECoG
activity mainly reflects synaptic potentials (Logothetis 2003;
Mitzdorf 1985; Pesaran 2009). The contribution of different
neuronal currents to high-frequency LFP has been investigated
both in computer models and in vitro. Using detailed biophys-
ical modelling, Schomburg et al. (2012) estimated that, during
ripple oscillations in rat CA1, action potential currents contrib-
ute about 50% of the LFP signal power in the 140- to 200-Hz
band. However, in vitro experimental studies have implicated
synaptic currents rather than action potential currents as
sources for LFP signals. Oren et al. (2010) investigated the
current sources underlying cholinergically induced gamma
LFP oscillations (30-100 Hz) in CA3 in vitro. Their conclu-
sion was that the major contribution to LFP signals comes from
pyramidal (PY) cell inhibitory postsynaptic currents (IPSCs),
while action potential currents made a relatively small (<10%)
contribution to the LFP. Similarly, Trevelyan (2009) observed
a strong correspondence between IPSCs in PY cells and ex-
tracellular high frequency oscillations (80-500 Hz) in cortical
slices. Based on significant cross-correlograms of the IPSCs vs.
the extracellular signal, he concluded that PY cell IPSCs were
the primary sources of high-frequency oscillations. Although
action potential currents may contribute to LFP signals re-
corded from intracortical microelectrodes, they are much less
likely to make any direct contribution to ECoG signals, or to
EEG or MEG signals (Avitan et al. 2009; Nunez 1981; Schaul
1998). The mechanisms of most widespread neuroscientific
interest and importance are arguably those that are responsible
for high-gamma activity observed at all of these scales.

Another important, yet unanswered, question is what deter-
mines the frequency characteristics of high-gamma responses?
A remarkable feature of these responses is their broadband
spectral profiles, which have raised additional questions re-
garding their origin (Crone et al. 2011).

The aim of this study was to investigate the basic mecha-
nisms generating high-gamma responses using a biologically
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based model of cortical networks. Many of the features of this
model were designed to approximate the electrophysiological
responses observed by Ray et al. (2008a, 2008b). Using this
model, we show that a broadband high-gamma response to sen-
sory activation of cortex is generated by a network-based mech-
anism mediated by the excited population of inhibitory (I) fast-
spiking interneurons firing at high-gamma frequencies under
strong excitatory input with a Poisson distribution in time.

MATERIALS AND METHODS
Experimental Data

Neural activity was recorded from SII cortex in two macaque
monkeys (Macaca mulatta, one female, 4—6 kg) using platinum-
iridium extracellular microelectrodes. A sinusoidal stimulus was de-
livered perpendicular to the skin surface through a probe on the distal
pad of the second or third digits (D2 or D3) or on the palm by a
vibratory stimulator. The stimulus was presented for 1 s, with an
interstimulus interval of 1.2 s. Three different stimulus frequencies
(50, 100, and 200 Hz) and four different amplitudes (in the ratio
1:2:5:10 and denoted by G1, G2, G5, and G10) were used, with 50
trials per frequency and amplitude combination. Stimuli were pre-
sented in pseudorandom order. Recorded signals were amplified and
divided into two streams for the collection of LFP and spikes,
respectively. One stream of the incoming signal was amplified (100X)
and filtered (0.3-300 Hz, 6 dB/octave) and then sampled at 5 kHz. The
second input stream was band-pass filtered (500-1,000 Hz) and
amplified (10 to 100X), and spikes were isolated using a window
amplitude discriminator. Only neurons for which the action potentials
were well isolated from noise were selected for analysis. Detailed
experimental procedure and analysis results are presented in Ray et al.
(2008b). The experimental data presented in this study were obtained
for vibrotactile stimulus frequency 50 Hz and have been kindly provided
by Supratim Ray. All procedures and experimental protocols complied
with the guidelines of the Johns Hopkins University Animal Care and
Use Committee, which approved this study, and the National Institutes of
Health Guide for the Care and Use of Laboratory Animals.

Time-Frequency Analysis

Time-frequency analysis was performed using the Matching Pur-
suit (MP) algorithm (Mallat and Zhang 1993). MP is an iterative
procedure to decompose a signal as a linear combination of members
of a specified family of functions g, or “atoms”. They are usually
chosen to be sine modulated Gaussians, i.e., “Gabor atoms”, because
such functions give the best compromise between frequency and time
resolution. In this algorithm, a large overcomplete dictionary of Gabor
atoms is first created. In the first iteration, the atom g,, which best
describes the signal f(t), is chosen from the dictionary, and its
projection onto the signal is subtracted from it. The procedure is
repeated iteratively with the residual replacing the signal. Thus,
during each of the subsequent iterations, the waveform g,, is matched
to the signal residue R"f that is left after subtracting the results of
previous iterations. Time-frequency plots are obtained by calculating
the Wigner-Ville distribution of individual atoms and taking the
weighted sum.

LFP signals, originally recorded with a 5-kHz sampling rate, were
down-sampled by a factor of 5, resulting in a sampling frequency of
1 kHz. Simulated signals, which had an original sampling rate of 10
kHz, were down-sampled by a factor of 10, also yielding a 1- kHz
sampling frequency. The MP decomposition had a maximum time
resolution of 1 ms and a maximum frequency resolution of 500/1,024
Hz, where 500 Hz is the Nyquist frequency after down-sampling. For
each signal segment, we fitted 200 atoms, which allowed high-
frequency atoms of lower energy to also be selected. The decompo-
sition accounted for >99.9% of the signal energy.

In calculating average energy across trials (Fig. 1, B and D), we
first computed the natural logarithms of single-trial energy, which is
a standard procedure resulting in a more symmetric energy distribu-
tion and enhancement of low-energy components. Next, average
energy was obtained by averaging log transformed energy over n trials
(n = 50 for experimental data and n = 48 for simulated data). In Fig.
1, B and D, we computed the average change in energy relative to
baseline. Baseline energy was computed as the time average of energy
in the baseline period. The baseline period was 50-200 ms before
stimulus onset for real data (Fig. 1B) and 350-500 ms for simulated
data (Fig. 1D). Low-frequency components (<20 Hz) were stronger
in simulated data than in experimental recordings. Gabor functions are
symmetrical; hence the strong low-frequency atoms around the stim-
ulus onset in the simulated data were extended in time and reached
times before the stimulus onset. Therefore, for simulated signals, we
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Fig. 1. Comparison of high-gamma observed in vivo and simulated in the
model during sensory stimulation for different stimulus amplitudes denoted
Gl, G2, G5 and G10. A and B: experimental results. C and D: model
simulations. A: mean firing rate of the excited neurons shows an initial sharp
peak followed by a slow decay. B: the different rows show the average
time-frequency plots of power differences from baseline in local field potential
(LFP) signals for different stimulus amplitudes. Maps for amplitudes G2 to
G10 show an increase in power in the high-gamma frequency range (60—150
Hz) with dominant frequency ~100 Hz in the early stimulus phase (50-200
ms) and increase in gamma and high-gamma frequencies (40—100 Hz) after-
wards. A strong increase of power at low frequencies (<20 Hz) at stimulus
onset and a decrease of power in the beta frequency range (10-30 Hz) after
stimulus onset are also visible. C: mean firing rate across all cells in the model
exhibit a similar time course to those observed experimentally. D: the time-
frequency plots of simulated LFP signals exhibit similar changes in low (<20
Hz), beta, gamma and high-gamma frequency bands. Color bar showing
relative energy scale in dimensionless dB units for B and D is shown on the
right.
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calculated the reference period at times further away from stimulus
onset. The change in energy relative to baseline was calculated as a
difference between average energy after stimulus onset and energy in
the reference period. In the MP analysis of real data, artifacts related
to line noise were removed from the plots by excluding atoms around
60 Hz and its higher harmonics.

Cortical Network Model

In the present study, we used a modified version of a cortical
network model previously described (Anderson et al. 2007, 2009;
Franaszczuk et al. 2003; Kudela et al. 1997, 2003). Since the model
was originally developed to study epileptic phenomena, we introduced
necessary changes to adapt it to simulations of normal cortical sensory
responses. The main difference concerned the connectivity of the
network and not the single-cell properties. We also added external
stimulation corresponding to sensory input from thalamocortical af-
ferents.

The model consisted of two layers composed of either excitatory
PY cells or I interneurons, with the ratio of PY to I cells 4:1. We
simulated network sizes from 500 to 18,000 neurons. There were no
noticeable effects of the network size on high-gamma responses. Thus
the results are reported for a network size of 500 cells. Excitatory PY
cells corresponded to regular spiking PY cells, while I cells corre-
sponded to fast-spiking interneurons. Low-threshold spiking interneu-
rons were not included, as they are believed to contribute to low-
frequency rhythmogenesis (Fanselow et al. 2008; Vierling-Claassen et
al. 2010). The neurons were modeled using single-compartment
Hodgkin-Huxley type dynamics, modified by Av-Ron (1994). The
regular spiking neuron model included a sodium current /,, a delayed
rectifier potassium current [, a Ca-dependent potassium current
Ii(cay @ transient I, current, and a leakage current /; . The fast-spiking
neuron model included the same set of currents, except for the
Ca-dependent potassium current Iy c,,. The parameters for the two
different types of cells (regular spiking and fast spiking) are based on
the modeling study of Anderson et al. (2007), where single-cell
behavior is presented. The synaptic connections included excitatory
AMPA and inhibitory GABA , types of receptors. Postsynaptic cur-
rents were described by a double-exponential function and included
transmission delays as in Anderson et al. (2007). The onset and decay
times were ¢, = 0.5 ms, 7, = 5 ms for excitatory postsynaptic current
(EPSC) and 7, = 0.5 ms, t, = 2 ms for IPSC, respectively. Synaptic
conductance constants were .;yn = 0.0009 mS/cm? for EPSC and o =
0.0014 mS/cm* for IPSC. Transmission delay is a delay between
emergence of spike in the presynaptic neuron and beginning of current
integration in the postsynaptic neuron. They include intrinsic synaptic
delays, axonal conduction time and dendritic conduction time. Intrin-
sic synaptic delays are ~0.4 ms (Eccles 1964), and axonal conduction
velocities estimated in motor cortex are ~1 m/s for short-range
excitatory projection (Swadlow 1994) and ~0.4 m/s for inhibitory
projections (Kang et al. 1994). Delays due to dendritic conduction
times are present mainly for excitatory connections. Thus we assumed
transmission delays to have uniform distribution in postsynaptic cells
in the range 0.5-1.5 ms.

The network connectivity was defined by the number of input
connections, the synaptic conductances and the synaptic weights as in
Anderson et al. (2007). Relative synaptic weights w; were obtained by
considering the reduction in size of the postsynaptic potential (PSP)
due to distant synapsing in the dendritic arbor (Williams 2005;
Williams and Stuart 2003). PY cells are assumed to synapse at 500
pm from the cell body, while basket cells make synapses close to
soma. Relative mean weights for PY-PY, PY — [, I — PY, and I-]
were 5, 20, —100, and —100, respectively. For each postsynaptic cell,
synaptic weights had uniform distribution over the range 75% to
125% of the mean value.

Connectivity in our model was based on the available anatomical
data from cat primary visual cortex (Binzegger et al. 2004) with some

modifications. To our knowledge, for no other species or cortical area
does such detailed data exist. The estimated numbers of synapses on
one type of neuron formed by other neurons, in each cortical layer, are
given in Fig. 7 of Binzegger et al. (2004). We used data from
excitatory PY cells in cortical layer 2/3 (p2/3) and I basket cells in
cortical layer 2/3 (b2/3) only. The reported numbers of convergent
projections between respective cell types were as follows: between
p2/3, 3,000-3,500; from p2/3 to b2/3, 1,500-2,500; from b2/3 to
p2/3, 500-1,000; and between b2/3, 500—1,000. In our small network
model we reduced, by a factor of 100, the number of synaptic
connections, preserving the relative number of connections between
each cell type, except the number of I (b2/3) to PY cells (p2/3)
connections, which was increased from the derived 5-10 range up to
20. This increase was motivated by the fact that the power of
high-gamma signals was dependent mainly on the inhibitory PSP
currents generated by inputs from interneurons to PY cells. With this
parameter setting, the power changes in the high-gamma range were
more evident, allowing us to more easily examine the effects of other
model parameters on these power changes. Thus, in the model, the
numbers of connections each cell received from other cells were 30,
20, 20, and 5 for PY-PY, PY — I, I — PY, and I-I connections,
respectively. For each connection type, we defined a neighborhood,
i.e., a square array of cells from which cells could send outgoing
connections to a given cell. The neighborhood size was 9 X 9 cells for
each connection type and was always centered on a target cell. The
consequence of this, for example, was that a single I cell received
inputs from 20 different PY cells randomly selected from a square
array of 81 cells, centered on the target I cell. The convergent and
divergent projections in the model are illustrated in Fig. 2.

The network heterogeneity of our model was captured by a spread
of synaptic weights and transmission delays, but they were not the
primary determinant of high-gamma energy. We also performed
additional simulations to verify whether heterogeneity in single-cell
properties could have led to an increase of the bandwidth of the
high-gamma signals. These simulations of the network with leakage
current synaptic conductance g, and reversal potentials V, uniformly
distributed within 10% of their reference values did not produce any
appreciable differences in the results.

Two types of inputs were present in the model. First, background
input, representing activity from other cortical areas not included in
the model and not activated by sensory stimulation, was modeled as
a Poisson train of spikes arriving to each PY cell. The inputs to
different cells were uncorrelated with each other. The average rate of
the background input was 300 spikes/s, unless stated otherwise.
Second, sensory inputs, representing input from thalamocortical af-
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Fig. 2. Schematic diagram of connectivity in the network model. The network
consists of 400 pyramidal (PY) cells (fop layer) and 100 inhibitory (I)
interneurons (bottom layer). The network connectivity is defined by the
number of convergent synaptic connections between different cell types. In the
model, the number of inputs each cell receives from other cells is 30, 20, 20,
and 5 for PY-PY, PY — I, I — PY and I-I connections, respectively. A and B:
convergence, i.e., all input connections to single PY (A) and I cells (B). C and
D: divergence, i.e., all outgoing connections from single PY (C) and I (D) cells.
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ferents, were modeled as uncorrelated Poisson spike trains arriving to
50% of randomly selected PY and I cells. The conductance of
thalamocortical sensory input synapses was three times larger in PY
than in I cells as in the corticothalamic model of Destexhe et al.
(1998). It has been estimated that the average number of thalamocor-
tical synapses in a single cortical cell is about 100 (Binzegger et al.
2004). The investigated range of thalamocortical sensory input firing
rates was between 100 and 12,000 spikes/s. This translates into firing
rates of thalamocortical cells in the range of 1-120 spikes/s, which is
in agreement with the reported firing rates of thalamocortical cells in
the tonic firing mode (McCormick and Feeser 1990; Sherman 2001).
In simulations of tactile stimulation, we took into account the rapidly
adapting and slowly adapting responses of peripheral receptors. The
time course of sensory input rate-simulating responses to tactile
stimulation was described by sharp linear increase and decrease,
followed by a slowly (exponentially) decaying response (see Fig. 3B).
Such an input shape well approximated the responses of cortical
neurons in monkey somatosensory cortex to step tactile stimulation
(Pei et al. 2009; Ray et al. 2008a). The sensory inputs to cortex for
different stimulus amplitudes G1, G2, G5, and G10 were not mea-
sured experimentally, and it is unknown how different stimulus
intensities at the periphery would translate into sensory input proper-
ties at the cortical level. Based on the cortical firing rates shown in
Fig. 1A, we assumed that, during a sharp increase in the firing rate of
cortical neurons (0—-90 ms), the increase in thalamocortical sensory
input firing rate was linear in time and that the maximal input firing
rate increased for increasing stimulus amplitudes. Additionally, we
assumed a constant slope of the increase of the input firing rate for all
stimulation strengths G1 to G10. In the late phase (180—1,000 ms) the
firing rate decayed exponentially with an increasing decay time
constant for increasing stimulation strength. Model output corre-
sponding to microelectrode-recorded extracellular LFPs was assumed
to correspond to average synaptic activity in PY cell layer. It was
calculated as a sum of postsynaptic currents in PY cells, as in other
point neuron models (e.g., Mazzoni et al. 2008). The simulations were
run using custom software codeveloped by one the Authors (P.
Franaszczuk). The model was implemented on a cluster of sixteen
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Fig. 3. Behavior of neurons in the model during sensory stimulation. A: traces
of the membrane potentials of 100 neurons. Neuron numbers from 1 to 80
correspond to PY regular spiking cells and from 81 to 100, to I fast spiking
interneurons. B: the time course of average firing rates (in spikes/s) of
simulated sensory inputs during vibrotactile stimulation.

32-bit, 1-GHz, X 86 architecture computers. One second of simulated
time of 500 cells on each cluster node (i.e., 8,000 cells in total) took
2 s to run.

RESULTS
High-Gamma Oscillations in Vivo and in the Model

Experimental results from monkey vibrotactile stimulation
are shown in Fig. 1, A and B. The mean firing rate of the
excited neurons (Fig. 1A) shows an initial sharp peak followed
by a slow decay. The time-frequency plots of power change
from baseline in LFP signals for four different stimulus am-
plitudes are shown in four rows in Fig. 1B. For the smallest
stimulus amplitude G1, there is not much of a response. For
increasing stimulus amplitudes from G2 to G10, the plots show
progressively greater power increases in the high-gamma fre-
quency ranges (60—150 Hz) and power decreases in the beta
frequency range (15-30 Hz), after stimulus onset. A strong
increase of power at low frequencies (<20 Hz) around the time
of stimulus onset is also visible. For stimulation amplitudes G2
to G10, the dominant response frequency in the early stimulus
phase (50-200 ms) appears to be constant at ~100 Hz. In the
late stimulus period (200—1,000 ms), there are power increases
at frequencies 50—100 Hz, which are greater at higher stimulus
amplitudes. Simulation results are shown in Fig. 1, C and D.
The mean firing rate (Fig. 1C) across all cells exhibits temporal
profile similar to the profile observed experimentally. In the
time-frequency plots of simulated LFP responses (Fig. 1D), all
main features seen in the experimental results are reproduced.
The initial response has a dominant frequency at ~100 Hz.
This is followed by a power decrease at beta (15-30 Hz)
frequencies and a power increase at gamma (>30 Hz) and
high-gamma (60-150 Hz) frequencies. In the late stimulus
period, the gamma and high-gamma responses are less evenly
distributed over a broad frequency range than in the experi-
mental results and are dominated by power at 50—80 Hz.

Temporal Dynamics of Neurons

To understand the simulation results shown in Fig. 1, C and
D, it may be useful to follow the temporal dynamics of the
simulated cortical neuronal network. Figure 3 shows a simu-
lation of the membrane potentials of 100 cortical neurons, i.e.,
every fifth neuron in the network, during sensory stimulation
via thalamocortical inputs. Neurons I-80 correspond to PY
regular spiking cells, while neurons 81-100 correspond to I
fast spiking interneurons. The time course of sensory input
firing rates is shown in Fig. 3B and corresponds to the maximal
stimulation intensity. Before the onset of the stimulation, i.e.,
between —250 and 0 ms, the neurons fire with low firing rates
at irregular intervals. During activation, the cortical neurons
can be divided into three categories, depending on whether the
firing rate of the individual cells increase (excited neurons),
decrease (inhibited neurons) or are unaffected (not-driven neu-
rons) by the stimulation, as observed in experimental record-
ings (Ray et al. 2008a). The increased firing of I and PY
neurons observed in Fig. 3A generates postsynaptic currents
that are responsible for high-gamma signals during stimulation,
but the observed increase corresponds mainly to a transient
fast-adapting responses, which may not be an optimal setting to
clarify the mechanisms generating high-gamma activity. Ad-
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aptation at peripheral receptors transforms sensory stimulation
of constant amplitude, applied at the periphery, into nonsta-
tionary, rising and decaying thalamocortical input to cortical
cells (Kaas et al. 1984). This is why the experimental (Fig. 1,
A and B) and corresponding simulation (Fig. 1, C and D, and
Fig. 3) results are nonstationary. However, under some ex-
perimental conditions in which cortical network activation
is more sustained, e.g., during language tasks, it may be
possible to observe quasi-stationary high-gamma responses
(Korzeniewska et al. 2011). Analysis of stationary network
behavior is more useful in giving insight into the neuronal
mechanisms playing a role in generating LFP oscillations.
Therefore, we investigated stationary network behavior simu-
lated with constant thalamocortical input. The mechanisms
responsible for responses in beta, gamma and high-gamma
frequencies are explained in detail based on these steady-state
simulations.

Steady-State Simulations of Baseline Conditions

Conditions corresponding to the baseline period prior to
stimulus onset were simulated with background input, modeled
as a Poisson train of spikes with an average rate of 300
spikes/s, arriving to each and every PY cell. An example of the
simulated network’s behavior during 1 s is shown in Fig. 4.
The five graphs in the left panel correspond to the membrane
potential of a single PY cell (Fig. 44), the instantaneous firing
rate of the PY cell population (Fig. 4B), the membrane poten-
tial of a single I cell (Fig. 4C), the instantaneous firing rate of
the I cell population (Fig. 4D) and the raw LFP signal (Fig.
4E). Here and in the next figure, population firing rates were
calculated with a bin size of 2.5 ms. Five graphs in the right
panel illustrate the simulation results: Fig. 4F shows the
distribution of single neuron firing rates in the PY cell popu-
lation; Fig. 4G shows the power spectrum of the time series of
PY population firing rates (see Fig. 4B); Fig. 4H shows the
distribution of single-neuron firing rates in the I cell popula-
tion; Fig. 41 shows the power spectrum of the time series of |
population firing rates (see Fig. 4D); and Fig. 4J shows the
power spectrum of the LFP signal (see Fig. 4E). Both PY and
I single-cell firing rates are about 10 spikes/s (Fig. 4, F and H),
but the firing rates of both populations oscillate at a frequency
of ~25 Hz (Fig. 4, G and I). This is associated with an
oscillation in the LFP signals at ~25 Hz (Fig. 4J). It can be
seen that, despite firing of individual cells at irregular intervals
(Fig. 4, A and C), a coherent rthythm emerges in the network,
manifesting as oscillations in population firing rates (Fig. 4, B,
D, G, and I) and in the LFP signal (Fig. 4, E and J).

Steady-State Simulation of Cortical Activation

Steady-state cortical activation was simulated with both
background input and sensory input present and having con-
stant rates throughout the simulation. Such stationary condi-
tions may correspond to the quasi-stationary responses in the
late stimulus period shown in Fig. 1B (200-1,000 ms, plots G1
to G10). An example of the simulated network’s behavior
during stationary cortical activation for 1 s is shown in Fig. 5.
The background input rate was 300 spikes/s, as in Fig. 4, and
the input rate due to sensory stimulation was 3,000 spikes/s,
delivered to 50% of the PY and I cells, selected randomly. The
order of panels and graphs is the same as in Fig. 4. When
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Fig. 4. Behavior of the simulated network under baseline conditions. A:
membrane potential of a single PY cell. B: instantaneous firing rate of the PY
cell population. C: membrane potential of a single I cell. D: instantaneous
firing rate of the I cell population. E: LFP signal generated by the model. F:
distribution of single neuron firing rates in the PY cell population. G: power
spectrum of the time series of PY population firing rates (as shown in B). H:
distribution of single neuron firing rates in the I cell population. Note the
smaller range in the y-axis relative to that of the plot in F is due to the 4:1 ratio
of PY and I cells in the model. I: power spectrum of the time series of I
population firing rates (as shown in D). J: power spectrum of the simulated
LFP signal (as shown in E). Firing rates of both PY and I single cell are about
10 spikes/s, while the firing rates of both populations, as well as the associated
LFP signal, oscillate at ~25 Hz. In spite of the irregular firing of individual
cells at a low rate, a coherent rhythm emerges at a higher frequency in the
network, illustrated by peaks in the power spectra of population firing rates and
LFP signals. In B and D, bin size is 2.5 ms.

receiving sensory stimulation, individual PY cells fire at irreg-
ular intervals at an average rate of ~70 spikes/s (Fig. 5F),
while the firing of individual I cells is more regular, with many
firing at a rate of ~110 spikes/s (Fig. 5H). The firing rates of
both PY and I populations oscillate at a frequency of ~110 Hz
(Fig. 5, G and 1), close to the firing frequency of individual I
cells (Fig. 5H). The population rhythm is also reflected in LFP
oscillations, having the same dominant frequency of ~110 Hz
(Fig. 5J). Note that, in the histograms of firing rates in Fig. 5,
F and H, the PY cells with a firing rate of 0 (F) and the I cells
with firing rates of 50 Hz and less (H) are cells that do not
receive external sensory input (input was delivered to only
50% of the cells). I cells not receiving this input fire indepen-
dently of each other at 50 Hz and below, resulting in a very
small 40-Hz bump in the spectrum of the population firing rates
(Fig. 51). In contrast, the I cells receiving the external sensory
input fire in synchrony at the population rhythm of 110 Hz,
giving rise to a large peak in the spectrum. Because the LFP is
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Fig. 5. Behavior of the simulated network during steady-state sensory stimu-
lation at 3,000 spikes/s. A: membrane potential of a single PY cell. B:
instantaneous firing rate of the PY cell population. C: membrane potential of
a single I cell. D: instantaneous average firing rate of the I cell population. E:
LFP signal. F: distribution of single neuron firing rates in the PY cell
population. G: power spectrum of the time series of PY population firing rates
(as shown in B). H: distribution of single neuron firing rates in the I cell
population. I: power spectrum of the time series of I population firing rates (as
shown in D). J: power spectrum of the simulated LFP signal (as shown in E).
During high-gamma oscillations, PY cells fire at irregular intervals at a rate
~70 spikes/s, while the firing of individual I cells is more regular at a rate of
~110 spikes/s. The firing rates of both PY and I populations oscillate at ~110
Hz, close to the frequency of single I cells. This may reflect synchronization of
the firing of individual I and PY cells by the population rhythm. The population
rhythm is also reflected in LFP oscillations, having the same dominant
frequency of ~110 Hz. In B and D, bin size is 2.5 ms.

modeled as the sum of all inhibitory PSPs and excitatory PSPs
in PY cells, both I cell populations (with 40- to 50-Hz and
110-Hz firing rates) give rise to the LFP, but the synchronized
population dominates (Fig. 5J).

Simulation of Baseline and Cortical Activation Conditions
for a Range of Input Values

To better understand the mechanisms of the responses ob-
served under baseline conditions and during cortical activation,
we simulated network activity under steady-state conditions for
a range of input values. Furthermore, we performed these
simulations in the intact network and in modified networks
where connections between the cells were selectively removed.
In this way, we evaluated the influences of different types of
connections on network behavior. The results are summarized
in Fig. 6.

Baseline conditions. To evaluate how network activity de-
pends on the background input under baseline conditions, we

simulated the LFP generated as background input rates were
systematically increased from 100 spikes/s to 500 spikes/s and
then, in steps (23 total) of 500 spikes/s, up to 12,000 spikes/s.
For each value of the input rate, we simulated 1 s of activity.
For each 1-s epoch, we performed a time-frequency decompo-
sition and computed the power spectrum of the modeled LFP
signal. The dominant frequency of the LFP signal for different
input values in the intact network is shown in Fig. 6A (light
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Fig. 6. Analysis of steady-state baseline vs. activated conditions. A: the
dominant frequency of the LFP signal under baseline conditions is plotted to
show its dependence on background input levels and on different connection
types between cells. As the background input level is increased from 100
spikes/s to 500 spikes/s and then in steps (23 total) of 500 spikes/s up to 12,000
spikes/s in a stepwise manner (every 1,000 ms), the dominant frequency of
network activity gradually increases from ~12 Hz to ~100 Hz. Removing
PY — I or I — PY connections abolishes these oscillations, indicating that the
simulated rhythmic LFP activity is mediated by negative feedback loops
between excitatory and inhibitory neurons. B: time-frequency plot of LFP
signal energy generated under baseline conditions as background input values
are systematically increased in a stepwise manner. For each input value, 250
ms of the time-frequency map are shown. For a large range of background
input values, narrow-band oscillations with higher harmonics are present. Note
that the 12-Hz peak generated with a background input of 100 spikes/s was
smaller (fewer cells firing) and poorly seen in this plot at the scale used for the
rest of the background input levels. C: under activated conditions, the domi-
nant frequency of the LFP signal is shown for different sensory input values in
the intact network (light blue line) and with connections between cells
selectively removed. For the range of sensory input values, the intact network
exhibits relatively broadband oscillations at frequencies increasing from ~60
to ~200 Hz. Removing I — PY connections abolishes these oscillations,
suggesting that they are generated by the I cell population. D: time-frequency
plot of LFP signals for different sensory input values, varied in a stepwise
manner as in B. For each input value, 250 ms of the time-frequency map is
shown. For a broad range of sensory input values, high-gamma responses are
generated. Color bar showing logarithmic energy scale, in wV?, for plots B and
D, is shown on the right.
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blue line). The time-frequency map of the LFP signal for
different input values is shown in Fig. 6B. For each input value,
we used 250 ms of the time-frequency map to avoid border
effects in the decomposition. As can be seen from Fig. 6B, the
activity is relatively narrow band and exhibits higher harmon-
ics. The dominant frequency of the network activity gradually
increases, covering the frequency ranges typically associated
with beta and gamma bands. At the highest (nonphysiological)
input rates, this extends into the high-gamma range. We used
the term beta/gamma oscillations to refer jointly to these
rhythmic activities under baseline conditions.

We investigated how selectively removing different types of
connections between cells affected network behavior under
baseline conditions (Fig. 6A). Removing the PY-PY (green
line) or I-I (magenta line) connections had little influence on
the LFP frequency, while removing the PY — I (red line) or
I — PY (blue line) connections abolished the beta/gamma
oscillations and replaced them with lower frequency rhythms at
around 15 Hz. This suggests that beta/gamma oscillations
under baseline conditions in the model are primarily mediated
by synaptic interactions between PY and I cells and are only
weakly dependent on interactions within I and PY populations.
The network frequency depends on both single-cell (integra-
tion of synaptic inputs, intrinsic ionic currents) and network
properties (synaptic delays in disynaptic I-PY-I and multisyn-
aptic, e.g., I-PY-PY-I, loops). Detailed analysis of the contri-
bution of cellular and synaptic parameters to beta/gamma
oscillations, however, was beyond the scope of this paper.
Nevertheless, Fig. 6, A and B, shows that, for a broad range of
input rates under baseline conditions, network oscillations have
a narrow bandwidth and occur mainly below 100 Hz. Note that,
although 12,000 spikes/s was used in this parameter sensitivity
analysis, such high rates would not typically be encountered in
the resting brain. Hence, these oscillations would rarely occur
above 60 Hz. The narrow bandwidth and frequency range of
these oscillations are not typical of the high-gamma responses
that have been observed experimentally.

The weak low-frequency activity (<30 Hz) visible in Fig.
6B for increasing background input rates is a phenomenon
dependent on PY cell properties and can be observed in a
purely excitatory PY network. Under external input, individual
PY cells cannot maintain a high discharge rate due to firing
adaptation mediated by the hyperpolarizing I ,, current.
Additionally, the PY-PY coupling leads to synchronous firing
in the PY cells, which is followed by cessation of firing.
Periods of fast spiking in PY cells and periods of silence occur
at more or less regular intervals, which are determined by the
recovery time from after-hyperpolarization. This activity is
visible after disconnecting PY cells from I cells. As can be seen
in Fig. 6A (red and blue line), the frequency of activity in the
purely excitatory network, for low background input rates, is
around 15 Hz. For higher rates, the PY network is dominated
by input noise and does not exhibit a dominant frequency.

Cortical activation. Analysis of network activity in the
high-gamma range during sensory stimulation is shown in Fig.
6, C and D. The network activity (LFP) was simulated with the
background input rate of 300 spikes/s and sensory stimulation
input rates varying between 0 and 12,000 spikes/s in steps of
500 spikes/s (25 steps in total). For each value of the sensory
input rate, we simulated 1 s of activity and computed the
time-frequency spectra of the LFP signal (showing only the

middle 250 ms to avoid border effects), as we had done for
baseline conditions. In the intact network, the dominant fre-
quency of the LFP signal for different sensory input values is
shown in Fig. 6C (light blue line), while the corresponding
time-frequency map of the LFP signal is shown in Fig. 6D.
Over the range of sensory input values, the network exhibits
activity at frequencies increasing from ~60 to ~200 Hz. The
energy of this activity is less concentrated in the time-fre-
quency spectrum, i.e., it is more broadband than the beta/
gamma oscillations observed under baseline conditions, and its
spectral characteristics are more consistent with experimentally
observed high-gamma responses. Additionally, for increasing
levels of sensory stimulation, there is a visible increase of
power at lower frequencies, i.e., <30 Hz (Fig. 6D), which
reflects the tendency of the purely excitatory network to fire at
low frequencies, as described for the baseline conditions.

We also investigated how selectively removing different
types of connections between cells affected network behavior
during sensory stimulation (Fig. 6C). Blocking the PY-PY
(green line), and PY — I (red line) connections had little
influence on the peak frequency of LFP activity, while block-
ing the I — PY (blue line) connections abolished the activity in
the high-gamma range. Note that the modeled LFP signals
were measured from postsynaptic currents in PY cells only.
Hence, the disappearance of rhythmic activity in the LFP when
inputs to PY from I cells are removed, but not when other types
of connections are removed, indicates that the modeled high-
gamma activity critically depends on, and may be paced by, the
I cells. The oscillation frequencies of single isolated I cells
receiving excitatory Poisson input are also shown in Fig. 6C
(black line). This shows that the firing frequencies of single I
cells are comparable to, albeit slightly lower than, oscillations
in the complete network. Single I cell oscillation frequencies
closely follow the frequencies of network oscillations when
PY — I connections are removed, i.e., when I cells do not receive
recurrent excitatory input. These results suggest that the fre-
quencies of high-gamma oscillations are mainly determined by
the oscillation frequencies of I cells. However, the high-gamma
EEG response is a network phenomenon because the activities
of PY and I cells must be synchronized to generate measurable
power at high-gamma frequencies in the LFP signal (visible in
Fig. 6D). Due to the high divergence of connections from I to
PY cells (Fig. 2D), a single I cell imposes inhibition on many
PY cells. I-to-PY divergence and PY-PY (Fig. 2C) coupling
allow synchronization between the temporal firing patterns of
PY cells, which tend to fire together after being released from
rhythmic inhibition at time windows determined by the I cell
population rhythm. Synchronized recurrent excitation from PY
to I cells, in turn, has a synchronizing effect on the I popula-
tion. Mutually inhibitory connections between I cells do not
appear to play a critical role in the high-gamma-generating
mechanisms because high-gamma signals may still be gener-
ated without I-I connections present. After elimination of
mutual inhibition (Fig. 6C, magenta line), the dominant LFP
frequency is lower for lower input rates, and unchanged at
higher input rates. This may reflect the influence of two
different subpopulations of I cells. The first subpopulation
(50% of all I cells) receives external sensory stimulation and
oscillates at high-gamma frequencies as in the intact network.
The second subpopulation does not receive external stimula-
tion and oscillates at a lower frequency, as in Fig. SH. This
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subpopulation appears to dominate network activity in the low
(<8,000 spikes/s) range of sensory input rates. Only when
sensory input is sufficiently strong does the higher frequency
cluster dominate the network activity. The effects of these sub-
populations of T cells may also be visible in the time-frequency
plot (Fig. 6D) of intact network LFPs as a weak “branch” having
lower power and situated below the stronger high-gamma
“branch”. In the full network, the I-I connections may help to
synchronize the majority of I cells such that the lower frequency
cluster does not dominate the network’s activity.

DISCUSSION
Mechanisms of High-Gamma Oscillations

The goal of this study was to use computational modeling to
investigate the physiological mechanisms responsible for the
high-gamma (60-200 Hz) power augmentation observed in
LFPs recorded from somatosensory cortex in monkeys during
finger vibrotactile stimulation (Ray et al. 2008a, 2008b). Based
on the behavior of our computational model, we propose a new
hypothesis: that oscillations in the high-gamma band observed
during cortical activation are a network phenomenon in which
high-gamma frequencies are primarily determined by the in-
trinsic firing properties of networks of fast-spiking cortical
interneurons imposing rhythmic inhibition on PY cells. In
different studies, oscillations in the high-gamma range have
been reported, and the mechanism of their generation has been
proposed. We discuss them below.

Miller et al. (2007, 2009) suggested that the power spectral
density of brain potentials at high frequencies (80-500 Hz) can
be described by a power law behavior which originates from
input firing to neuronal populations, without a preferred time-
scale. Accordingly, brain activation involving an increase in
neuronal firing would contribute to a global upward shift in the
power spectrum at all frequencies. Our model suggests that
power increases at high-gamma frequencies are not densely
concentrated in the spectrum but are, nevertheless, band-lim-
ited. The time-frequency plots of power changes shown in Ray
et al. (2008a, Fig. 1B) do not give a definitive answer to
whether high-gamma power increases are band-limited be-
cause the results are shown only up to 175 Hz. In spite of this
limitation, however, the power changes do not appear to be
uniform, but rather to be centered around a frequency of ~100
Hz (see Fig. 1B, plots G2 to G10), similar to the experimental
results that have been obtained in other functional brain do-
mains (Korzeniewska et al. 2011, Fig. 10; Ray and Maunsell
2011, Figs. 1-3). A uniform upward shift of the power spectra,
as proposed by Miller et al. (2009), cannot fully account for
these experimental results. On the other hand, the two mech-
anisms are not mutually exclusive and could both contribute to
the contour of experimentally observed spectral changes.

In the studies of Ray et al. (2008b) and Ray and Maunsell
(2011), a hypothesis was put forward that high-gamma activity
is related to spiking activity. This idea was based on the
observations that high-gamma power in LFP signals was
strongly correlated with the firing rate. Similar observations
have been made by Manning et al. (2009). In the study of Ray
et al. (2008b), a model of high-gamma activity was proposed in
which ECoG potentials were modeled as a weighted sum of
extracellular action potential waveforms (estimated by the

spike-triggered average). The study showed that increases in
the firing rate and in the synchrony between spikes could
indeed lead to increased power in the high-gamma range.
While the hypothesis that extracellular spike potentials con-
tribute to high-gamma activity in LFP signals seems reason-
able, there are some experimental observations that it cannot
easily explain. /) High-gamma activity has also been observed
in EEG and MEG signals. Because extracellular synaptic
potentials fall off much more slowly with distance than extra-
cellular action potentials, spikes give negligible contribution to
EEG and MEG signals (Nunez 1981). Therefore, it is likely
that synaptic activity is also involved in the generation of
high-gamma activity. 2) LFP energy spectra can have a high-
gamma peak, which is shifted to the right as the firing rate is
increased (Ray and Maunsell 2011, Figs. 1, F and I, 2A, and
3B). If the high-gamma activity in LFP signals originated
solely from the summation of individual spike waveforms, a
higher firing rate would increase the intensity of the high-
gamma signals but not their frequency, because the spectral
properties of individual spike waveforms are most likely in-
variant with respect to increases in firing rate. 3) Significant
high-gamma activity power was observed even when firing
rates were unchanged or reduced after stimulus onset (Ray et
al. 2008a, Fig. 1) or were negligible (Ray and Maunsell 2011,
Fig. 3). This could be explained by assuming that, in these
cases, the high-gamma power came from spikes other than
those recorded by the microelectrode. Nevertheless, in these
examples, the correlation between the firing rate and gamma
power does not hold. It shows that, due to experimental
limitations (a microelectrode picks up potentials from a larger
number of cells than those which give rise to spikes resolved
from the background), conclusions based on correlations be-
tween these two variables cannot be taken with absolute
confidence. Furthermore, Trevelyan (2009) observed strong
correlations between synchronized inhibitory synaptic currents
in PY cells and high-frequency activity (80-500 Hz) recorded
by LFP electrodes in slices, supporting the physiological cor-
relates of high-gamma activity suggested by the present model.

Our hypothesis regarding the neurophysiological mecha-
nisms generating high-gamma oscillations appears to be simi-
lar to that of the mechanisms generating “ripples”, i.e., tran-
sient 80- to 200-Hz oscillations observed in the hippocampus
in rats (Buzsdki et al. 1983, 1992; Csicsvari et al. 2000) and
humans (Bragin et al. 1999). It was shown (Buzséki et al. 1992;
Ylinen et al. 1995) that, during ripple events, synchronously
discharging CA3 PY cells activated both PY cells and interneu-
rons in the CA1 area. During activation, PY cells discharged at
a rate lower than the frequency of the population oscillation,
but were phase locked to the population rhythm, while in-
terneurons discharged at the population frequency. Based on
these findings, it was proposed that rhythmic and coherent
firing of interneurons was responsible for the timing of action
potentials of CA1 PY cells during ripple events. Based on a
timing analysis of presynaptic spikes in CAl and CA3 areas
and postsynaptic spikes in CA1 interneurons, it was suggested
that the intrinsic properties of interneurons, rather than rhyth-
mic excitatory drive, was the primary determinant of the
frequency of the high-frequency population oscillation. The
hypothesis that high-gamma oscillations are sensory-induced
neocortical ripples, similar in physiological origin to the rip-
ples of the hippocampus, was suggested by Edwards et al.
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(2005). However, it should be noted that hippocampal ripples
are not sensory-evoked as they occur mainly during slow-wave
sleep and quiet wakefulness (Buzsaki et al. 1992).

It is not yet clear whether gap junctions are necessary for the
generation of cortical high-gamma activity, although their role
in oscillations at gamma (30-70 Hz) and higher (>70 Hz)
frequencies has been suggested (Traub et al. 2004). The current
model suggests that synaptic interactions might be sufficient
for the generation of cortical high-gamma activity, but it does
not rule out a contribution from gap junctions either. It has
been shown that gap junctions are specifically formed between
neocortical interneurons (Galarreta and Hestrin 2001) and that
electrical coupling among individual I cells promotes coherent
spiking in response to uncorrelated Poisson excitation (Galar-
reta and Hestrin 1999). Therefore, gap junctional communica-
tion could provide an efficient way for synchronization among
interneurons, which could in turn send synchronous input to
PY cells and produce strong high-gamma responses.

Comparison with Other Models

Fast network oscillations in the 40- to 300-Hz range were
investigated using a computational model of leaky integrate-
and-fire neurons (Brunel and Wang 2003), and using subse-
quent developments of that model (Geisler et al. 2005; Maz-
zoni et al. 2008). In these models, activity at frequencies ~200
Hz were observed in purely inhibitory networks with random
Poisson input. When connections with PY cells were included,
the network oscillation slowed down from 200 to ~110 Hz.
Despite a similar range of frequencies simulated in that model
and in our study, the mechanisms seem to be distinct. In the
models of Brunel and collaborators (2003), the oscillation was
a network phenomenon depending on synaptic connections
between I cells. During 110-Hz oscillations, both PY cells and
interneurons generated irregular spikes at low mean rates (PY
cells: <20 spikes/s, interneurons: ~25 spikes/s). In our model,
high-gamma oscillations were also network phenomena, but
the mutually inhibitory connections were not essential for their
generation. Additionally, firing rates during high-gamma os-
cillations in our model were much higher (PY cells ~70
spikes/s, interneurons ~100 spikes/s), which is closer to what
has been observed in comparable experimental data (Ray et al.
2008a, Fig. 1A).

The Broad-Band Nature of High-Gamma Oscillations

There might be a number of reasons for the unusual
broad-band spectral contours of experimentally observed
high-gamma responses. High-gamma responses observed in
frequency (Fourier transform) or time-frequency (Gabor trans-
form) representations are usually short-lasting, which implies a
large spread in their frequencies according to the Heisenberg
uncertainty principle. Besides, signal power at high-gamma
frequencies is usually relatively low, which often requires
averaging across many trials to achieve a reliable estimate of
its power spectrum. Intertrial variability, both in the timing and
frequency of activation-related energy changes, is likely to
contribute to broad-band responses. Using model simulations,
it is possible to reduce intertrial variability and the transient
behavior of high-gamma responses, and to investigate the
bandwidth of high-gamma signals that are inherent to the
mechanism of their generation. Under stationary conditions

(i.e., constant mean rate of the Poisson input) and without
intertrial variability, there is still a spread of frequencies in the
output signal. This is likely due to the Poisson input, which is
essentially a random process with a certain mean rate of spike
occurrence. Fluctuating spike inputs to PY and I cells produce
fluctuating spike outputs in these cells. In PY cells with firing
adaptation, firing is quite irregular, giving rise to quite a broad
frequency response. However, I cells, which do not exhibit
spike frequency adaptation, are able to sustain repetitive, quasi-
periodic firing when submitted to Poisson input of a sufficient
rate. Thus the membrane properties of single I cells are respon-
sible for their narrow frequency response. Additionally, synaptic
connections between cells play a synchronizing role, further
narrowing frequencies generated by the network. Finally, the
frequency range observed in LFP signals is determined by a
complex interplay between input fluctuations, individual PY and
I cell characteristics, and the network architecture.

Model Predictions

The neuronal mechanisms that might lead to oscillations at
high-gamma frequencies are not unique. Therefore, it is im-
portant that the model generates testable hypotheses. Only
when model predictions are confirmed can one be confident
that the mechanisms suggested by the model are likely to play
a role in a real system. Our model generates a number of
predictions, which should be testable.

Our model predicts that, during high-gamma oscillations, the
excited cortical I interneurons of fast-spiking type should
exhibit approximately regular discharges near the frequency of
the population rhythm, similarly to what has been observed in
vivo in hippocampal interneurons during ripple oscillations
(Buzsdki et al. 1992; Ylinen et al. 1995). Regarding cortical
interneurons, it has been shown in vitro (McCormick et al.
1985) and in vivo (Swadlow et al. 1998) that these cells are
capable of generating nonadapting, high-frequency responses
(~300 Hz) to depolarizing current pulses (1-3 nA). These
frequencies are higher than those reported for high-gamma
oscillations and higher than the firing rates of interneurons in
our model. However, responses to current injection are not
equivalent to responses to fluctuating conductance inputs in
vivo. Tateno and Robinson (2006) used in vitro conductance
injection and investigated the behavior of regular-spiking neu-
rons and fast-spiking I interneurons from layer 2/3 of somato-
sensory cortex during Poisson conductance input. For the 1- to
6-kHz range of Poisson input rates, the relationship between
the firing frequency and the excitatory Poisson rate was loga-
rithmic. The firing frequencies of I interneurons increased from
0 to 40 spikes/s, i.e., less than the reported firing rates during
constant-current injection. Furthermore, the coefficient of vari-
ation, which is a measure of the local variation of interspike
intervals, was lower for fast-spiking than for regular-spiking
neurons, suggesting more regular periodic discharges in I cells.

The other prediction is that, under stationary conditions,
higher firing rates of interneurons and PY cells should lead to
high-gamma activity at higher frequencies (Fig. 6, C and D).
This feature is already visible in Figs. 2A and 3B of Ray and
Maunsell (2011). In the stationary phase (200—400 ms), the
peak frequency of high-gamma oscillations exhibits a “shift to
the right” for increasing values of the average firing rate. This
phenomenon is also present on the time-frequency maps in Fig.
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1B. It may be noticed that, in the quasi-stationary, late post-
stimulus period (250-1,000 ms after stimulus onset), the fre-
quencies in the high-gamma range increase for increasing
stimulation strengths from G2 to G10. However, it is less
evident due to a time-frequency representation in which peak
frequency locations are less discernible.

Functional Role

Our simulations suggest that, during high-gamma oscilla-
tions, neuronal interactions organize the firing of PY cells into
precise temporal windows. PY cell populations with synchro-
nized discharges are likely to exert more powerful influences
on their targets than populations in which firing rates increase
but cells fire incoherently. According to this view, stronger
input signals would create higher firing frequencies and higher
synchrony in the high-gamma range and a stronger effect on
the next stage of cortical processing. Indeed, a strong correla-
tion between stimulus intensity and high-gamma power has
also been observed experimentally (Supplementary Fig. 3 in
Ray et al. 2008b), which is in agreement with the present
hypothesis.

ACKNOWLEDGMENTS

The authors thank Supratim Ray and Steven S. Hsiao for sharing the
experimental data used in this study, Pawel Kudela and William S. Anderson
for co-development of the simulation software, and Fernando Lopes da Silva
for careful reading of the manuscript.

GRANTS

This work was supported by National Institute of Neurological Disorders
and Stroke Grant NS-40596. P. Suffczynski was partly sponsored by a
fellowship from the Kosciuszko Foundation.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

Author contributions: P.S. performed experiments; P.S. analyzed data; P.S.,
N.E.C.,, and P.J.F. interpreted results of experiments; P.S. prepared figures;
P.S. drafted manuscript; P.S., N.E.C., and P.J.F. edited and revised manuscript;
P.S.,N.E.C., and P.J.F. approved final version of manuscript; N.E.C. and P.J.F.
conception and design of research.

REFERENCES

Anderson WS, Kudela P, Cho J, Bergey GK, Franaszczuk PJ. Studies of
stimulus parameters for seizure disruption using neural network simulations.
Biol Cybern 97: 173-194, 2007.

Anderson WS, Kudela P, Weinberg S, Bergey GK, Franaszczuk PJ.
Phase-dependent stimulation effects on bursting activity in a neural network
cortical simulation. Epilepsy Res 84: 42-55, 2009.

Avitan L, Teicher M, Abeles M. EEG generator—a model of potentials in a
volume conductor. J Neurophysiol 102: 3046-3059, 2009.

Av-Ron E. The role of a transient potassium current in a bursting neuron
model. J Math Biol 33: 71-97, 1994.

Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logo-
thetis NK, Panzeri S. Low-frequency local field potentials and spikes in
primary visual cortex convey independent visual information. J Neurosci 28:
5696-5709, 2008.

Binzegger T, Douglas RJ, Martin KAC. A quantitative map of the circuit of
cat primary visual cortex. J Neurosci 24: 8441-8453, 2004.

Bragin A, Engel J Jr, Wilson CL, Fried I, Buzsaki G. High-frequency
oscillations in human brain. Hippocampus 9: 137-142, 1999.

Brunel N, Wang XJ. What determines the frequency of fast network oscil-
lations with irregular neural discharges? I. Synaptic dynamics and excita-
tion-inhibition balance. J Neurophysiol 90: 415-430, 2003.

Buzsaki G, Leung LW, Vanderwolf CH. Cellular bases of hippocampal EEG
in the behaving rat. Brain Res 287: 139-171, 1983.

Buzsaki G, Horviath Z, Urioste R, Hetke J, Wise K. High-frequency network
oscillation in the hippocampus. Science 256: 1025-1027, 1992.

Crone NE, Korzeniewska A, Franaszczuk PJ. Cortical vy responses: search-
ing high and low. Int J Psychophysiol 79: 9-15, 2011.

Csicsvari J, Hirase H, Mamiya A, Buzsaki G. Ensemble patterns of hip-
pocampal CA3-CAl neurons during sharp wave-associated population
events. Neuron 28: 585-594, 2000.

Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB. High
gamma mapping using EEG. Neuroimage 49: 930-938, 2010.

Destexhe A, Contreras D, Steriade M. Mechanisms underlying the synchro-
nizing action of corticothalamic feedback through inhibition of thalamic
relay cells. J Neurophysiol 79: 999-1016, 1998.

Eccles JC. The Physiology of Synapses. Berlin: Springer Verlag, 1964.

Edwards E, Soltani M, Deouell LY, Berger MS, Knight RT. High gamma
activity in response to deviant auditory stimuli recorded directly from
human cortex. J Neurophysiol 94: 4269-4280, 2005.

Fanselow EE, Richardson KA, Connors BW. Selective, state-dependent
activation of somatostatin-expressing inhibitory interneurons in mouse neo-
cortex. J Neurophysiol 100: 2640-2652, 2008.

Franaszczuk PJ, Kudela P, Bergey GK. External excitatory stimuli can
terminate bursting in neural network models. Epilepsy Res 53: 65—-80, 2003.

Galarreta M, Hestrin S. A network of fast-spiking cells in the neocortex
connected by electrical synapses. Nature 402: 72-75, 1999.

Galarreta M, Hestrin S. Electrical synapses between GABA-releasing in-
terneurons. Nat Rev Neurosci 2: 425-433, 2001.

Geisler C, Brunel N, Wang XJ. Contributions of intrinsic membrane dynam-
ics to fast network oscillations with irregular neuronal discharges. J Neu-
rophysiol 94: 4344-4361, 2005.

Grenier F, Timofeev I, Steriade M. Focal synchronization of ripples (80-200
Hz) in neocortex and their neuronal correlates. J Neurophysiol 86: 1884 —
1898, 2001.

Kaas JH, Nelson RJ, Sur M, Dykes RW, Merzenich MM. The somatotopic
organization of the ventroposterior thalamus of the squirrel monkey, Saimiri
sciureus. J Comp Neurol 226: 111-140, 1984.

Kaiser J, Lutzenberger W. Human gamma-band activity: a window to
cognitive processing. Neuroreport 16: 207-211, 2005.

Kang Y, Kaneko T, Ohishi H, Endo K, Araki T. Spatiotemporally differ-
ential inhibition of pyramidal cells in the cat motor cortex. J Neurophysiol
71: 280-293, 1994.

Korzeniewska A, Franaszczuk PJ, Crainiceanu CM, Kue R, Crone NE.
Dynamics of large-scale cortical interactions at high gamma frequencies
during word production. Event related causality (ERC) analysis of human
electrocorticography (ECoG). Neuroimage 56: 22182237, 2011.

Kudela P, Franaszczuk PJ, Bergey GK. A simple computer model of
excitable synaptically connected neurons. Biol Cybern 77: 71-77, 1997.
Kudela P, Franaszczuk PJ, Bergey GK. Changing excitation and inhibition
in simulated neural networks: effects on induced bursting behavior. Biol

Cybern 88: 276285, 2003.

Lachaux JP, Axmacher N, Mormann F, Halgren E, Crone NE. High-
frequency neural activity and human cognition: past, present and possible
future of intracranial EEG research. Prog Neurobiol 98: 279-301, 2012.

Liu J, Newsome WT. Local field potential in cortical area MT: stimulus
tuning and behavioral correlations. J Neurosci 26: 77797790, 2006.

Logothetis NK. The underpinnings of the BOLD functional magnetic reso-
nance imaging signal. J Neurosci 23: 3963-3971, 2003.

Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE
Trans Signal Process 41: 3397-3415, 1993.

Manning JR, Jacobs J, Fried I, Kahana MJ. Broadband shifts in local field
potential power spectra are correlated with single-neuron spiking in humans.
J Neurosci 29: 13613-13620, 2009.

Mazzoni A, Panzeri S, Logothetis NK, Brunel N. Encoding of naturalistic
stimuli by local field potential spectra in networks of excitatory and
inhibitory neurons. PLoS Comput Biol 4: ¢1000239, 2008.

McCormick DA, Connors BW, Lightall JW, Prince DA. Comparative
electrophysiology of pyramidal and sparsely spiny stellate neurons of the
neocortex. J Neurophysiol 54: 782—-806, 1985.

McCormick DA, Feeser HR. Functional implications of burst firing and
single spike activity in lateral geniculate relay neurons. Neuroscience 39:
103-113, 1990.

J Neurophysiol » doi:10.1152/jn.00844.2013 - www.jn.org

$TOZ ‘TT Jaquasag uo wolj papeojumod




CORTICAL INTERNEURONS ORGANIZE HIGH-GAMMA OSCILLATIONS 3011

Miller KJ, Leuthardt EC, Schalk G, Rao RP, Anderson NR, Moran DW,
Miller JW, Ojemann JG. Spectral changes in cortical surface potentials
during motor movement. J Neurosci 27: 2424-2432, 2007.

Miller KJ, Sorensen LB, Ojemann JG, den Nijs M. Power-law scaling in the
brain surface electric potential. PLoS Comput Biol 5: 1000609, 2009.

Mitzdorf U. Current source density method and application in at cerebral
cortex: investigation of evoked potentials and EEG phenomena. Physiol Rev
65: 37-100, 1985.

Nunez PL. Electric Fields of the Brain: the Neurophysics of EEG. Oxford,
UK: Oxford UP, 1981.

Oren I, Hajos N, Paulsen O. Identification of the current generator underlying
cholinergically induced gamma frequency field potential oscillations in the
hippocampal CA3 region. J Physiol 588: 785-797, 2010.

Pei YC, Denchev PV, Hsiao SS, Craig JC, Bensmaia SJ. Convergence of
submodality-specific input onto neurons in primary somatosensory cortex. J
Neurophysiol 102: 1843-1853, 2009.

Pesaran B. Uncovering the mysterious origins of local field potentials. Neuron
61: 1-2, 20009.

Ray S, Hsiao SS, Crone NE, Franaszczuk PJ, Niebur E. Effect of stimulus
intensity on the spike-local field potential relationship in the secondary
somatosensory cortex. J Neurosci 28: 7334-7343, 2008a.

Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS. Neural correlates
of high-gamma oscillations (60-200 Hz) in macaque local field potentials
and their potential implications in electrocorticography. J Neurosci 28:
115261136, 2008b.

Ray S, Maunsell JH. Different origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PLoS Biol 9: ¢1000610, 2011.

Schaul N. The fundamental neural mechanisms of electroencephalography.
Electroencephalogr Clin Neurophysiol 106: 101-107, 1998.

Schomburg EW, Anastassiou CA, Buzsaki G, Koch C. The spiking com-
ponent of oscillatory extracellular potentials in the rat hippocampus. J
Neurosci 32: 11798-11811, 2012.

Sherman SM. Tonic and burst firing: dual modes of thalamocortical relay.
Trends Neurosci 24: 122—-126, 2001.

Swadlow HA. Efferent neurons and suspected interneurons in motor cortex of
the awake rabbit: axonal properties, sensory receptive fields, and subthresh-
old synaptic inputs. J Neurophysiol 71: 437-453, 1994.

Swadlow HA, Beloozerova I, Sirota M. Sharp, local synchrony among
putative feed-forward inhibitory interneurons of rabbit somatosensory cor-
tex. J Neurophysiol 79: 567-582, 1998.

Tateno T, Robinson PH. Rate coding and spike-time variability in cortical
neurons with two types of threshold dynamics. J Neurophysiol 95: 2650—
2663, 2006.

Traub RD, Bibbig A, LeBeau FE, Buhl EH, Whittington MA. Cellular
mechanisms of neuronal population oscillations in the hippocampus in vitro.
Annu Rev Neurosci 27: 247-278, 2004.

Trevelyan AJ. The direct relationship between inhibitory currents and local
field potentials. J Neurosci 29: 15299-15307, 2009.

Williams SR. Encoding and decoding of dendritic excitation during active
states in pyramidal neurons. J Neurosci 25: 5894-5902, 2005.

Williams SR, Stuart GJ. Voltage- and site-dependent control of the somatic
impact of dendritic IPSPs. J Neurosci 23: 7358-7367, 2003.

Vierling-Claassen D, Cardin JA, Moore CI, Jones SR. Computational
modeling of distinct neocortical oscillations driven by cell-type selective
optogenetic drive: separable resonant circuits controlled by low-threshold
spiking and fast-spiking interneurons. Front Hum Neurosci 4: 198, 2010.

Ylinen A, Bragin A, Nadasdy Z, Jandé G, Szabé I, Sik A, Buzséki G. Sharp
wave-associated high-frequency oscillation (200 Hz) in the intact hippocam-
pus: network and intracellular mechanisms. J Neurosci 15: 30—-46, 1995.

J Neurophysiol » doi:10.1152/jn.00844.2013 - www.jn.org

$TOZ ‘TT Jaquasag uo wolj papeojumod




