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Asymptotic behavior of β ensembles.

K. K. Kozlowski 1.

Abstract

In these lecture notes we present large-deviation based techniques that allow one to
prove the topological expansions inβ ensembles

1 A not so short introduction

1.1 Integrals

Integral representations play an important role in physicsand mathematics. On the very fundamental level they
can be seen as efficient tools allowing one to construct explicit solutions tonumerous problems be it differential
or finite difference equiations, enumeration and other combinatorial issues, or compact resummations of sums, so
as to name a few. For instance, the hypergeometric functions, which solve the differential equation

z(1− z) · d
2u

d2z
+

(
c− (a+ b+ 1)z

) · du
dz
− ab · u = 0 (1.1)

have been shown to admit various types of one-fold integral representations such as the Gauss one

u(z) =
Γ(c)

Γ(b)Γ(c− b)

1∫

0

tb−1(1− t)c−b−1(1− tz)−a · dt (1.2)

which is valid forℜ(c) > ℜ(b) > 0 and|arg(1− z)| < π or the Mellin-Barnes one

u(z) =
Γ(c)
Γ(b)Γ(a)

∫

iR

Γ(a+ s)Γ(b+ s)Γ(−s)
Γ(c+ s)

(−z)s · ds
2iπ

(1.3)

which is valid for|arg(−z)| < π, a, b < −N with a path of integration that separatess∈ N from {−a−N}∪ {−b−N}.
In itself, taking the example of the hypergeometric function, an integral representation, apart from providing

a closed well-defined representation cannot be considered as the final answer. Without tools for analysing it,
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ie extracting all the desired information on the object being represented, they would be merely another hardly
useful formal object. Still, the development of complex analysis gave birth to the saddle-point method and to
techniques of analysis based on contour deformations. It isthese techniques that turned one-dimensional integral
representations into extremely powerful tools. In the caseof the hypergeometric function, they allow one for an
easy access to

• determining the regions of analyticity in its parametersa, b, c and in its principal variablez;

• determining the smallzexpansions;

• determining the value of the hypergeometric function at special points (eg for z= 1 (1.2) simply reduces to
the Euler integral, whereas computing the explicit value ofthe associated series demands a much tougher
analysis);

• extracting asymptotic behaviours inz→ ∞ or in the auxiliary parametersa, b, c.

It is to be expected that when a problem becomes too complex, then obtaining some closed expression for its
solution might demand to recourse to higher dimensional integrals. Although, in principle, this might seem fine
and acceptable, this is not such an ideal situation in that onthe one hand the structure of domains of integration
may be extremely complicated as soon as one moves into higherdimensions then 1, and, on the other hand, there
is noper semethod of steepest descent for integrals over many variables. True, in some cases, one can save the
day by applying, repeatedly, the one dimensional steepest descent method.

This is however, by far, not a generic case. A typical examplewhere such a procedure would fail corresponds
to a multiple integral in which the number of integrationN is the large parameter. These integrals, and especially
their large-N behaviour, play important roles in physics. They can be thought of as baby models for finite lattice
approximations of path integrals. Furthermore, they arisenaturally in the study of models of classical statistical
physics and especially in the calculation of their partition functions. They are also intimately related with matrix
models, the latter having a large domain of applications: counting of various types of graphs that can be drawn
on a Riemann Surface, analysis of statistics of noise in signal processing, 0-dimensional quantum field theories,
statistics of eigenvalues of heavy nuclei... so as to name a few.

These integrals step so much out of the "well-understood" scheme for "classical" single or many-fold integrals
that, as I shall argue further in these notes, they deserve tobe call "semi-classical" integrals. Techniques for
their analysis are still not fully developed and solely certain specific cases or families could have been treated
so far. Nonetheless, these examples already led to the development of a new kind of mathematics. In particular,
there has been observed to exist an intimate connection between these and sequences of probability measures on
certain Polish spaces. The study of such sequences through so-called large deviation principles brought, on the
one hand, a certain impetus to the theory of probabilities and on the other numerous deep results on the objects
being represented by these multiple integrals.

The purpose of these lecture notes is to discuss particular examples of theses "semi-classical" integrals and
introduce techniques that allow one to extract informations on their largeN behaviour, withN being the number
of integrals.

We shall begin by introducing a few examples of such integrals and outlining the type of questions and prob-
lems one would like to resolve in such a context.

1.2 Classical statistical mechanics

Consider a system ofN classical particles on the line in an external confining potential Nβ−1V(λ) interacting
through a two-body interactionW(λ, µ). Then, the "spacial" part of the model’s partition function at temperature
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T = β−1 takes the form

ZN[V,W] =
∫

RN

N∏

a,b=1

e−
β

2 W(λa,λb)
N∏

a=1

e−NV(λa) · dNλ . (1.4)

The potentialV is supposed to be confining meaning that

V(λ) −→
λ→∞
+∞ , (1.5)

this sufficiently fast so as to ensure the convergence of the integral (1.4). The two-body interaction may or may
not present singularities. However, typically for realistic models they present a divergence on the diagonal,ie
W(λ, µ) → +∞ whenλ → µ. The latter merely translate a sort of impenetrability condition between the various
particles. As follows from numerous considerations of statistical mechanics, the partition function -or slight
modifications thereof- allow one to access to many observables associated with the system under investigation. In
fact, from the perspective of studying observables of the model, it is convenient to introduce a generating function
of observables

GN[h] =
∫

RN

N∏

a=1

e−h(λa) ·
N∏

a,b=1

e−
β
2 W(λa,λb)

N∏

a=1

e−NV(λa) · dNλ

ZN[V,W]
. (1.6)

For instance, the average position〈x〉N of a particle is obtained through

〈x〉N =
1
N

∂

∂α
GN[αh] |α=0 with h(λ) = λ . (1.7)

Clearly, for fixedN the multiple integral representation forZN[W,V], without even mentioning more involved
objects such asGN[h], can only be considered as a formal object. Indeed, unless the external potentialV and
the two-body interactionW are chosen both to take an utterly specific form, the integralcannot be computed in
a closed form. However, from the perspective of statisticalmechanics, one is usually interested in the behaviour
of these quantities in the case of a large numberN of interacting particles. In this respect, one can address the
following questions

• What is the large-N behaviour ofZN? In particular, does it admit a large-N asymptotic expansion

ln ZN = −N2 · F2
[
V,W

]
+ N · F1

[
V,W

]
+ · · · (1.8)

• Once can think of

dPW;V
N (λN) =

N∏

a,b=1

e−
β

2W(λa,λb)
N∏

a=1

e−NV(λa) · dNλ

ZN[V,W]
(1.9)

as a probability measure on the configuration space. ThenXN(λN) =

N∑
a=1

h(λa) is a sum of random

variables. Does it converge to some random variable? What isa typicall distribution in this case.

• A somehow related (but stronger) questions relates to the existence of the large-N limit directly for the
generating functionGN[h]?
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In these notes we are going to introduce an analogue of the saddle-point technique that allow one to treat two
cases of interest

• W is a boundedC 2(R2) function ;

• W(λ, µ) = −2 ln |λ − µ| .

The first case will be rather easy whereas the second will emphasize the difficulty of taking into account "singular"
interactions which so-often appear in physics. The second case corresponds to log-gases and is referred to asβ-
ensembles. In fact, this class of integrals atβ = 1/2, 1 and 2 is intimately related with various classical ensembles
of random matrices.

1.3 The classical random matrix ensembles

Random matrices have been first introduced by Wishart in the late 1920’s (1928) as a tool for studying statistics of
noise in the measurement of samples. Then, in 1958 Wigner proposed to use certain ensembles of random matrices
so as to model excitation spectra for heavy nuclei. In a nutshell, his ideas were the following. The very details of
the interactions in a heavy atomic nucleus are hardly accessible. Due to the large number of interacting particles
and the possible change of the precise and explicit form of the interactions due to fine tuning in the system, one
may, in fact, treat the model’s Hamiltonian as a random variable solely satisfying to overall explicit symmetries of
the model under investigation. Furthermore, the nature of the spectrum,ie typical statistical features should not be
altered whether one considers some random operator or a sufficiently large random matrix. Considerations about
the invariance of the system under time reversal gave rise tothree "classical" ensembles of random matrices:

• the unitary ensembleEN consisting ofN × N hermitian matricesM = M† with a probability distribution
that is invariant under unitary transformationsM 7→ UMU†, U†U = IN;

• the orthogonal ensembleSN consisting ofN×N symmetric matricesM = Mt with a probability distribution
that is invariant under orthogonal transformationsM 7→ OMOt, OtO = IN;

• the symplectic ensembleJN consisting of 2N × 2N hermitian self-dual matricesM = M† = JNMtJt
N with

JN = diag
(
σ, . . . , σ

)
, σ =

(
0 1
−1 0

)
(1.10)

with a probability distribution that is invariant under unitary-symplectic conjugation transformationsM 7→
UMU†, (whereUU† = IN, UJNU t

= JN);

The fact that one imposes the probability distribution to beinvariant under specific conjugation is a mere
restatement of the fact that a hermitian matrixM andU†MU will lead to an exactly identical description of the
quantum system. Hence, all equivalent realisation ought tobe treated on the same ground and thus be associated
with an equal probability. The reasoning, in the case of orthogonal and symplectic ensembles, is much similar.
The difference on the class of transformations leaving the probability measure invariant solely arises from the
requirement that the type of conjugate transformations ought to respect the overall symmetry of the class of
Hamiltonians (which is imposed by additional physical symmetries enjoyed on the system such a time invariance
of etc...).

For all of these three ensemble, the probability distribution function takes the form

dPN(M) =
1
NN

e−tr[Q(M)] · dM with NN =

∫

E

e−tr[Q(M)] · dM , (1.11)
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in which dM is the Lebesgue measure on the algebraically independent entries. Furthermore,Q is some polyno-
mial of even degree -so as to ensure the convergence of the integral-, hence making tr[Q(M)] well defined. In fact,
one could consider much more general confining potentialsQ subject to the sole condition of growing sufficiently
fast at infinity so as to ensure the convergence of the integral. In such a more general case, the quantity tr[Q(M)]
ought to be understood in the sense of matrix functional calculus.

Note that unless deg(Q) = 2 (Gaussian distribution), the algebraically independententries arenot independent
random variables; they are correlated.

In the following, we are going to provide a thorough analysisof the orthogonal ensemble. In particular, we
are going to establish its connection with the log-gas at temperatureβ = 1/2. The analysis that we shall present
can be repeated for the ensemblesEN andJN as well but bears some additional technical complications that we
shall not discuss in the present notes.

1.3.1 A case study : the orthogonal ensemble

An N × N symmetrix matrixM depends onN(N + 1)/2 free parameters:

• the N diagonal entriesMkk, k = 1, . . . ,N;

• theN(N − 1)/2 upper-off diagonal entries.

Hence, in this case, the probability distribution takes theform

dPN(M) =
1
NN

e−tr[Q(M)] ·
N∏

a=1

dMaa ·
N∏

a<b

dMab . (1.12)

The purpose of this section will be to establish the

Theorem 1.1 Let f ∈ L1(SN, dPN
)

be orthogonal invariant f(OMOt) = f (M). Then, f is a symmetric function
F of the eigenvaluesλ1, . . . , λN of M ∈ SN: f (M) = F(λ1, . . . , λN) and the ensemble average reduces to an
integration over the eigenvalues

∫

SN

f (M) · dPN(M) =
1

Z(1/2)
N [Q]

∫

RN

F(λ1, . . . , λN) ·
N∏

a<b

|λa − λb| ·
N∏

a=1

e−Q(λa) , (1.13)

in which

Z(1/2)
N [Q] =

∫

RN

N∏

a<b

|λa − λb| ·
N∏

a=1

e−Q(λa) · dNλ (1.14)

At this point, one can already thing of several directions toinvestigate.

• The most natural being: what are the typical freatures of thedistribution of the eigenvalues ofM ∈ SN? A
good insight on this issue can be obtained by investigation the large-N limit of the density of probability of
finding an eigenvalue atλ1:

p(1/2)
1;N (λ1) =

∫

RN−1

N∏

a<b

|λa − λb| ·
N∏

a=1

e−Q(λa) ·
N∏

a=2

dλa . (1.15)

Doesp(1/2)
1;N (λ) has a goodN → +∞ limit? In what sense such a limit exists? Is it possible to obtain an

explicit control on the speed of convergence towards this limit? An explicit expression for the corrections?
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• Do the eigenvalues have some "average" positionγ1 < · · · < γN, assuming that they are ordered increasingly
λ1 < . . . < λN? Are the fluctuations around these average positions strong?

• Are the eigenvalues correlated in the large-N limit? A good insight on this question can be given by studying
the large-N behavior of

p(1/2)
2;N (λ1, λ2) =

∫

RN−2

N∏

a<b

|λa − λb| ·
N∏

a=1

e−Q(λa) ·
N∏

a=3

dλa . (1.16)

• Provided a good scaling is chosen, are large gaps in the spectrum possible? What is their probability?

We shall start by checking that, indeed, the probability measure dPN is invariant under orthogonal transforma-
tions.

Lemma 1.1 The probability measure(1.12)defined on the space of symmetric matrices is invariant underorthog-
onal transformations M7→ OMOt.

Proof —
It is clear that tr[Q(M)] is invariant in respect to the orthognal conjugations. Hence, it remains solely to check

the invariance of the measure.
For a symmetric matrix, let

M =

(
M11, . . . ,MNN,M12, . . . ,MN−1N

)
(1.17)

denote itsN(N + 1)/2 vector column representation. It is clear that the transformationT : M 7→ OtMO defines a
linear operatorT onR

N(N+1)
2 M 7→ T M. Thus, the Jacobian of the transformationM 7→ OtMO is given by det[T].

Now, one has that

tr[M2] = tr
[
(T · M)2]

=

N∑

a=1

M2
aa + 2

N∑

j<k

M2
jk =

N∑

a=1

[TM]2
aa + 2

N∑

j<k

[TM]2
jk . (1.18)

Thus, setting

D = diag
(
1, . . . , 1︸  ︷︷  ︸

N

, 2, . . . , 2︸  ︷︷  ︸
N(N−1)

2

)
, (1.19)

we get that

(
M,DM

)
=

(
T M,DT M

)
with

(
·, ·

)
the canonical scalar product onR

N(N+1)
2 (1.20)

so thatT is orthogonal in respect to the scalar prodcut onR
N(N+1)

2 induced byD, ie TtDT = D. As a consequence,(
det[T]

)2
= 1.

Every symmetric matrixM can be diagonalized by some orthogonal similarity transformation:

M = O ·Λ(λN) ·Ot with Λ(λN) = diag
(
λ1, . . . , λN

)
and O ∈ O(N). (1.21)

It thus appears reasonable to trade the integration over thespace of symmetric matrices into one that would be
compatible with the parametrization of a symmetric matrix by a diagonal and an orthogonal one. The main issue

6



here is that such a parametrization is not unique. Indeed, let HN be the closed subgroup ofO(N) consisting of
diagonal matrices with entries+1 or −1. Then, for a fixedΛ(λN), the matricesO andO · H, H ∈ HN will lead
to the same matrix M. Furthermore, should two eigenvalues coincide, then an even greater choice of matricesO
(arbitrary block form associated with the blocks ofΛ(λN) ∝ the identity) will still lead to the same matrixM.
Finally, even if the eigenvalues were all different, there would still remain a permutational freedom associated
with the various ways of ordering them.

Hence, in order to carry out the change of variables, some more care is necessary. We are first going to show
that, in fact, we can restrict the integration to a nice classof matrices, namely to

AS =
{
M ∈ SN : M has simple spectrum

}
. (1.22)

Lemma 1.2 AS is open and dense inSN. Furthermore,SN \ AS is ofPN-measure zero.

Proof —
The first two statements are clear by standard perturbation theory. Further let

∆(M) =
N∏

a,b

(λa − λb) . (1.23)

∆(M) is a symmetric polynomial in the variablesλa. Hence, it is a polynomial in the symmetric polynomials, and
thus a polynomial in the coefficient of the matrix1 M. We proceed by contradiction. Assume that

PN
[SN \ AS

]
> 0 . (1.24)

SincePN is absolutely continuous in respect to Lebesgue’s measure onR
N(N+1)

2 , it follows that∆(M) is a polynomial
onR

N(N+1)
2 that vanishes on a set of non-zero Lebesgue measure. By the lemma to come,∆(M) = 0. Yet, it is readily

seen that for anyM = diag
(
λ1, . . . , λN

)
such thatλa , λb for a , b, ∆(M) , 0, a contradiction.

Lemma 1.3 Let P∈ C[X1, . . . ,Xn] be such that there exists a Lebesgue measurable set E⊂ Rn such that

P|E = 0 Ln[E] > 0 , (1.25)

in whichLn is the Lebesgue measure onRn. Then P= 0

Proof —
The proof goes by induction. Forn = 1, assume thatP ∈ C[X]

P|E = 0 (1.26)

for someL1-measurable setE ⊂ R with L1[E] > 0. Clearly, #E = +∞. Thus,P vanishes on a set of cardinality
greater then d◦P + 1 and henceP = 0. Now, assume the statement holds up to somen. Let P ∈ C[X1, . . . ,Xn+1]
andE be as in the hypothesis of the lemma. Represent

P(X1, . . . ,Xn+1) =
m∑

a=0

Xa
n+1Qa(X1, . . . ,Xn) . (1.27)

1One can also obtain an explicit representation in terms of the resolventR(P,P′), with P = det[λ − M], thus yielding the polinomiality
in the coefficients ofM explicitly.
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Let fxn : x 7→ (xn, x) and defineEn = {xn ∈ Rn : fxn(R) ∩ E , ∅}. Then, by Fubbini’s theorem,

0 <

∫
1E · dLn+1 =

∫
1En(xn) · L1

[
f −1
xn

(E)
] · dLn . (1.28)

Thus, there exists aLn measurable setE ⊂ Rn, Ln[E] > 0 such thatL1
[
f −1
xn

(E)
]
> 0-Ln a.e. on E. Removing

from E a set of measure zero if necessary, we may assume thatL1
[
f −1
xn

(E)
]
> 0 onE. Hence, for anyxn ∈ E the

polynomialP(x1, . . . , xn,X) vanishes on the setf −1
xn

(E) of positive Lebesgue measure. It is thus zero. Hence, the
polynomialsQ0, . . . ,Qm in n variables vanish onE with Ln[E] > 0. By the induction hypothesis,Qk = 0 for any
k.

Hence, when integrating versusPN we may restrict the integration toAS. We now build a diffeomorphism
betweenAS and

RN
↑ ×O(N)/HN with RN

↑ =
{
λN ∈ RN : λ1 < · · · < λN

}
(1.29)

that will allow us to change the coordinates and integrate out the orthogonal group part. Note that we have imposed
an ordering of the coordinates on the first space.

Lemma 1.4 LetΦ be the map

Φ : AS → RN
↑ ×O(N)/HN Φ

(
M = OΛ

(
λN

)
Ot)
= (λN,O · HN) . (1.30)

Then,Φ is a smooth diffeomorphism fromAS ontoRN
↑ × O(N)/HN with inverseΨ(λN,U) = O · Λ(λN

) · Ot, in
which O is any representative of the coset U. Furthermore,

det
[
D(λN,U)Ψ

]
=

N∏

a<b

|λa − λb| · g(U) (1.31)

for some smooth function g: O(N)/HN → R+.

Proof —
We first observe thatΨ is well defined. For ifO andO′ = O · H with H ∈ HN are any two representatives of

the cosetU, we get that

O′Λ(λn)
(
O′

)t
= O HΛ(λn)Ht

︸      ︷︷      ︸
=Λ(λn)

Ot (1.32)

sinceH andΛ(λn) are both diagonal andH2
= IN.

We are now in position to prove that

Φ ◦ Ψ = idRN
↑ ×O(N)/HN

and Ψ ◦Φ = idAS . (1.33)

Indeed, one has

Φ ◦ Ψ(
λN,U

)
= Φ

(
OΛ

(
λN

)
Ot)
=

(
λN,O · HN︸  ︷︷  ︸

U

)
. (1.34)

Also, for M ∈ AS there existsλN ∈ RN
↑ andO ∈ O(N) such thatM = OΛ

(
λN

)
Ot. Then,

Ψ ◦Φ(M)
= Ψ

(
λN,O · HN

)
= OΛ

(
λN

)
Ot
= M, (1.35)

sinceO is a representative of the cosetO · HN.
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• Smoothness ofΨ

We observe thatHN is a close subgroup of the Lie groupO(N). As a consequence,O(N)/HN admits a unique
structure of aC∞ manifold such that the canonical projectionπ : O(N) 7→ O(N)/HN is a smooth submersion.
Furthermore, relative to this manifold structureπ is a principal fiber bundle with structure groupHN meaning that

• for any U0 ∈ O(N)/HN there exists an open neighborhoodU0 of U0 in O(N)/HN and a smooth section
τ : π−1(U0)→U0 ×HN, such thatπ = pr1 ◦ τ|W, that intertwines theHN action onπ−1(U0).

We introduce

g : U0→ π−1(U0) such that g(U) = τ−1(U, IN) . (1.36)

Then,g is a smooth local section onO(N)/HN.
For anyU ∈ U0 andλN ∈ RN

↑ , we have

Ψ
(
λN,U

)
= g(U) · Λ(λN

) · (g(U)
)t
, (1.37)

and the map is clearly smooth.

• Smoothness ofΦ

Let M0 ∈ AS. The matrixM0 has distinct eigenvaluesλ1(M0) < · · · < λN(M0) and admits an orthonormal basis
of eigenvectorsu j(M0),

M0u j(M0) = λ ju j(M0) . (1.38)

SinceAS is open there exists an open neighborhoodM0 of M0 in AS. We shrink the neighborhood if necessary
so that, for anyM ∈ M0

|λ j(M) − λ j(M0)| ≤ δ

10
with δ = min

{
|λa(M0) − λb(M0)| : a , b, a, b ∈ [[ 1 ; N ]]

}
. (1.39)

Then we introduce the spectral projections ontoM’s orthonormal of eigenvectorsu j(M):

P j(M) =
∮

|z−λ j (M0)|<δ/3

1
z− M

· dz
2iπ

. (1.40)

It is readily seen thatu j(M) are given by

u j (M) =
P j(M) · u j(M0)

||P j(M) · u j(M0)|| . (1.41)

The eigenvalues ofM are expressed as

λ j(M) =
(
u j(M),Mu j(M)

)
. (1.42)

As a consequence, bothM 7→ λN(M) ≡ (
λ1(M), . . . , λN(M)

)
andM 7→ O(M) = Mat

(
u1(M), . . . , uN(M)

) ∈ O(N)
are smooth onM0. Hence,

Φ(M) = Φ
(
O(M) · Λ(λN(M)

) ·O(M)t
)
=

(
Λ(λN(M)), π

(
O(M)

))
(1.43)

is also smooth.
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• Calculation of the Jacobian

We now calculate the Jacobian ofΨ. For this purpose, fix a point
(
Λ0,U0) ∈ RN

↑ ×O(N)/H. Let xℓ = (x1, . . . , xℓ),
ℓ = N(N − 1)/2 be a system of local coordinates in some neighborhoodU0 of U0:

xℓ 7→ U(xℓ) with
ℓ∑

a=1

x2
a < ǫ . (1.44)

Then, we denoteO(xℓ) = (g ◦ U)(xℓ) with g defined as (1.36). In this way, we get an open neighbourhoodM0 of
M0 = Ψ(Λ0,U0) inAS:

M0 =

{
M ∈ AS : M = O(xℓ)Λ(λN)Ot(xℓ) with λN ∈ RN

↑ and
ℓ∑

a=1

x2
a < ǫ

2
}
. (1.45)

GivenM ∈ AS, we get

∂xk M =

(
∂xkO(xℓ)

)
Λ(λN)Ot(xℓ) + O(xℓ)Λ(λN)

(
∂xkO

t(xℓ)
)

and ∂λk M = O(xℓ) ·∂λkΛ(λN) ·Ot(xℓ) . (1.46)

Hence, due to
(
∂xaO

t(xk)
)
·O(xℓ) = − Ot(xk)

(
∂xaO(xℓ)

)
which is a consequence ofOt(xℓ)O(xℓ) = IN,

Ot(xk) ·
(
∂xk M

)
·O(xℓ) =

[
S j(xℓ),Λ(λN)

]
with S j(xℓ) = Ot(xℓ) ·

(
∂xkO(xℓ)

)
. (1.47)

We introduce the map

VOA : 7→ VO(A) = Ot · A ·O . (1.48)

We have already established thatVO induces an orthogonal transformation on the vector representation M ∈
R

N(N+1)
2 of M ∈ AS, this in respect to the canonical scalar product induced by tr

[
M2] onR

N(N+1)
2 . In particular, let

VO correspond to the linear transformation induced byVO onR
N(N+1)

2 .

VO : M 7→ VO(M) ≡ VO(M) then det
[VO

]
= ±1 . (1.49)

Thence,

VO
(
∂λ1 M, . . . , ∂λN M, ∂x1 M, . . . , ∂xℓ M

)
=

(
∂λ1Λ(λN), . . . , ∂λNΛ(λN),

[

S1(xℓ),Λ(λN)
]

, · · · , [Sℓ(xℓ),Λ(λN)
]

)

(1.50)

Where we do stress that
[

Sk(xℓ),Λ(λN)
]

is the
N(N + 1)

2
dimensional vector that is canonically associated with

the symmetric matrix
[
Sk(xℓ),Λ(λN)

]
.

It is readily seen, sinceΛ(λN) is a diagonal matrix, that

(
∂λ1Λ(λN), . . . , ∂λNΛ(λN),

[

S1(xℓ),Λ(λN)
]

, · · · , [Sℓ(xℓ),Λ(λN)
]

)
=

(
IN 0
0 XN

)
(1.51)

with

XN =



(λ2 − λ1)(S1)12 (λ2 − λ1)(S2)12 . . . (λ2 − λ1)(Sℓ)12

(λ3 − λ1)(S1)13 (λ3 − λ1)(S2)13 . . . (λ3 − λ1)(Sℓ)13
...

(λN − λN−1)(S1)NN−1 (λN − λN−1)(S2)NN−1 . . . (λN − λN−1)(Sℓ)NN−1


. (1.52)
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Thus,

detN(N+1)
2

(
∂λ1 M, . . . , ∂λN M, ∂x1 M, . . . , ∂xℓ M

)
= (±1) · det[XN] . (1.53)

Hence, all in all, in a neighbourhood ofM0 ∈ R
N(N+1)

2 the Jacobian of the mapM 7→ (
Λ(λN),U

)
is

∣∣∣∣ det
[ ∂M
∂
(
Λ(λN),U

) ]
∣∣∣∣ =

N∏

a<b

|λb − λb| · f (U) , (1.54)

in which f (U) > 0 is a smooth function onO(N)/HN. Note thatf (U) > 0 is a consequence of the maximalily of
the rank of the differential ofΨ, as ensured byΦ ◦ Ψ = idAS .

We are now in position to establish the

Theorem 1.2 Let f ∈ L1(SN, dPN
)

be orthogonal invariant f(OMOt) = f (M). Then, f is a symmetric function
F of the eigenvalues f(M) = F(λ1, . . . , λN) and

∫

SN

f (M) · dPN(M) =
1

Z(1/2)
N [Q]

∫

RN

F(λ1, . . . , λN) ·
N∏

a<b

|λa − λb| ·
N∏

a=1

e−Q(λa) , (1.55)

in which

Z(β)
N [Q]

∫

RN

N∏

a<b

|λa − λb|2β ·
N∏

a=1

e−Q(λa) , (1.56)

Proof —
As it has been already discussed, eachU0 ∈ O(N)/HN admits an open neighbourhoodU0 and a smooth

lift g0 : U0 → π−1(U0
) ⊂ O(N). Furthermore, the neighbourhoodU0 can be endowed with a system of local

coordinates:

U0 =
{
U(0)(xℓ) :

ℓ∑

a=1

x2
a < ǫ and U(0)(0) = ; U0

}
(1.57)

∪U0U0 is an open covering ofO(N)/HN. Hence, by compactness, there exists a finite subcoverU1, . . . ,Um with
associated liftsgk. Let hk, k = 1, . . . ,mbe a smooth partition of the identity associated with∪m

k=1Uk:

hi ≥ 0
m∑

a=1

ha
(
U

)
= 1 for any U ∈ O(N)/HN and supp(hp) ⊂ Up . (1.58)

Then, sinceAS has full measure

∫
f (M)e−tr

[
Q(M)

]
· dM =

m∑

p=1

∫
f (M) · hp

(
pr2

(
Φ(M)

)) · e−tr
[
Q(M)

]
· dM (1.59)

where pr2 denotes the projection ontoO(N)/HN.
Observe that the mapΨ restricts to a diffeomorphism from

Wk = R
N
↑ ×

{
U ∈ O(N)/HN : hk(U) > 0

}
(1.60)
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onto

Vk =
{
M ∈ AS : hk

(
pr2

(
Φ(M)

))
> 0

}
. (1.61)

Thus, the change of variablesM 7→ Φ(M), according to the previous results, leads to

∫
f (M)e−tr

[
Q(M)

]
· dM =

∫

RN
↑

F(λ1, . . . , λN)
N∏

a<b

|λb − λa|
N∏

a=1

e−Q(λa)dNλ

×
m∑

p=1

∫

ℓ∑
a=1

x2
a<ǫ

2

hp

(
U(p)(xℓ)

)
· f

(
U(p)(xℓ)

) · dℓx , (1.62)

where we remind thatU(p)(xℓ) is a parametrization of elements ofUk by a system of local coordinates. The claim
then follows since the second line of (1.62) does not depend on F and thus cancels out between the average ofF
and the partition functionNN.

1.3.2 Other matrix ensembles and eigenvalue distributions

Although we shall not establish these properties here, one can establish similar properties for the unitary and
symplectic ensembles. Namely

∫

EN

f (M) · dPN(M) =
1

Z(1)
N [Q]

∫

RN

F(λ1, . . . , λN) ·
N∏

a<b

|λa − λb|2 ·
N∏

a=1

e−Q(λa) · dNλ (1.63)

∫

JN

f (M) · dPN(M) =
1

Z(2)
N [2Q]

∫

RN

F(λ1, . . . , λN) ·
N∏

a<b

|λa − λb|4 ·
N∏

a=1

e−2Q(λa) · dNλ . (1.64)

In the case of the unitary ensemble, there is a "doubling" of the exponent in the repulsive two-body interaction.
This effect takes its origin in the doubling of the "freedom" of choice for the off-diagonal entries ofM ∈ EN.
Indeed, both imaginary and real parts in the upper off-diagonal entries are now free from constraints. The addi-
tional doubling which is observed in the case of the symplectic ensemble, (ie an interaction of the form|λa− λb|4)
stems from the occurence of additional freedom in the construction of hermitian self-dual matrices. Also, note
that the factor 2 present in front of the confining potentialQ in the case of the symplectic ensemble issued
multiple integral stems from the fact that eigenvalues of Hermitian self-dual matrices always appear in pairs:(
λ1, λ1, λ2, λ2, . . . , λN, λN

)
.

Furthermore, the log-gas interpretation of the probability distribution function for the eigenvalues of the her-
mitian, orthogonal and symplectic ensembles is clear. As a matter of fact, one can reduce several other integrals
over various one-matrix ensembles also to solely integrations over the spectrum.

For instance, consider anL × N, L ≥ N, random matrixX whose entries are real (β = 1/2), complex (β = 1)
and real quaternion (β = 2) independent random variables distributed with a Gaussian density given resp. by

1√
2π

e−x2
jk ,

1
π

e−|zjk |2 or
2
π

e−2|zjk |2 and
2
π

e−2|wjk |2 (1.65)
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where the occurence of two distributions in the real quaternion cases is due to the fact that a quaternion can be
parameterized by 2 complex numbersz andw. The Wishart ensembles (atβ ∈ {1/2, 1, 2}) are then defined as
consisting of random matrices of the typeXX†. Such a matrixX admits a singular value decomposition

X = U · Λ · V† (1.66)

in which U, resp. V, is anL × L, , resp.N × N, unitary matrix andΛ is aL × N matrix of the form

Λ =

(
diag(

√
µ1, . . . ,

√
µN)

0(L−N)×N

)
. (1.67)

Thereµ1, . . . , µN are theN eigenvalues ofX†X. The positive numbers
√
µ1, . . . ,

√
µN are called the singular

values ofX. By generalizing the handlings relative to the orthogonal ensemble, one shows that one can reduce the
integration in the partition function to solely the singular value part leading to the so-called Laguerre ensemble
based partition function

Z(Lag)
N =

+∞∫

0

N∏

a<b

|λa − λb|2β
N∏

a=1

{
λ

2βα
a · e−βλa

}
· dNλ with α = L − N + 1− 1

β
(1.68)

in which, depending on the type of matrices considered, one should setβ = 1/2, 1, 2.
Hence, one sees that changing certain overall characteristics of the "base" matrix ensemble may lead to quali-

tatively different forms of the pdf for the eigenvalues. In the case of Whishart matricesX†X, the main difference
with the previous cases lies in the fact that the integrationruns through a semi-axis and that one allows for a
power-law singularity at the origin. This has rather important consequences on the universality properties associ-
ated with the model. For instance, the scaling limit for the distribution of eigenvalues "near" the edgeλ = 0 takes
a completely different form from the ones that can arise in the three "classical" ensembles of random matrices
introduced so-far.

In fact, one can even construct ensembles of random matriceswhose eigenvalues will be supported on some
segment ofR, iebe bounded from belowandabove. Consider matricesA = X†X andB = Y†Y with X ∈ ML1×N(K)
andY ∈ ML1×N(K), K = R , C , H depending onβ = 1/2 , 1 , 2, random matrices distributed according to the
Gaussian laws introduced previously. Then the eigenvaluesx1, . . . , xN of the matrix (A + B)−

1
2 · A · (A + B)−

1
2

belong to
[
0 ; 1

]
and, upon settingλa = 1 − 2xa, have a probability density function giving rise to the so-called

Jacobi ensemble:

Z(Jac)
N =

1∫

−1

N∏

a<b

|λa − λb|2β ·
N∏

a=1

{
(1− λa)βα · (1+ λa)βγ

}
· dNλ with



α = N1 − L + 1− 1
β

γ = N2 − L + 1− 1
β

(1.69)

in which, again, depending on the type of matrices considered, β = 1/2, 1, 2.

1.4 A first hint towards building a relation with probabiliti es

We have introduced enough concepts so as to establish a connection between the problem of extracting the large-
N behavior ofN-fold integrals of interest and sequences of probability measures on Polsih spaces. Consider the
partition function onRN:

ZN[V,W] =
∫

RN

N∏

a,b=1

e−
β

2 W(λa,λb)
N∏

a=1

e−NV(λa) · dNλ , (1.70)
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with V andW sufficiently regular so that the integral is defined for anyN.
For a givenλN ∈ RN, one associates the so-called empirical measure

L(λN)
N =

1
N

N∑

a=1

δλa ∈ P(R) , (1.71)

in which δx is the Dirac mass atx andP(S) refers to the space of probability measures on the spaceS. Then, the
partition function can be recast as

ZN[V,W] =
∫

RN

exp
{
−N2W[

L(λN)
N

]}·dNλ where W[µ] =
1
2

∫

R2

[
V(s)+V(t)+βW(s, t)

]
·dµ(s)⊗dµ(t) . (1.72)

Assume thatW admits a unique minimum onP(R) and that it is "sufficiently-well" behaved as a function on
P(R).

• The integrand exp
{
− N2W[

L(λN)
N

]}
behaves as eO(N2), meaning that, it should produce an analogous be-

haviour of the partition function;

• The Lebesgue measure should generate, at most, an eO(N) behaviour. A heuristic argument in favor of this
statement is that the volume of

[ − M ; M
]
, M > 0 goes as (2M)N, ie grows exponentially fast.

• Atomic measures onR are dense inP(R), hence, given a measureµ ∈ P(R), provided that the sequence
xN ∈ RN is chosen properly,L(xN)

N → µ in the N → +∞, where, for the time being, we do not give more
specifications on the symbol→.

• Pick aµ ∈ P(R) such thatδ = W[µ]−inf µ∈P(R)W[µ] > 0. Then all pointsλN ∈ RN such thatL(λN)
N "is close

to" µ will have roughly a relative contribution O
(
e−δN

2)
in magnitude as compared to those configurations

of pointsλN ∈ RN such thatL(λN)
N "is close to" minimizingW, ieW[L(λN)

N ] − inf µ∈P(R)W[µ].

Thus, on the basis of the above arguments, one can expect thatthe integration variables will localize -in the
N → +∞ limit- in such a way thatL(λN)

N will be "close" to minimizingW. Hence, one may expect that

lim
N→+∞

1

N2
· ln ZN[V,W] = inf

µ∈P(R)
W[µ] . (1.73)

We are, indeed, going to establish this result, once upon we have specified more thoroughly the structures that we
will be working with.

1.5 The need for scaling

The concentrated reader has probably noticed that the random matrix issued partition functions did not have a
prefactor ofN in front of the "potential" part e−Q(λ), where we remind thatQ is a polynomial of even degree:

Q(X) =
2m∑

p=0

apXp a2m > 0 . (1.74)

We are now going to explain the origin of the scaling withN and show how it can be "reinstalled by hand".
Consider thus

Z(β)
N [Q] =

∫

RN

N∏

a<b

|λa−λb|2β ·
N∏

a=1

e−Q(λa) ·dNλ =

∫

RN

exp
{
N2β · 1

N2

N∑

a,b

ln |λa−λb| −N · 1
N

N∑

a=1

Q(λa)
}
. (1.75)

14



As already argued in the previous section, in order to accessto the leading large-N behavior of lnZ(β)
N [Q], one

needs to maximize the argument of the exponential. In fact, in this respect, there will be two competing effects:

• The logarithmic potential part is a repelling interaction.Configurations of integration variables which are
"as far apart as possible" will maximize its value.

• The confining potential part−Q ensures the convergence of the integrals. It will tend to "keep" the integra-
tion variables localized in some finite (possibly growing with N) region.

However, there are different prefactors ofN in the rhs of (1.75) in front of each term. Hence, their effect will
not appear on the same scales.

Due to the "large" (of the orderN2) number of terms in the interaction potential part, for sufficiently "mild"
separations between the variablesλa andλb, a , b, this term will completely dominate the "confining" potential
part, which only hasN terms. Thus, the latter will start to compensate for the repelling logarithmic interaction
solely when the variables will become "spaced" by an averagedistance scaling with some power ofN. The
aim of this scaling is to bring the scale of the variables in such a form that the "logarithmic" interaction and the
"confining" potential are of the same order of magnitude already on a region of finite (in respect toN) lenght.

We are going to argue the correct power of the scaling on the basis of the assumption (that will be further
justified rigorously by the analysis to come) that

λa = O(1) a = 1, . . . ,N ⇒ 1
N

N∑

a=1

f (λa) ∼ O(1) and
1

N2

N∑

a=1

g(λa, λb) ∼ O(1) . (1.76)

Thus, in the integral, we change variablesλa = Nαµa, leading to

Z(β)
N [Q] = Nα·NNα·βN(N−1)·

∫

RN

N∏

a<b

|λa−λb|2β·
N∏

a=1

e−Nα2mV(α)
N (λa)·dNλ with V(α)

N (λ) = a2mλ
2m
+

2m−1∑

p=0

apλ
p

N(2m−p)·α .

(1.77)

Here, again, the logarithmic interactions are of the order of O(N2), on a finite withN size region whereas the
"confining" potential interaction are of the order of O(N2mα+1). Hence, the rescaling of variables byN

1
2m seems

to be the "good" scaling which immediately, in the new integration variables, allows one to tune the contributions
of the "two-body interaction" part and of the "confining potential" to the same level of magnitude. Under such a
scaling, the partition function is recast as

Z(β)
N [Q] = N

N
2m N

β

2mN(N−1)·
∫

RN

N∏

a<b

|λa−λb|2β ·
N∏

a=1

e−NVN(λa)·dNλ with V
( 1

2m)
N (λ) = a2mλ

2m
+

2m−1∑

p=0

apλ
p

N1− p
2m

.

(1.78)

Hence, we basically recover the case of a partition functionhaving an explicitN in front of the confining
potential. True, the potential itself depends onN. However, for a fixed compact setK, settingV∞(λ) = a2mλ

2m,
we get that,

||V( 1
2m)

N − V∞||L∞(K) −→
N→+∞

0 . (1.79)

Furthermore, when going to infinity,ie moving "far" away from compacts,

VN(λ)
V∞(λ)

−→
λ→±∞

0 . (1.80)
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Thus it seems plausible, and this fact will become apparent from our analysis, that the remainderVN − V∞ will
merely produce sub-leading corrections to the large-N behaviour of lnZ(β)

N [Q].

1.6 Occurrence of similar multiple integrals in other contexts

1.6.1 The quantum separation of variables

The so-called quantum separation of variables is one of the exact methods allowing one to fully characterize and
compute -in terms of solutions to 1-dimensional spectral problems- the eigenvalues of numerous partial differential
operatorsON in N variables. The operatorON in naturally defined on some dense space ofL2(RN). The method
consists in constructing a unitary transform

U : L2(RN, dNx
) 7→ L2(RN, µ(yN)dNy

)
with µ(yN) =

N∏

a<b

{
sinh

[
πω1(ya−yb)

] ·sinh
[
πω2(ya−yb)

]}
.

(1.81)

The unitray map allows one to solely work on the spaceL2(RN, µ(yN)dNy
)

where the separation of variables occur,
namely, ifΨ(xN) is an eigenvector ofON, then

U[Ψ](yN) =
N∏

a=1

qΨ(ya) (1.82)

in which qΨ solves an auxiliaryone-dimensional spectral problem. Therefore, the scalar product takes the form

(
Ψ,Ψ

)
L2(RN ,dNx)

=

∫

RN

N∏

a<b

{
sinh

[
πω1(ya − yb)

] · sinh
[
πω2(ya − yb)

]} ·
N∏

a=1

q2(ya) · dNy . (1.83)

Thus, the norm of the states is given by aN-fold integral. For various reasons, one is interested in extracting the
large-N behaviour out of such multiple integrals.

In fact, in physics, one is mostly interested in computing the so-called form factor of local operators,ie acting

on a "reduced number of variables",ie p1 =
i
~
∂x1 is a kind of local operator of interest for physics. For numerous

local operatorsO, one can find an expression forU†OU, ie describe explicitly how the operator acts on functions
living on the space where the quantum separation of variables occurs. Then, form factors of certain such operators
O take the form

(
Φ,O·Ψ

)
L2(RN ,dNx)

=

∫

RN

N∏

a<b

{
sinh

[
πω1(ya−yb)

] ·sinh
[
πω2(ya−yb)

]} ·
N∏

a=1

qΦ(ya)qΨ(ya) ·
N∏

a=1

o(ya)dNy . (1.84)

Thereo(y) are functions that represent a sort of perturbation of the integrand, much in the spirit of (1.6).
Studying the large-N behaviour of such integrals is still an (hard) open problem.Important complications

arise due to the lack of factorization for the measureµ(yN) under a rescaling of the variables. Furthermore, the
complicated formulation for the functionsq is also a problems. Basically, most tools developed for log-gases
issued multiple integrals break down and one has to invent more sophisticated techniques.

In fact, just as the log-gases issued multiple integrals diddeserve to be called semi-classical multiple integrals,
the former class of integrals should already be refered to asa quantum integrals, so large is the gap in the technical
arsenal that is necessary for its analysis. Another instance of such integrals, in fact in a much more complex form,
stems from Bethe Ansatz solvable one-dimensional spin chains.
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1.6.2 The emptiness formation probability

The emptiness formation probability is a specific correlator that arizes in the so-called XXZ spin-1/2 chain. The
Hamiltonian of this model acts on the Hilbert space

h = ⊗L
a=1Va Va ≃ C2 , (1.85)

and takes the form

HXXZ =

L∑

a=1

{
σx

aσ
x
a+1 + σ

y
aσ

y
a+1 + cos(ζ) · σz

aσ
z
a+1 − h

L∑

a=1

σz
a

}
(1.86)

whereσx,y,z are standard Pauli matrices

σx
=

(
0 1
1 0

)
σy
=

(
0 −i
i 0

)
σz
=

(
1 0
0 −1

)
, (1.87)

and we have used tensor notations so as to write down the Hamiltonian in a compact form; namely for some
operatorO ∈ L(

C
)

Oa = id ⊗ · · · ⊗ id︸        ︷︷        ︸
a−1 terms

⊗O ⊗ id ⊗ · · · ⊗ id (1.88)

The emptiness formation probability corresponds to the below correlator

τL(m) =
(
Ψ

(L)
g ,

m∏

a=1

(
0 0
0 1

)

[a]

·Ψ(L)
g

)
(1.89)

whereΨ(L)
g correspond to the ground state of the HamiltonianHXXZ. One can show that, in the so-called thermody-

namic limit of the modelL→ +∞, limL→+∞ τL(m) = τ(m) admits anm-fold multiple integral based representation:

τ(m) =
1
m!

q∫

−q

dmλ

m∏

a,b=1

{
sinh(λa + iζ/2) sinh(λa − iζ/2)

sinh(λa − λb − iζ)

}
· Fm

(
λ1, . . . , λm

)
, (1.90)

with

Fm
(
λ1, . . . , λm

)
= lim

ξk→−iζ/2

detm
[
t
(
λ j , ξk

)]
detm

[
ρ
(
λ j , ξk

)]

m∏
j<k

sinh2
(
ξ j − ξk

) (1.91)

The functiont is explicit

t (λ, µ) =
−i sinζ

sinh(λ − µ) sinh(λ − µ − iζ)
. (1.92)

ρ is interpreted as the density of certain parameters that parametrize the model’s ground state. It is defined as the
solution to integral equation

ρ (λ, ξ) +

q∫

−q

K (λ − µ) ρ (µ, ξ) · dµ
2π
=

t (λ, ξ)
−2iπ

with K (λ) =
sin 2ζ

sinh(λ + ζ) sinh(λ − iζ)
. (1.93)

For ξ close to−iζ/2 andq = +∞, the solution is explicit

ρ (ζ, ξ) =
i

2ζ sinh
π

ζ
(λ − ξ)

, (1.94)

and then the determinant involvingρ becomes computable in that it corresonds to a Cauchy matrix.
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2 Some facts about probability measures on Polish spaces

In all of the setting, (S, d) will be a Polish space (complete, separable metric space).We shall endow it with its
Borelσ-algebraB generated by open sets. We shall also denote byP(S) the space of Borel probability measures
on S.

We remind two facts about finite measures onS.

Lemma 2.1 Let µ be a finite measure on S andA a collection of disjoint Borel subsets of S . Then at most
countably many elements ofA has non-zeroµ-measure.

Proof —
Givenℓ ≥ 1 setAℓ =

{
A ∈ A : µ[A] > 1/ℓ

}
. Thus, for any distinctA1, . . . ,Ak inAℓ, one has

µ[S] ≥ µ
[ ∪k

p=1 Ap
]
=

k∑

p=1

µ[Ap] >
k
ℓ
, (2.1)

ieAℓ has at most
[
ℓ · µ[S]

]
elements.

Proposition 2.1 Any finite measure on S is regular in the sense that for any Borel subset B∈ B

µ[B] = sup
{
µ[F] : F ⊂ B , F closed

}
= inf

{
µ[O] : O ⊂ B , O open

}
. (2.2)

The first equality is referred to as inner regularity whereasthe second as outer regularity.

Prior to discussing the convergence of measures and its metrizability, we shall introduce a few concepts that
will be useful in the course of our handlings. In general, when studying measures, it is often useful to know that
the latter, basically, concentrates on compacts. This property is called tightness. As we shall establish right away,
probability measures are always tight.

Definition 2.1 A Borel measureµ on S is tight if given anyǫ > 0 there exists a compact K⋐ S such that

µ[S \ K] < ǫ (2.3)

Recall the convenient characterization of compacts in complete metric spaces.

Lemma 2.2 Any totally bounded (for anyǫ > 0 the set is covered by finitely many balls of radiusǫ) and closed
subset K of S is compact.

It is clear that the converse is true.

Proof — Let xn be a sequence of elements inK. SinceK is totally bounded, it can be covered by finitely many
balls of radius 1/p, this for anyp. Hence, for anyp, at least one of these balls contains infinitely manyxn’s.
Consider the following construction. Forp = 1 take a ballB1 of radius 1 such that

N1 =
{
n : xn ∈ B1

}
(2.4)

is infinite and pickn1 ∈ N1. Then, forp = 2 take a ballB2 of radius 1/2 such that

N2 =
{
n > n1 : xn ∈ B1 ∩ B2

}
(2.5)
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is infinite and pickn2 ∈ N2. Continue so-on, forp+ 1 taking a ballBp+1 or radius 1/(p+ 1) such that

Np+1 =
{
n > np : xn ∈ B1 ∩ B2 · · · ∩ Bp

}
(2.6)

is infinite and picknp+1 ∈ Np+1. Thence the sequence (xnp) is a subsequence of (xn) such thatxnℓ ∈ Bk for any
ℓ ≥ k. It is thus a Cauchy sequence. As such it converges to somex ∈ S in virtue of the latter’s set completeness.
K being closed, it follows thatx ∈ K. As a consequence,K is compact.

Theorem 2.1 Ulam
Every probability measure on (S,d) is tight.

Proof —
Pick ǫ > 0 and consider a sequence (xn) that is dense inS. As a consequence, for anyℓ > 0

S = ∪+∞n=1B
(
xn,

1
ℓ

)
. (2.7)

BecauseS is of finite measure andµ is continuous, there existsnℓ such that

µ

[
S \ ∪nℓ

n=1B
(
xn,

1
ℓ

)] ≤ ǫ

2ℓ
. (2.8)

The set

K = ∩ℓ≥1 ∪nℓ
n=1 B

(
xn,

1
ℓ

)
(2.9)

is closed and totally bounded, hence compact. Furthermore,

µ
[
S \ K

] ≤
∑

ℓ≥1

µ

[
S \ ∪nℓ

n=1B
(
xn,

1
ℓ

)] ≤
∑

ℓ≥1

ǫ

2ℓ
= ǫ. (2.10)

2.1 Convergence of measures

Definition 2.2 A sequenceµN ∈ P(S) converges weakly toµ ∈ P(S), µN ⇀ µ if

∫
f dµN →

∫
f dµ (2.11)

for any f ∈ Cb(S), the space of real-valued bounded continuous functions on S.

The notion of weak convergence can be, in fact, rephrased in terms of a convergence on closed (or open) sets

Theorem 2.2 Portmanteau
LetµN ∈ P(S) be a sequence of probability measures on S . Then, the following statements are equivalent:

i) µN ⇀ µ ∈ P(S) ;

ii) for any open set U,lim supN→+∞ µN[U] ≥ µ[U] ;

iii) for any closed set F,lim supN→+∞ µN[F] ≤ µ[F] ;

19



iv) for any continuity set A ofµ, ie µ[∂A] = 0, limN→+∞ µN[A] = µ[A] .

Proof —
i)⇒ ii ). Let U be open. Then define

fm(x) = min
{
m · d(x,Uc) , 1

}
. (2.12)

SinceUc is closed,fm ↑ 1U . Furthermore, clearly,fm is bounded and continuous.

µN
[
U

] ≥
∫

fm(s) · dµN(s) →
∫

fm(s) · dµ(s) ⇒ lim inf
N→+∞

µN
[
U

] ≥
∫

fm(s) · dµ(s) . (2.13)

Since, by the monotone convergence theorem,
∫

fm(s) · dµ(s) → µ[U] , (2.14)

ii ) follows.

ii )⇔ iii ) by taking complements. Namely, givenF closed,

lim inf
N→+∞

µN[Fc] = 1− lim sup
N→+∞

µN[F] ≥ µ[Fc] = 1− µ[F] (2.15)

and givenO closed,

lim sup
N→+∞

µN[Oc] = 1− lim inf
N→+∞

µN[O] ≤ µ[Oc] = 1− µ[O] (2.16)

ii )& iii ) ⇒ iv)
Is A is a continuity set forµ, then

µ[A] = µ
[ ◦
A
] ≤ lim inf

N→+∞
µN

[ ◦
A
] ≤ lim sup

N→+∞
µN

[
A
] ≤ µ

[
A
]
= µ[A] . (2.17)

iv)⇒ i)
Let f ∈ Cb(S). Since the measureµ is finite, there exists at most countably manyx’s such thatµ

[
f −1({x})] > 0.

Hence, for anyǫ, one can find a sequencea1 < a2 < · · · < aM such that

max(ak+1 − ak) ≤ ǫ µ
[
f −1({ak})

]
= 0 and range(f ) ⊂ [

a1 ; aM
]
. (2.18)

Then introduce the below approximationfǫ for f

Fk =
{
s ∈ S : ak ≤ f (s) < ak+1

}
and fǫ =

M∑

k=1

ak1Fk . (2.19)

One has that, by continuity off , ∂Fk = f −1({ak}) ∪ f −1({ak+1}). Thus,µ
[
f −1({ak})

]
= 0. As a consequence, by

iv),

∫
fǫ · dµN =

M∑

k=1

akµN[Fk] →
M∑

k=1

akµ[Fk] =
∫

fǫ · dµ . (2.20)

Since, by construction| f − fǫ | < ǫ, the claim follows upon relaxingǫ → 0.
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2.2 Metrizability

It so happens that one can metrizeP(S). There will, in fact, arise two equivalent distances in ourhandlings.
Working with the two provides one with a convenient way of proving Prokhorov’s theorem which is the key result
of this section. We start with the Levy-Prokhorov metric

Definition 2.3 Theǫ-neighborhood Aǫ of a set A⊂ S is defined by

Aǫ =
{
y ∈ S : ∃y ∈ A , d(x, y) < ǫ

}
(2.21)

Definition 2.4 The quantity

dLP
(
µ, ν

)
= inf

{
ǫ > 0 : µ[A] ≤ ν[Aǫ ] + ǫ for all A ∈ B

}
(2.22)

is called the Levy-Prokhorov distance between the probability measureµ andν.

Proposition 2.2 dLP is a metric onP(S)

Proof —
We start by showing thatdLP is symmetric.
Hence, letµ, ν ∈ P(S). Assume thatdLP(µ, ν) > η. Then, by definition, there exists a setA ∈ B such that

µ[A] > ν[Aη] + η . (2.23)

Note the inclusion
((

Aη
)c)

η
⊂ Ac . (2.24)

Indeed, if x ∈
((

Aη
)c)

η
, then there existsy ∈ (

Aη
)c such thatd(x, y) < η. Furthermore,d(y,A) ≥ ǫ. Hence,

d(x,A) > 0 and thusx ∈ Ac. This inclusion implies, upon taking the complement of (2.23), that

ν
[(

Aη
)c]

> µ[Ac] + η ≥ µ
[((

Aη
)c)

η

]
+ η . (2.25)

In other words, the setB =
(
Aη

)c verifies that

ν[B] > µ[Bη] + η ⇒ dLP(ν, µ) > η . (2.26)

By sendingη ↑ dLP(µ, ν), one gets thatdLP(ν, µ) ≥ dLP(µ, ν) so that, by symmetry,dLP(ν, µ) = dLP(µ, ν).
We now establish the triangle inequality. Assume that

dLP(µ, ν) ≤ η and dLP(ν, ρ) ≤ ǫ. (2.27)

Thus, for anyA ∈ B,

µ[A] ≤ ν[Aη] + η and ν[Aη] ≤ ρ
[(

Aη
)
ǫ

]
+ ǫ . (2.28)

As a consequence, since
(
Aη

)
ǫ ⊂ Aη+ǫ , one has that

µ[A] ≤ ρ
[
Aη+ǫ

]
+ ǫ + η . (2.29)

Thus,dLP(µ, ρ) ≤ η + ǫ. The claim then follows by taking the infimum overǫ and then overη.
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Finally, we establish thatdLP fulfils the identity of indiscernibles. Hence, assume thatdLP(µ, ν) = 0. Then, for
any closed setF, one has that

µ[F] ≤ ν
[
F 1

n

]
+

1
n
. (2.30)

F 1
n

is a decreasing sequence of measurable set andν[F1] < +∞. Hence, by continuity of the measureν,

lim
n→+∞

ν
[
F 1

n

]
= ν

[
∩n∈N F 1

n

]
= ν[F] (2.31)

Thence,µ[F] ≤ ν[F] and by symmetry,µ[F] = ν[F] and by inner regularityµ = ν.

The second distance of interest in the study of probability measures is the bounded-Lipschitz distance.

Proposition 2.3 Let

dBL(µ, ν) = sup
{∣∣∣∣

∫
f dµ −

∫
gdν

∣∣∣∣ : || f ||BL ≤ 1
}

(2.32)

where|| · ||BL is the bounded-Lipschitz norm

|| f ||BL = sup
x,y

x,y∈S

∣∣∣∣
f (x) − f (y)

d(x, y)

∣∣∣∣ + sup
x∈S

∣∣∣ f (x)
∣∣∣ . (2.33)

Then, dBL is a distance onP(S) .

Proof —
It is clear thatdBL is symmetric and that is satisfies the triangle inequality. It hence solely remains to prove

thatdBL(µ, ν) = 0 ⇒ µ = ν. Let F ⊂ S be closed. Introduce

fm(x) = min
{
m · d(x, F) , 1

}
. (2.34)

Then, sinceF is closed,fm ↑ 1U whereU = Fc. Furthermore,|| f ||BL ≤ m+ 1. As a consequence

∫
fm · dµ =

∫
fm · dν . (2.35)

Hence, by the monotone convergence theorem,µ[U] = ν[U]. Recall that every finite Borel measure onS is outer
regular,

∀B ∈ B µ[B] = inf
{
µ[U] : U ⊃ B, U open

}
. (2.36)

This implies thatµ = ν.
Prior to establishing the equivalence of the Levy-Prohorovand bounded-Lipschitz metrics as well as their

compatibility with the weak convergence of probability measure we recall Arzela-Ascoli’s theorem:

Theorem 2.3 Any equicontinuous sequence fp : E → F of continuous functions the compact metric spaces E, F
admits a convergent subsequence fpk in respect to the sup-norm topology onC0(E, F).
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Theorem 2.4 The four statements are equivalent:

i) µN ⇀ µ ;

ii) for any bounded Lipschitz function f

∫
f (s) · dµN(s) −→

N→+∞

∫
f (s) · dµ(s) ; (2.37)

iii) d BL(µN, µ)→ 0 ;

iv) dLP(µN, µ)→ 0 ;

Proof —
i)⇒ ii ) is obvious.
ii ) ⇒ iii ) The idea is to approximate, for a givenǫ > 0 anybounded Lipschitz function by elements from afinite
set. There is no chance in doing so on the whole spaceS. However, Arzela-Ascoli theorem allows one to do so
on compacts. Then Ulam’s theorem allows one to conclude.

Hence, givenǫ > 0, by Ulam’s theorem, there existsK ⋐ S such thatµ[Kc] < ǫ. Introducing the function

gǫ (x) = max
{
0, 1− 1

ǫ
d(x,K)

}
(2.38)

which satisfies||gǫ ||BL ≤ 1+ ǫ−1 and1K ≤ gǫ ≤ 1Kǫ
, one gets that

µN

[
Kǫ

]
≥

∫
gǫ (s) · dµN(s) →

∫ ∫
gǫ(s) · dµ(s) ≥ µ[K] ≥ 1− ǫ . (2.39)

Therefore, for anyN ≥ N0 large enough,µN

[
Kǫ

]
≥ 1− 2ǫ. In other words,µN is essentially concentrated onKǫ

provided thatN is large enough.
Further set

B =
{
f : || f ||BL ≤ 1

}
and BK =

{
f|K : f ∈ B

}
. (2.40)

By Arzela-Ascoli’s theorem,BK is compact hence totally bounded in respect to theL∞(K) norm. Thus, given
ǫ > 0 there existsf1, . . . , fm ∈ BK such that, for anyf ∈ BK, there exists aj ∈ [[ 1 ; m]]

sup
x∈K

∣∣∣ f (x) − f j(x)
∣∣∣ < ǫ . (2.41)

In fact, such a uniform approximation can be extended toKǫ for if x ∈ Kǫ, pick y ∈ K such thatd(x, y) < ǫ.
Then,

∣∣∣ f (x) − f j(x)
∣∣∣ ≤

∣∣∣ f (x) − f (y)
∣∣∣ +

∣∣∣ f (y) − f j(y)
∣∣∣ +

∣∣∣ f j(y) − f j(x)
∣∣∣

≤ || f ||BLd(x, y) + ǫ + || f j ||BLd(x, y) ≤ 3ǫ. (2.42)
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We are now in position to estimate

∣∣∣∣
∫

f (s)dµ(s) −
∫

f (s)dµN(s)
∣∣∣∣ ≤

∣∣∣∣
∫

Kǫ

f (s)dµ(s) −
∫

Kǫ

f (s)dµN(s)
∣∣∣∣ + || f ||BL ·

(
µ
[
Kc
ǫ

]
+ µN

[
Kc
ǫ

])

≤
∣∣∣∣
∫

Kǫ

f j(s)dµ(s) −
∫

Kǫ

f j(s)dµN(s)
∣∣∣∣ + 2 sup

x∈Kǫ

∣∣∣ f (x) − f j(x)
∣∣∣ + 3ǫ

≤
∣∣∣∣
∫

f j(s)dµ(s) −
∫

f j(s)dµN(s)
∣∣∣∣ + || f j ||BL ·

(
µ
[
Kc
ǫ

]
+ µN

[
Kc
ǫ

])
+ 9ǫ

≤ max
j∈[[ 1 ; m]]

∣∣∣∣
∫

f j(s)dµ(s) −
∫

f j(s)dµN(s)
∣∣∣∣ + 12ǫ (2.43)

Then optimizing in respect tof ∈ B yields,

dBL(µ, µN) = sup
f∈B

∣∣∣∣
∫

f (s)dµ(s) −
∫

f (s)dµN(s)
∣∣∣∣ ≤ max

j∈[[ 1 ; m]]

∣∣∣∣
∫

f j(s)dµ(s) −
∫

f j(s)dµN(s)
∣∣∣∣ + 12ǫ (2.44)

Hence,

lim sup
N→+∞

dBL(µ, µN) ≤ 12ǫ , (2.45)

so thatǫ → 0+ allows one to conclude.

iii ) ⇒ iv)
For any Borel setA ∈ B introduce

gǫ (x) = max
{
0, 1− 1

ǫ
d(x,A)

}
(2.46)

which satisfies||gǫ ||BL ≤ 1+ ǫ−1 and1A ≤ gǫ ≤ 1Aǫ . Then,

µN[A] ≤
∫

gǫ(s)dµN(s) +
∫

gǫ (s)dµ(s) + (1+ ǫ−1) · dBL(µN, µ) ≤ µ[Aǫ] + (1+ ǫ−1) · dBL(µN, µ) (2.47)

so that settingδ = max
{
ǫ, (1+ ǫ−1) · dBL(µN, µ)

}
, one gets

µN[A] ≤ µ[Aδ] + δ ⇒ dLP(µN, µ) ≤ δ . (2.48)

One can optimiseδ in respect toǫ. Takingǫ =
√

dBL(µN, µ) yields,

if dBL(µN, µ) ≤ 1 then δ ≤ 2
√

dBL(µN, µ) (2.49)

and if

dBL(µN, µ) ≥ 1 since by definition dLP(µN, µ) ≤ 1 ≤ 2
√

dBL(µN, µ) . (2.50)

In other words, the bounddLP(µN, µ) ≤ 2
√

dBL(µN, µ) always holds.
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iv)⇒ i)
By definition, if dLP(µN, µ)→ 0 means that there exists a sequenceǫN → 0+ such that

µN[A] ≤ µ[AǫN ] + ǫN for any A ∈ B . (2.51)

By Portmanteau theorem, it is enough to show that for any set of continuity A of µ one has limN→+∞ µN[A] =
µ[A]. Let A be such a set. Then

µN[A] ≤ µ[AǫN ] + ǫN = µ[A] + µ[AǫN \ A] + ǫN (2.52)

µN[Ac] ≤ µ[Ac
ǫN

] + ǫN = µ[Ac] + µ[Ac
ǫN
\ Ac] + ǫN . (2.53)

In other words

µN[A] − µ[A] ≤ µ[AǫN \ A] + ǫN (2.54)

µ[A] − µN[A] ≤ µ[Ac
ǫN
\ Ac] + ǫN . (2.55)

Hence,
∣∣∣µ[A] − µN[A]

∣∣∣ ≤ µ[Ac
ǫN
\ Ac] + µ[AǫN \ A] + ǫN . (2.56)

Sinceµ is finite as a probability measure onS, by continuity

lim
N→+∞

µ[Ac
ǫN
\ Ac] = µ

[
∩N∈N

{
Ac
ǫN
\ Ac}]

= µ
[
Ac \ Ac] ≤ µ

[
∂A

]
= 0 (2.57)

lim
N→+∞

µ[AǫN \ A] = µ
[
∩N∈N

{
AǫN \ A

}]
= µ

[
A \ A

] ≤ µ
[
∂A

]
= 0 . (2.58)

2.3 Characterization of compact sets inP(S)

Definition 2.5 A setΓ ⊂ P(S) is uniformly tight if for anyǫ > 0 there exists K⋐ S such that

∀ µ ∈ Γ µ[Kc] ≤ ǫ . (2.59)

The matter is that everyµ ∈ P(S) is tight, ie for anyǫ > 0 there exists a compactK such thatµ[K] ≥ 1− ǫ.
However, uniform tightness is a much stronger requirement in that it holds on a whole family of measures. In
fact, the main result of this section, Prohorov’s theorem, states that uniform tightness and relative compactness are
equivalent notions. The former is however, in practice, much easier to verify.

In order to establish the above theorem, we need a few preparatory propositions.

Proposition 2.4 LetµN ⇀ µ thenΓ =
{
µN : N ∈ N} ∪ {

µ
}

is uniformly tight.

Proof —
SinceµN ⇀ µ , one also has thatdLP(µN, µ) → 0. Take 1> ǫ > 0 and letK ⋐ S be a compact such that

µ[S \ K] < ǫ. It then follows from the definition of the Levy-Prokhorov metric that

1− ǫ < µ
[
K
] ≤ µN

[
KbN

]
+ bN with bN = dLP(µN, µ) +

1
N
. (2.60)

As a consequence,

aN = inf
{
δ > 0 : µN

[
KbN

]
> 1− ǫ

}
→ 0 . (2.61)
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The measureµN being tight in virtue of Ulam’s theorem, one gets that there exists a compact

KN ⊂ KaN+1/N such that µN
[
KN

]
> 1− ǫ . (2.62)

Then, set

L = K ∪
{
∪N≥1 KN

}
. (2.63)

By construction, for anyν ∈ Γ, ν[S \ L
] ≤ ǫ. So it solely remains to show thatL is relatively compact.

Let (xn) be a sequence inL. There are two options. Either the sequence (xn) contains a subsequence (xγn)
contained in K or one of theKℓ’s. Then, by compactness of the latter, it does contain a convergent subsequence,
and the job is done. Else, one can build a subsequence (xδn) such thatxδn ∈ Kδn. However, due toKδn ⊂ Kaδn+1/δn,
there existsyn ∈ K such that

d
(
xδn, yn

) ≤ aδn + 1/δn −→
n→+∞

0 . (2.64)

Furthermore, since (yn) is a sequence inK, it admits a convergent subsequenceyβn to somey ∈ K. Hence, it
follows from the above bound ond

(
xδn, yn

)
that

d
(
xδβn

, y
) −→

n→+∞
0 , (2.65)

hence ensuring the compactness ofL.
We shall admit the below structural result.

Lemma 2.3 Let (X, d) be a separable metric space. Then, there exists a compact metric space(Y, d) and a home-
omorphism T from X onto T(X).

This technical result allows one to get Prokhorov’s theoremin the non-compact case as soon as its compact
version is obtained. Hence, we now establish a selection theorem in the compact case.

Proposition 2.5 Assume that(S, d) is a compact Polish space, then(P(S), dLP) is compact.

Proof —
SinceS is compact,C (S) is a Banach space once that it is equipped with

|| f ||∞ = sups∈S| f (s)| . (2.66)

Let C ′(S) denote its dual and set

G =
{
ϕ ∈ C

′(S) : ||ϕ|| ≤ 1 , ϕ(1) = 1 , ϕ( f ) ≥ 0 for any f ∈ C (S) , f ≥ 0
}

(2.67)

The Riesz representation theorem then states that

T : µ→ Tµ Tµ( f ) =
∫

f (s) · dµ(s) , (2.68)

is a bijection fromP(S) ontoG that is, furthermore a sequential homeomorphism in respectto the weak-* topology
onG:

µN ⇀ µ =⇒ TµN( f ) −→
N→+∞

Tµ( f ) for any f ∈ C (S) (2.69)
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and

ϕN( f ) ⇀ ϕ( f ) for anyf ∈ C (S) =⇒ T−1(ϕN) −→
N→+∞

T−1(ϕ) . (2.70)

Recall that by Alaoglu’s theorem, the set

B =

{
ϕ ∈ C

′(S) : ||ϕ|| ≤ 1
}

(2.71)

is weak-* sequentially compact. SinceG is weak-* sequentially closed inB, G is also weak-* sequentially
compact. ThusP(S) is compact.

We are finally in position so as to establish Prokhorov’s theorem.

Theorem 2.5 (Prokhorov)
The following statements are equivalent

i) A subsetΓ ⊂ P(S) is uniformly tight ;

ii) For any sequence(µN) in Γ there exists a converging subsequence to a probability measureµ ∈ P(S);

iii) Γ is compact inP(S) equipped with the weak convergence of probability measures;

iv) Γ is totally bounded in respect to dLP or, equivalently, dBL.

Proof —
i)⇒ ii ) It follows that any sequence (µN) in Γ is uniformly tight.

We first show thatΓ is uniformly tight. For any 1> ǫ > 0 there exists a compactK ⋐ S such that

for all ν ∈ Γ ν[K] ≥ 1− ǫ . (2.72)

Let µ ∈ Γ. Then there exists a sequence (µN) in Γ converging toµ. Thenceµ[K] ≥ lim supN→+∞ µN[K] ≥ 1− ǫ,
thus ensuring the uniform tightness ofΓ.

Let (µN) be a sequence inΓ. Let (Y, δ) be a compact metric space andT : S → Y a homeomorphism fromS
ontoT(S). Then, sinceT is continuous, one defines the measuresνN on (Y,B(Y)) as

νN[B] = µN
[
T−1(B)

]
. (2.73)

Then, (νN) is a sequence of probability measures onP(Y).Furthermore,P(Y) is compact sinceY is compact.
Hence, (νN) admits a converging subsequenceνNk converging to a probability measureν ∈ P(Y).

The whole point now is to translate the measureν into a measure onS. The first step consists in showing that
the mass ofν has not escaped too much out ofT(S). It is at this stage that uniform tightness plays a role.

We show that there existsE ∈ B(Y), E ⊂ T(S) such thatν[E] = 1. By uniform tightness ofΓ, there exists a
sequence of compactsKℓ such that

ρ[Kℓ] ≥ 1− 1
ℓ

∀ρ ∈ Γ . (2.74)

The setsT(Kℓ) are compact inY, hence closed. Thus

ν
[
T(Kℓ)

] ≥ lim sup
ℓ→+∞

νNk

[
T(Kℓ)

]
= lim sup

ℓ→+∞
µNk

[
T(Kℓ)

] ≥ 1− 1
ℓ
. (2.75)
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ThusE = supℓ≥1 T(Kℓ) is a Borel set inY such that

ν[E] ≥ ν[Kℓ] ≥ 1− 1
ℓ

hence ν[E] ≥ 1 . (2.76)

We now construct the limiting sequenceµ ∈ P(S) of the sequenceµNk. First, we restrict the measureν to a
measurẽν on E ⊂ T(S) by

ν̃[A] = ν
[
A∩ E

]
for all A ∈ B(T(S)

)
. (2.77)

This is a well defined manipulation in thatA being Borel inB(T(S)
)
, A∩ E is Borel inE, and thusA∩ E is Borel

in Y sinceE is Borel inY.
The restricted measurẽν is a finite Borel measure onT(S) such that̃ν[E] = ν[E] = 1. Set for anyA ∈ B

µ[A] = ν̃
[
T(A)

]
= T−1#̃ν[A] = ν̃

[(
T−1)−1(A)

]
. (2.78)

Clearly,µ ∈ P(S). It remains to show thatµNk ⇀ µ. Let C be closed inS. ThenT(C) is closed inT(S). Thus,
there existsZ ⊂ Y closed such thatT(C) = T(S) ∩ Z. FurthermoreT−1(Z) = C since there are no points in
T(C) outside ofT(S). Furthermore,Z ∩ E = T(C) ∩ E. Thus,

lim sup
k→+∞

µNk

[
C
]
= lim sup

k→+∞
νNk

[
Z
] ≤ ν[Z] = ν[Z ∩ E] + ν

[
Z ∩ Ec]

= ν[T(C) ∩ E] = µ[C] . (2.79)

Hence, by Portmanteau’s theorem,µNk ⇀ µ.

ii ) ⇒ iii ) Every sequence inΓ can be approximated by a sequence inA. By hypothesis, this new sequence has a
converging subsequence to some elementµ ∈ Γ.
iii ) ⇒ iv) Any compact setΓ is totally bounded, hence ensuring thatΓ is totally bounded.
iv)⇒ i) SincedLP ≤ 2

√
dBL, it is enough to deal withdLP.

SinceΓ is totally bounded, for anyǫ > 0 there exists a finite subsetB such thatΓ ⊂ Bǫ. Furthermore, by
Ulam’s theorem, for anyµ ∈ Γ, there existsK(µ)

⋐ S such that

µ
[
K(µ)] ≥ 1− ǫ (2.80)

Thence,

KB = ∪µ∈BK(µ)
⋐ S and µ

[
KB

] ≥ 1− ǫ . (2.81)

Given anyǫ > 0, takeF a finite set such thatKB ⊂ Fǫ . SinceΓ ⊂ Bǫ, for anyν ∈ Γ there existsµ ∈ B such that

dLP(µ, ν) ≤ ǫ ⇒ 1− ǫ ≤ µ[KB] ≤ µ[Fǫ ] ≤ ν[F2ǫ ] + ǫ hence ν[F2ǫ ] ≥ 1− 2ǫ . (2.82)

Now, takeδ > 0 and takeǫℓ = δ · 2−ℓ−1 above, hence giving rise to finite setsFℓ such that

1− δ

2ℓ
≤ ν

[(
Fm

)
δ

2ℓ

]
⇒ ν

[
∩ℓ≥1

(
Fℓ

)
δ

2ℓ

]
≥ 1−

∑

ℓ≥1

ν
[(

Fℓ

)c
δ

2ℓ

]
≥ 1−

∑

ℓ≥1

δ

2ℓ
= 1− δ . (2.83)

Finally, given any finite setF introduce

Uη[F] = ∪x∈F B(x, η) (2.84)
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a finite union of balls of radiusη. Then, in particular,

(
Fℓ

)
δ

2ℓ
⊂ U δ

2ℓ

[
Fℓ

]
. (2.85)

It follows that the set

L = ∩ℓ≥1
(
Fℓ

)
δ

2ℓ
(2.86)

is closed and totally bounded. SinceS is complete,L is compact, hence ensuring the uniform tightness ofΓ.

Prokhorov’s theorem ensures, in particular, the completeness ofP(S).

Corollary 2.1 A Cauchy sequence in(P(S), dLP) is convergent.

Proof —
Let (µN) be a Cauchy sequence inP(S). Then it isΓ =

{
µN : N ∈ N} is totally bounded and thus, by

Prokhrov’s theorem, (µN) admits a convergent subsequence. Being a Cauchy sequence,it thus converges.

2.4 Separable character ofP(S)

Proposition 2.6 The space
(P(S), dLP

)
is separable.

Proof —
LetS = {xk}k∈N be a countable dense set inS. Then the set

Γ =

{
a1δx1 + . . . + apδxp : ak ∈ Q ∩

[
0 ; 1

]
,

p∑

k=1

ak = 1 , p ∈ N
}

(2.87)

is countable. It remains to show that it is dense.
Let µ ∈ P(S). Given anyℓ ≥ 1, one has that

⋃

k≥1

B
(
x j ,

1
ℓ

)
= S thus there exists kℓ : µ

[ kℓ⋃

k≥1

B
(
x j ,

1
ℓ

)] ≥ 1− 1
ℓ
. (2.88)

Decompose

kℓ⋃

k≥1

B
(
a j ,

1
ℓ

)
=

kℓ⋃

k≥1

Ak;ℓ (2.89)

into a union of disjoint sets

A1;m = B
(
x1,

1
ℓ

)
. . . A j;m = B

(
x j ,

1
ℓ

) \ ∪ j−1
p=1B

(
x j ,

1
ℓ

)
. (2.90)

Then, by construction,

µ
[
∪kℓ

k≥1 Ak;ℓ

]
=

kℓ∑

k=1

µ
[
Ak;ℓ

] ≥ 1 − 1
ℓ
. (2.91)
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It thus appears that a good approximate toµ would be the measure

µ
[
A1;ℓ

] · δx1 + . . . + µ
[
Akℓ;ℓ

] · δxkℓ
(2.92)

Yet, in order to deal with a measure belonging toΓ, one still has to slightly modify the coordinates so as to deal
with rational ones. Thus, pick

a j;ℓ ∈ Q ∩
[
0 ; 1

]
:

kℓ∑

j=1

a j;ℓ = 1
kℓ∑

j=1

∣∣∣µ[A j;ℓ
] − a j;ℓ

∣∣∣ ≤ 2
ℓ

(2.93)

The construction of such a sequence is left in exercise. Then, set

µℓ =

kℓ∑

j=1

a j;ℓ · δxj . (2.94)

Let g be bounded Lipschitz onS. Then,

∣∣∣∣∣
∫

g(s) · dµℓ(s) −
∫

g(s) · dµ(s)
∣∣∣∣∣ ≤

kℓ∑

j=1

∣∣∣∣∣a j;ℓg(x j) −
∫

A j;ℓ

g(s) · dµ(s)
∣∣∣∣∣ +

∫

S\∪kℓ
j=1A j;ℓ

|g(s)| · dµ(s)

≤ ||g||∞
kℓ∑

j=1

∣∣∣µ[A j;ℓ
] − a j;ℓ

∣∣∣ + +
kℓ∑

j=1

∣∣∣∣∣
∫

A j;ℓ

[
g(x j) − g(s)

] · dµ(s)
∣∣∣∣∣||g||∞µ

[
S \ ∪kℓ

j=1A j;ℓ

]

≤ 2
ℓ
||g||BL + ||g||BL ·

1
ℓ
+ ||g||BL ·

1
ℓ
. (2.95)

As a consequence,dBL(µℓ, µ)→ 0 in theℓ→ +∞ limit.

We are thus finally in position to establish the following "lifting" of Polish space structure theorem

Theorem 2.6 Let (S, d) be a Polish space. Then
(P(S), dBL

)
is a Polish space.

In particular, it follows from the above theorem that
(P(R), dBL

)
is a Polish space. This last result will be, in fact,

used in full extend in the next section.

2.5 The large deviation principle

2.5.1 First definitions and basic properties

Definition 2.6 A function f : S → R is said to be lower semi-continuous (lsc) iff its level set f−1(] − ∞ ; c
])

are
closed for all c∈ R or, equivalently,lim inf xn→x f (xn) ≥ f (x).

Lemma 2.4 Let { fI }I∈I be a collection of lower semi-continuous functions. Then f(x) = supI∈I
[
fI (x)

]
is also lsc.

Furthermore, if f is lsc then f attains its minimum on any K⋐ S , K, ∅.

Proof —
Let c > 0. Then, by definition, the sets

FI ;c =
{
x ∈ S : fI (x) ≤ c

}
(2.96)
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are closed. LetFc = f −1(] −∞ ; c
])

. If x ∈ F then, for allI ∈ I fI (x) ≤ c, ie x ∈ FI ;c for all I ∈ I. Reciprocally,
if fI (x) ≤ c then supI∈I

[
fI (x)

] ≤ c, ie x∈ Fc. Thus,

Fc = ∩I∈IFI ;c (2.97)

and so is closed.
Let K be an non-empty compact ofS. Then, letI = inf x∈K f (x). For eachλ > I , the sets

Fλ =
{
x ∈ K : f (x) ≤ λ

}
(2.98)

are closed by lower semi-continuity off . SinceFλ is a decreasing non-empty sequence of closed sets of the
compact setK,

F = ∩λFλ (2.99)

is not empty. However, ify ∈ F, then f (y) ≤ I . Since, by definition,f (y) ≥ I , we get f (y) = inf x∈K f (x).

Definition 2.7 A sequence of probability measuresµN ∈ P(S) is said to satisfy a large deviation principle with
speed aN, aN → +∞ and rate function J iff

J : S→ [
0 ;+∞ ]

is lsc (2.100)

for anyF ⊂ S that is closed lim supN→+∞
1

aN
ln µN[F] ≤ − inf F J (2.101)

for anyO ⊂ S that is open lim infN→+∞
1

aN
ln µN[O] ≥ − infO J (2.102)

J is said to be a good rate function if J is a rate function and has compact level sets.

At this stage, it appears appropriate to make some general remarks and observations about the very formulation
of a LDP.

• The first observation one can make is that the LDP is well ordered. Indeed, letB be a Borel-measurable set.
Then one has

lim inf
N→+∞

1
aN

ln µN
[ ◦
B
] ≤ lim inf

N→+∞
1

aN
ln µN

[
B
] ≤ lim sup

N→+∞

1
aN

ln µN
[
B
] ≤ lim sup

N→+∞

1
aN

ln µN
[
B̄
]
, (2.103)

so that the way of ordering the limits in (2.101)-(2.102) does indeed make sense.

• In fact, the role played by the open and closed sets in the LDP is quite similar to the role played by open
and closed sets in the weak convergence of measures:

µN ⇀ µ ⇔ ∀F ⊂ S closed lim sup
N

µN[F] ≤ µ[F] ⇔ ∀O ⊂ S open lim inf
N

µN[O] ≥ µ[O] .

(2.104)

• The upper bound in the LDP (2.101) says that the mass of "largesets" (since for any Borel measurable set
B, the setB̄ ⊃ B is closed) is not too big whereas the lower-bound (2.102) says that the mass of "small sets"

(since for any Borel measurable setB, the set
◦
B ⊂ B is open) is not too small.
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• The lsc requirement can always be met, in the sense that should a LDP be formulated with a rate function
that is not lsc, then one can always construct a new rate function that will be lsc and drive a LDP that
is equivalent to the initial one. Furthermore, the lsc requirement is also an optimal one in that it allows
one to consider situations which cannot be reached by the sole use of continuous rate functions. Indeed,
a continuous rate function would not allow to make a distinction between closed and open sets. Indeed,

assume thatB is Borel measurable and such that
◦
B = B. Then, by continuity

inf
x∈
◦
B

J(x) = inf
x∈B̄

J(x) . (2.105)

In other words, continuous rate function would not allow oneto control the subtle effect that could happen
on a wide class of Borel sets. The need for such a control is typical in applications of LDP’s to problem
related with random matrix theory issued integrals.

Nonetheless, it is quite possible that a give rate function does admit so-calledJ-continuous Borel setB, ie a
set such that inf

x∈
◦
B

J
(
x
)
= inf x∈B J

(
x
)
. In fact, for these sets the superior and inferior limits coincide,viz

the limit itself exists.

• It could be tempting to alter the formulation of the LDP so as to only deal with limits and not superior and
inferior limit, ie demand that for any Borel measurable setB

lim
N→+∞

1
aN

ln µN[B] = − inf
B

J . (2.106)

In many practical situations, such a formulation is simply useless as imposing too much important restric-
tion. Indeed, suppose that the sequenceµN has no-atoms for everyN. Then takingB = {x} would imply
that the only possibility if to takeJ(x) = +∞, this for anyx ∈ S.

• SinceS is closed andµN[S] = 1, the bound (2.101) implies that− infS J ≥ 0, ie infS J = 0. In particular,
if J is a good rate function, then there exists anx ∈ S such thatJ(x) = 0.

So as to summarize, the formulation of a LDP in terms of "weaker" limits provides one with a setting that is
sufficiently "relaxed" so as to be able to hold in numerous interesting situations while still providing numerous
informations of the sequence of probability measures beingstudied. In fact, the main purpose of a LDP is to
answer the question of where the mass of the sequence of probability measures becomes concentrated in the large
N limit. In other words, the LDP provides one with tools that allow to measure how events -represented by open
and closed set of the space S on which the sequence of probability measures is defined- become "exponentially
improbable" as soon as one moves away from the setsJ−1(0) of "highest" probability. More precisely, assume
that the rate functionJ admits its minimum at a unique pointx. Let ǫ > 0 and setF = S \ B(x, ǫ). Then, by the
inequality for the superior limit, for any 1> η > 0 there existsN large enough such that

a−1
N · ln µN[F] ≤ − inf

F
J + η inf

F
J =⇒ µN[F] ≤ e−aN(1−η) inf F J . (2.107)

Thus, the mass of all points at uniformly inN finite distance to the minimum ofJ is exponentially small in the
largeN limit.

It is natural to wonder whether there could exist several rate functions for a given sequence of probability
measures onS.

Lemma 2.5 The rate function J associated with a LDP is unique.
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Proof —
Assume that a given sequence of probability measures admitstwo different rate functionsJ andH. Then there

existsx ∈ S such that, say,J(x) > H(x). By lower semi-continuity, there exists an open neighbourhoodO of x
such that infx∈O

[
J(x)

]
> H(x). Thus

−H(x) ≤ − inf
y∈O

[
H(y)

] ≤ lim inf
N→+∞

1
aN

ln µN[O] ≤ lim sup
N→+∞

1
aN

ln µN[O] ≤ − inf
x∈O

[
J(x)

] ≤ − H(x) , (2.108)

a contradiction.
In practice, in order to establish that a sequenceµN ∈ P(S) satisfies a LDP, it is often easier to establish first,

a weaker version of the LDP and then some tightness property of the sequence of measures that is being studied.
The two will then imply the full LDP.

Definition 2.8 A sequenceµN ∈ P(S) is said to satisfy a weak LDP if it satisfies(2.100), (2.101)and (2.102)but
with closed sets replaced by compact ones.

Definition 2.9 A sequence of probability measuresµN ∈ P(S) is said to be exponentially tight if there exists a
sequence of compacts KL ⋐ S such that

lim sup
L→+∞

lim sup
N→+∞

1
aN

ln µN
[
Kc

L
]
= −∞ . (2.109)

These two properties do imply the LDP

Proposition 2.7 LetµN ∈ P(S) be an exponentially tight sequence that satisfies a weak LDP with rate function J
and speed aN. Then J is a good rate function andµN satisfies the LDP with rate function J and speed aN.

Proof —
By hypothesis, given anỹL > 0 there existsKL ⋐ S such that

lim sup
N→+∞

1
aN

ln µN
[
Kc

L
] ≤ −L̃ (2.110)

Thus, givenF ⊂ S closed, one has

µN
[
F
]
= µN

[
F ∩ KL

]
+ µN

[
F ∩ Kc

L
] ≤ µN

[
F ∩ KL

]
+ µN

[
Kc

L
]
. (2.111)

Hence,

lim sup
N→+∞

1
aN

ln µN
[
F
] ≤ lim sup

N→+∞

1
aN

ln
[
2 ·max

{
µN

[
F ∩ KL

]
, µN

[
Kc

L
]}]

≤ max
{
− L̃,− inf

F∩KL

J
}
≤ max

{
− L̃,− inf

F
J
}

(2.112)

and the result follows by sendingL→ +∞.
It remains to establish that the rate function is good. By hypothesis, for anỹL there exists a compactKL > 0

such that

lim sup
N→+∞

1
aN

ln µN
[
Kc

L
] ≤ −L̃ (2.113)
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Yet, sinceKc
L is open, by the lower bound in the LDP,

− inf
x∈Kc

L

J(x) ≤ lim inf
N→+∞

1
aN

ln µN
[
Kc

L
]
, (2.114)

we get that

inf
x∈Kc

L

J(x) ≥ L̃ ⇒ for anyc < L̃ J−1(] −∞ ; c
]) ⊂ KL , (2.115)

and thus the level sets corresponding toc < L̃ are compact. SincẽL is arbitrary, the result follows.

Finally, in order to establish that a sequenceµN ∈ P(S) satisfies a weak LDP one usually establishes a
technically easier to obtain result that is, however, equivalent to a weak LDP.

Proposition 2.8 Assume that there exists a lsc function J such that for all x∈ S

−J(x) ≥ lim sup
ǫ→0

lim sup
N→+∞

1
aN

ln µN[B(x, ǫ)] and − J(x) ≤ lim inf
ǫ→0

lim inf
N→+∞

1
aN

ln µN[B(x, ǫ)] . (2.116)

ThenµN satisfies a weak LDP with rate function J.

Proof —
Let O be open in S. Then, for anyµ ∈ O there existsδµ > 0 such thatB(µ, η) ⊂ O for all η ∈ [

0 ;δµ
]
. Then,

given anyη ∈ [
0 ;δµ

]
,

µN
[
O
] ≥ µN

[
B(µ, η)

]⇒ lim inf
N→+∞

1
aN

ln µN
[
G
] ≥ lim inf

N→+∞
1

aN
ln µN

[
B(µ, η)

]
(2.117)

so that, by taking lim infη→0 of both sides of the inequality, we get that

lim inf
N→+∞

1
aN

ln µN
[
O
] ≥ −J(x) . (2.118)

Then, optimizing overx ∈ G we get (2.102). Further, letK ⋐ S. Since,

−J(x) = lim sup
ǫ→0

lim sup
N→+∞

1
aN

ln µN[B(x, ǫ)] (2.119)

we get that for anyη > 0 there existsδx > 0 such that

lim sup
N→+∞

1
aN

ln µN[B(x, δx)] ≤ −J(x) + η ≤ −Jη(x) = −min{J(x) − η, η−1} . (2.120)

∪x∈K B(x, δx) is an open cover ofK and thus admits a finite subcover∪m
k=1B(xk, δxk) ⊃ K. Thence,

lim sup
N→+∞

1
aN

ln µN[K] ≤ lim sup
N→+∞

1
aN

ln µN
[ ∪m

k=1 B(xk, δxk)
]

≤ lim sup
N→+∞

1
aN

ln
[
m · max

k∈[[ 1 ; m]]
µN

[
B(xk, δxk)

]] ≤ max
p∈[[ 1 ; m]]

{ − Iη(xp)
} ≤ − inf

x∈K
Jη(x) (2.121)

The LDP on compact sets then follows by sendingη→ 0+.
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3 The large-N analysis of regular multiple integrals

3.0.2 A first example

We are now going to study an extremely simple example of a multiple integral. This will allow us to illustrate how
the previously introduced formalism can be applied to the study of the large-N behaviour of multiple integrals
and, also, how, in practice, one can establish that a sequence µN of probability measures onR does satisfy a LDP.
Our model example will consist of the integral

( ∫

R

e−NV(λ) · dλ
)N

(3.1)

Clearly, all information on its largeN behaviour can be deduced from the Laplace principle for 1-dimensional
integrals. We, however, shall take another route based on LDP. One can, in fact, interpret the integral (3.1) as the
multiple integral

∫

RN

N∏

a=1

e−NV(λa) · dNλ =
(
I [V]

)N with I [V] =
∫

R

e−NV(λ) · dλ . (3.2)

Then
(
I [V]

)N appears as the normalization constant for the probabiliy measure

dPN
(
λN

)
=

1
(I [V])N

N∏

a=1

e−NV(λa) · dNλ on RN . (3.3)

In the following, we shall assume that the potentialV is such that

• V ∈ C1(R) ;

• V(x) ≥ v1|x| + v2 for some constants (v1, v2) ∈ R+ × R ;

• ∃δ > 0, supx∈R sup|y|≤δ
∣∣∣V
′(x+ y)
V(x)

∣∣∣ < +∞ .

The lawPN allows one to define a random variable, the empirical measure, onP(R):

L(λN)
N =

1
N

N∑

a=1

δλa ∈ P(R) where λN = (λ1, . . . , λN) ∈ RN . (3.4)

In fact,PN induces a probability measureµN onP(R) throughµN = L(λN)
N #PN, ie for any Borel setB ⊂ P(R),

µN[B] = PN
[{
λN ∈ RN : L(λN)

N ∈ B
}]
. (3.5)

Under the above assumptions, we are going to prove the

Proposition 3.1 The sequenceµN satisfies a LDP with speed N2 and good rate function

J[µ] =
∫

R

V(x) · dµ(x) − inf
s∈R

[
V(s)

]
. (3.6)

Furthermore,

lim
N→+∞

1

N2
ln

[
(I [V])N]

= − inf
µ∈P(R)

J[µ] = − inf
s∈R

[
V(s)

]
with J[µ] =

∫

R

V(x) · dµ(x) (3.7)

Proof —
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• Exponential tightness

In order to establish the exponential tightness of the sequence µN the idea consists in tailoring a sufficiently
nice sequence of compact setsKL ⊂ P(R) such that obtaining the sought upper bound forµN

[
KL

]
is relatively

straightforward. Since the potentialV naturally arises in the density of probability measure dPN(λN), it seems
natural to build the sequenceKL on the basis of functionals involving the potentialV.

Let v = inf s∈R
[
V(s)

]
and define

KL =

{
µ ∈ P(R) :

∫

R

[
V(x) − v

] · dµ(x) ≤ L
}
. (3.8)

SinceV − v ≥ 0, by the monotone convergence theorem,

∫

R

[
V(x) − v

] · dµ(x) = sup
M∈N

∫

R

min
{
V(x) − v,M

}
· dµ(x) (3.9)

we get that thelhs is lower semi-continuous as a supremum of a continous familiy of functions onP(R). Thus,
KL is closed as a level set of a lower semi-continuous function.

For anyµ ∈ KL one has

µ
[
R \ [ − M ; M

]] ≤ 1
v1 · M + v2 − v

∫

R\
[
−M ;M

]
[
V(x) − v

] · dµ(x)

≤ 1
v1 · M + v2 − v

∫

R

[
V(x) − v

] · dµ(x) ≤ L
v1 · M + v2 − v

. (3.10)

As a consequence,

KL ⊂
⋂

M∈N

{
µ ∈ P(R) : µ

[
R \ [ − M ; M

]] ≤ L
v1M + v2 − v

}
= K . (3.11)

Note that

FM : µ 7→
∫

R\
[
−M ;M

]
dµ(s) (3.12)

is lsc by the previous reasoning. HenceK is closed as an intersection of level sets of lower semi-continuous
functions onP(R). Furthermore,K is uniformly tight. Indeed, givenǫ > 0 there existsM > 0 such that

L
v1M + v2 − v

< ǫ . (3.13)

Thus for anyµ ∈ K , µ
[[ − M ; M

]c]
< ǫ.

Thence, by Prohorov’s theorem,K is compact. AsKL is closed, it follows that it is compact.
Note that, this proof also ensures thatJ is a good rate function,ie the level sets ofJ are compact.
Having found a proper sequence of growing compacts, we now establish the exponential tightness of the

sequenceµN. For this, we estimate

µN

[
Kc

L

]
≡ PN

[{
λN ≡ (λ1, . . . , λN) ∈ RN : L(λN)

N ∈ Kc
L

}]
. (3.14)
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In order to bound it from above, we need a lower bound for the normalization constant and, as well, further bound
the integral part.

One has that

I [V] =
∫

R

e−NV(λ) · dλ ≥ e−(N−1)v ·
∫

R

e−V(λ) · dλ (3.15)

Thus,

µN
[
Kc

L
] ≤ e(N−1)Nv

( ∫

R

e−V(λ)dλ
)N

∫

L
(λN )
N ∈Kc

L

e
−N2

2

∫
V(s)dL

(λN )
N (s)

·
N∏

a=1

e−
N
2 V(λa) · dNλ

≤ e(N−1)Nv

( ∫

R

e−V(λ)dλ
)N
· e−N2

2 v
∫

L
(λN)
N ∈Kc

L

e
−N2

2

∫ (
V(s)−v

)
·dL

(λN)
N (s)

︸                     ︷︷                     ︸
≥ exp

[
−N2L/2

]
·

N∏

a=1

e−
N
2

(
v1|λa|+v2

)
· dNλ

≤ e( N
2 −1)Nv

( ∫

R

e−V(λ)dλ
)N
· e−N2

2 L · 2N e−
N2v2

2

vN
1 NN

. (3.16)

As a result,

lim sup
N→+∞

1

N2
ln µN

[
Kc

L
] ≤ v− v2

2
− L

2
, (3.17)

so that taking lim supL→+∞ yields the exponential tightness of the sequenceµN.

• A technical simplification

In the following we are going to prove estimates for shrinking balls. However, we shall not do it directly for the
sequenceµN but rather forµN = µN ·

(
I [V]

)N:

−J[µ] ≥ lim sup
δ→0

lim sup
N→+∞

1
aN

lnµN[B(µ, δ)] and − J[µ] ≤ lim inf
δ→0

lim inf
N→+∞

1
aN

ln µN[B(µ, δ)] (3.18)

where

J[µ] =
∫

R

V(s) · dµ(s) . (3.19)

In such a way, by repeating the reasoning outlined in the proof of propositions 2.7 and 2.8, we are going to
obtain similar bounds for all closed -upper bound- and open -lower bound- sets, namely for all open subsetsO of
P(R) and all closed subsetsF of P(R)

− inf
µ∈F

{
J[µ]

}
≥ lim sup

N→+∞

1

N2
ln µN[F] and lim inf

N→+∞
1

N2
ln µN[O] ≥ − inf

µ∈O

{
J[µ]

}
(3.20)
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Then, by takingO = F = P(R), sinceµN
[P(R)

]
= 1, one will get

− inf
µ∈P(R)

{
J[µ]

}
≤ lim inf

N→+∞
1

N2
ln µN[P(R)] ≤ lim sup

N→+∞

1

N2
ln µN[P(R)] ≤ − inf

µ∈P(R)

{
J[µ]

}
(3.21)

thus sinceµN
[P(R)

]
= 1 yielding

− inf
µ∈P(R)

{
J[µ]

}
= lim

N→+∞
1
N

ln I [V] . (3.22)

In order to obtain (3.7), it remains to compute the minimum. Clearly, for anyµ ∈ P(R) :

J[µ] ≥
∫

R

inf
s∈R

[
V(s)

] · dµ(s) = inf
s∈R

[
V(s)

]
, (3.23)

sinceµ is a probability measure. Furthermore,V attains its infimum at least at one points0. Then

J[δs0] = V(s0) = inf
s∈R

[
V(s)

]
, (3.24)

so that indeed (3.7) follows.
This limit being established, one deduces from (3.20) estimates ofµN on shrinking balls

−J[µ] ≥ lim sup
δ→0

lim sup
N→+∞

1
aN

ln µN[B(µ, δ)] and − J[µ] ≤ lim inf
δ→0

lim inf
N→+∞

1
aN

ln µN[B(µ, δ)] , (3.25)

thus leading, according to propositions 2.7 and 2.8 to the full LDP with speedN2 and good rate functionJ for the
sequenceµN.

• Upper bound

In order to establish the upper bound onµN
[
B(µ, δ)

]
, one should integrate on the domain

{
λN : L(λN)

N ∈ B(µ, δ)
}
. (3.26)

The characterization of its geometric form is rather implict; however, it has a very good description in terms of
the empirical measure. It is therefore convenient to recastthe integrand in terms of integrals versus the empirical
measure.

SetκM = ||min{V,M}||BL. Then, forM > 0,

µN
[
B(µ, δ)

]
=

∫

{λN : L
(λN )
N ∈B(µ,δ)}

exp
{
− N(N − 1)

∫
V(s) · dL(λN)

N (s)
} N∏

a=1

e−V(λa) · dNλ

≤
∫

{λN : L
(λN)
N ∈B(µ,δ)}

exp
{
− N(N − 1)

∫
min{V(s),M} · dL(λN)

N (s)
} N∏

a=1

e−V(λa) · dNλ . (3.27)

It follows from the definition of the bounded-Lipschitz metric, sinces 7→ [
V(s)−v

]
1|x|≤M(s) is a bounded Lipschitz

function, that forL(λN)
N ∈ B(µ, δ)

∫
min{V(s),M} · dL(λN)

N (s) ≥
∫

min{V(s),M} · dµ(s) − δ · ||min{V,M}||BL (3.28)
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Hence,

µN
[
B(µ, δ)

] ≤ exp
{
− N(N − 1)

∫
min{V(s),M} · dµ(s)

}
· eδ·N(N−1)κM ·

( ∫
e−V(λ) · dλ

)N
. (3.29)

Thus, clearly,

lim sup
N→+∞

1

N2
ln µN

[
B(µ, δ)

] ≤ −
∫

min{V(s),M} · dµ(s) + δ · κM . (3.30)

Further, sendingδ→ 0 leads to

lim sup
δ→0

lim sup
N→+∞

1
N2

ln µN
[
B(µ, δ)

] ≤ −
∫

min{V(s),M} · dµ(s) . (3.31)

Finally, the sequence

fM(s) = min{V(s),M} (3.32)

is increasing. Thus, by monotone convergence,

lim
M→+∞

∫
min{V(s),M} · dµ(s) = lim

M→+∞

∫
V(s) · dµ(s) . (3.33)

Hence, upon sendingM → +∞ one gets

lim sup
δ→0

lim sup
N→+∞

1

N2
ln µN

[
B(µ, δ)

] ≤ −J[µ] . (3.34)

It is important to note at this stage the very subtle effects that took place in taking theorderedlimits. Taking
the N → +∞ demanded the introduction of some regularizations. The latter would, in fine produce divergent
factors should theδ → 0+ not be taken first. Only after theδ → 0+ limit, could the regularizing parameterM be
sent to+∞.

• Lower bound

Obtaining a lower bound is the most subtle procedure. Since one can only use properties of the bounded Lipschitz
metric when integrating versus bounded-Lipschitz functions, one should start by approximating the measureµ ∈
P(R) by a compactly supported one. Further, one will need to havea quite precise control on the shape of the
domain of intergration. Although for numerous theoreticalconsiderations, the below description

{
λN ∈ RN : dBL

(
µ, L(λN)

N ) < δ
}

(3.35)

of the domain of integration seems sufficient, it appears extremely hard to say anything about its shape or more
precise geometric properties. Therefore, for minoration purposes, it is convenient to build a domain contained in
the latter that, however, has an explicit geometry.
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Let µ ∈ P(R). If
∫

V(s) · dµ(s) = +∞, then there is noting to prove. Hence, we may well assume that

∫
V(s) · dµ(s) < +∞. Furthermore, we pick 0< η′ < δ/2 andµ̃ be an atomless measure such that

dBL
(̃
µ, µ

) ≤ η′ . (3.36)

For anyδ > 0, there existsMδ such that for anyM ≥ Mδ the measure

µ(M)
=

1|x|≤M · µ̃
µ̃
([ − M ; M

]) (3.37)

satisfiesdBL(µ, µ(M)) < δ, wheredBL is the bounded Lipschitz metric. It then follows that
{
λN ∈ RN : dBL(µ, L(λN)

N ) < δ
}
⊂

{
λN ∈ RN : dBL

(
µ(M), L(λN)

N

)
< 2δ

}
. (3.38)

The measureµ(M) allows one to introduce

xN
1 = inf

{
x : µ(M)(]−∞ ; x

]) ≥ 1
N + 1

}
and xN

a+1 = inf
{
x ≥ xN

a : µ(M)(] xN
a ; x

]) ≥ 1
N + 1

}
a = 1, . . . ,N−1

(3.39)

Then, it can be shown that for anyη > 0, there existsNη such that for anyN > Nη

dBL

(
µ(M),

1
N

N∑

p=1

δxN
p

︸     ︷︷     ︸
L

(xN )
N

)
< η . (3.40)

In the following we assume thatN > Nη whereη is such that 0< η < δ/2. Then

Ωδ ≡
{
λN ∈ RN :

∣∣∣λa − xN
a

∣∣∣ < δ

2
a = 1, . . . ,N

}
⊂

{
λN ∈ RN : d

(
µ(M), L(λ)

N

)
< δ

}
. (3.41)

It follows from the mean value theorem that, provided|λa − xN
a | ≤ δ/2,

∣∣∣∣V(λa) − V(xN
a )

∣∣∣∣ ≤
δ

2
· sup
|y|≤δ/2

∣∣∣∣∣
V′(xN

a + y)

V(xN
a )

∣∣∣∣∣ · |V(xN
a )| ≤ |V(xN

a )| · sup
x∈R

sup
|y|≤δ/2

∣∣∣∣∣
V′(x+ y)

V(x)

∣∣∣∣∣ (3.42)

As a consequence, given anyλN ∈ Ωδ

−
N∑

a=1

V(λa) ≥ −
N∑

a=1

V
(
xN

a
) − δ · sup

x∈R
sup
|y|≤δ

∣∣∣∣
V′(x+ y)

V(x)

∣∣∣∣
︸                  ︷︷                  ︸

̟δ

·
N∑

a=1

|V(
xN

a
)| . (3.43)

Therefore,

µN
[
B(µ, 2δ)

] ≥ µN
[
B(µ(M), δ)

]
=

∫

{
λN∈RN : d(µ(M),L

(λN)
N )<δ

}

N∏

a=1

e−NV(λa) · dNλ

≤
N∏

a=1

e−NV(xN
a ) ·

N∏

a=1

e−Nδ̟δ |V(xN
a )| ·

∫

Ωδ

dNλ

≤ exp
{
− N2

∫
V(s) · dL(xN)

N (s) − N2δ ·̟δ ·
∫ ∣∣∣V(s)

∣∣∣ · dL(xN)
N (s)

}
· δN (3.44)
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Then, using thatdBL
(
L(xN)

N , µ(M)) < η, we get

µN
[
B(µ, 2δ)

] ≥ exp
{
− N2

∫
min{V(s),VM} · dµ(M)(s) − N2δ ·̟δ ·

∫
min{|V(s)|, |V|M} · dµ(M)(s)

− N2η(1 + δ ·̟δ)
(
||min{V,VM}||BL + ||min{|V|, |V|M}||BL

)}
(3.45)

where we have setVM = max
{
V(s) : s∈ [ − M ; M

]}
and|V|M = max

{|V(s)| : s∈ [ − M ; M
]}

. Thus,

lim inf
N→+∞

1

N2
lnµN

[
B(µ, 2δ)

] ≥

−
∫

min{V(s),VM} · dµ(M)(s) − δ ·̟δ ·
∫

min{|V(s)|, |V|M} · dµ(M)(s)

− η(1 + δ ·̟δ)
(
||min{V,VM}||BL + || min{|V|, |V|M}||BL

)
(3.46)

Sendingη to 0+ at this point, we get that

lim inf
N→+∞

1
N2

ln µN
[
B(µ, 2δ)

] ≥ −
∫

V(s) · 1|x|≤M (s)d̃µ(s)

µ̃
([ − M ; M

]) − δ ·̟δ ·
∫ ∣∣∣V(s)

∣∣∣ · 1|x|≤M (s) · d̃µ(s)

µ̃
([ − M ; M

]) (3.47)

Further, just as previously, we can sendη′ to 0, hence replacing the measureµ̃ by the measureµ. Then, since
V > 0 for x large enough

lim inf
N→+∞

1

N2
ln µN

[
B(µ, 2δ)

] ≥ −
∫

V(s) · 1|x|≤M (s)dµ(s)

µ
([ − M ; M

]) − δ ·̟δ ·
∫ ∣∣∣V(s)

∣∣∣ · 1|x|≤M (s) · dµ(s)

µ
([ − M ; M

]) . (3.48)

So that, sendingM → +∞ and thenδ→ 0, we get

lim inf
δ→0

lim inf
N→+∞

1

N2
lnµN

[
B(µ, 2δ)

] ≥ −
∫

V(s) · dµ(s) = −J[µ] . (3.49)

3.1 Varadhan’s lemma and a first non-trivial application

In this subsection, we shall establish Varadhan’s lemma which can be thought of as an infinite dimensional ana-
logue of Laplace’s method for extracting the leading largeN behaviour of one-dimensional integrals of the type

∫

R

e−NV(λ) · dλ . (3.50)

We shall then apply the lemma so as to draw informations on theleading asymptotics of one of the multiple
integrals that were introduced in the first part of the lectures.

Theorem 3.1 Varadhan’s lemma
LetµN ∈ P(S) satisfy a LDP with rate function J and speed aN. Then, for any f: S 7→ R that is continuous

and bounded from above

lim
N→+∞

1
aN

lnEN
[
eaN f ]

= sup
S

[ f − J] with EN
[
g
]
=

∫
g(s) · dµN(s) (3.51)
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Proof —
We first estimate the lim sup. LetM > 0 be an integer. Asf is continuous, there exists finitely many closed

setsF1, . . . , Fℓ such that

f ≤ −M on
(
∪ℓp=1 Fp

)c
and | f (x) − f (y)| < 1/M for any x, y ∈ Fp , p = 1, . . . , ℓ . (3.52)

Then,

lim sup
N→+∞

1
aN

lnEN
[
eaN f ] ≤ max

{
− M , max

p∈[[ 1 ; ℓ ]]

(
lim sup
N→+∞

1
aN

lnEN
[
eaN f 1Fp

])}

≤ max
{
− M , max

p∈[[ 1 ; ℓ ]]

[
sup
x∈Fp

f (x) − inf
x∈Fp

J(x)
]}

≤ max
{
− M , max

p∈[[ 1 ; ℓ ]]

[
sup
x∈Fp

(
f (x) − J(x) +

1
M

)]}

≤ max
{
− M , sup

x∈S

(
f (x) − J(x)

)}
+

1
M

(3.53)

Letting M → +∞ yields

lim sup
N→+∞

1
aN

lnEN
[
eaN f ] ≤ sup

x∈S

[
f (x) − J(x)

]
. (3.54)

In order to bound the lim inf, letx ∈ S. Then

lim inf
N→+∞

1
aN

lnEN
[
eaN f ] ≥ lim inf

N→+∞
1

aN
lnEN

[
eaN f 1B(x,δ)

]

≥ inf
y∈B(x,δ)

[
f (y)

] − inf
y∈B(x,δ)

[
J(y)

] ≥ inf
y∈B(x,δ)

[
f (y)

] − J(x) (3.55)

By continuity of f , limδ→0 inf y∈B(x,δ)
[
f (y)

]
= f (x), thus passing on to theδ→ 0+ limit yields

lim inf
N→+∞

1
aN

lnEN
[
eaN f ] ≥ f (x) − J(x) . (3.56)

It then remains to optimise in respect tox so as to get

lim inf
N→+∞

1
aN

lnEN
[
eaN f ] ≥ sup

x∈S

[
f (x) − J(x)

]
. (3.57)

We are now in position to establish the

Theorem 3.2 Let W(λ, µ) be such that||W||BL and V∈ C1(R) be such that V(x) ≥ v1|x| + v2 then

lim
N→+∞

1

N2
ln

[ ∫

RN

N∏

a,b=1

eW(λa,λb) ·
N∏

a=1

e−NV(λa) ·dNλ

]
= sup

µ∈P(R)

[ ∫

R2

W(s, t)dµ(s)⊗dµ(t) −
∫

R

V(s) ·dµ(s)
]
. (3.58)
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Proof —
We have already established that the sequence of probability measures onRN given by

dPN
(
λN

)
=

1
(I [V])N

N∏

a=1

e−NV(λa) · dNλ , I [V] =
∫

R

e−NV(λ)dλ (3.59)

induces a probability measureµN onP(R) throughµN = LN#PN and that the sequenceµN satisfies a LDP with
speedN2 and good rate function

J[µ] =
∫

R

V(x) · dµ(x) − inf
s∈R

[
V(s)

]
. (3.60)

Hence, one has

∫

RN

N∏

a,b=1

eW(λa,λb) ·
N∏

a=1

e−NV(λa) · dNλ =
(
I [V]

)N ·
∫

RN

exp
{
N2

∫
W(s, t)dL(λN)

N (s) ⊗ dL(λN)
N (t)

}
· dPN(λN)

=
(
I [V]

)N · EN

[
eN2W]

(3.61)

where the last equality is a mere restatement of the definition of the image measureµN, EN refers to the expectation
in respect to the measureµN. In order to be able to apply Varadhan’s lemma, we still need to establish that

µ 7→ W[µ] =
∫

W(s, t) · dµ(s) ⊗ dµ(t) (3.62)

is continuous and bounded from above. The latter follows from

∣∣∣∣∣
∫

W(s, t) · dµ(s) ⊗ dµ(t)
∣∣∣∣∣ ≤ ||W||L∞(R2) (3.63)

sinceµ ∈ P(R). Since,W is bounded Lipschitz in two variables, it is a quite direct consequence of the bounded
Lipschitz metric thatW is continuous onP(R). We leave the details to the reader as a character building exercise
in real analysis.

4 Leading large-N asymptotic behaviour ofβ-ensembles

Let

dP(β)
N (λN) =

1

Z(β)
N

N∏

a<b

|λa − λb|2β ·
N∏

a=1

e−NV(λa) · dNλ (4.1)

whereV : R→ R is aC1(R) function such that, for someβ′ ≥ β

lim inf
x→±∞

V(x)
β′ · ln |x| > 1 , (4.2)
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and

lim sup
δ→0

̟δ < +∞ with ̟δ = sup
x∈R

sup
|y|≤δ

∣∣∣∣
V′(x+ y)

V(x)

∣∣∣∣ (4.3)

Finally, the normalization constant or partition functionreads and

Z(β)
N =

∫

RN

N∏

a<b

|λa − λb|2β ·
N∏

a=1

e−NV(λa) · dNλ . (4.4)

In the following we denote byµN the measure onP(R) induced byP(β)
N , vizµN = L(λN)

N #P(β)
N .

4.1 The LDP for the associated sequenceµN

Throughout this section, we are going to prove the

Theorem 4.1 The sequenceµN ∈ P(R) satisfies a LDP with speed N2 and good rate function

Jβ[µ] =
∫

R2

f (s, t) · dµ(s) ⊗ dµ(t) − cV where



f (s, t) =
V(s)

2
+

V(t)
2
− β ln |x− y|

cV = infµ∈P(R)

∫

R2

f (s, t) · dµ(s) ⊗ dµ(t)
(4.5)

Furthermore, the functional IV[µ] =
∫

R2

f (s, t) ·dµ(s)⊗dµ(t) attains its minimum at a unique compactly supported

probability measureµV. Furthermore, if the potential V is analytic, thenµV is continuous in respect to Lebesgue
measure.

Note that this theorem is a typical example where one cannot apply Varadhan’s lemma since the functional
"perturbing" the decoupled measure studied in section 3.0.2

µ 7→ −
∫

R2

ln |x− y| · dµ(x) ⊗ dµ(y) (4.6)

is neither continuous nor bounded from above. Thus, the whole difficulty of the proof lies in circumventing these
singularities. In fact, the steps of the proof decompose exactly as in the case of the "simple" example studied
previously. Below, we shall establish the LDP and the limit of the partition function. In the next sub-section,
based on several auxilliary lemmas we establish an explicitcharacterization of the minimizer ofIV, the so-called
equilibrium measure.

Proof —
Note that the density dP(β)

N (λN) can be represented as

dP(β)
N (λN) =

1

Z(β)
V

exp
{
− N2

∫

x,y

f (x, y) · dL(λN)
N (x) ⊗ dL(λN)

N (y)
}
·

N∏

s=1

e−V(λs) · dNλ (4.7)
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• Exponential tightness

It follows from Jensen’s inequality applied to the probability measure

⊗Nν(λN) =
N∏

s=1

{
e−V(λs)

∫
e−V(λ)dλ

}
· dNλ (4.8)

that

ln Z(β)
V ≥ N ln

[ ∫
e−V(λ)dλ

]
− N2

∫

RN

{ ∫

R2

x,y

f (x, y) · dL(λN)
N (x) ⊗ dL(λN)

N (y)

}
· ⊗Nν(λN)

= N ln
[ ∫

e−V(λ)dλ
]
− N(N−1)

( ∫
e−V(λ)dλ

)−2
·
∫

R2

(V(x) + V(y)
2

− β ln |x−y|
)
·e−V(x)−V(y)dxdy ≥ −CN2

(4.9)

for someC > 0.
Observe that

|x− y| ≤
√

(x2 + 1)(y2 + 1) so that f (x, y) ≥ 1
2

(
ψV(x) + ψV(y)

)
(4.10)

where

ψV(x) = V(x) − β ln(x2
+ 1) . (4.11)

Finally, it follows readily from (4.2) that there exists constantsv > 0 andc ∈ R such that

f (x, y) ≥ v
(
V(x) + V(y)

)
+ c . (4.12)

Let the compactKL be defined as in (3.8)

KL =
{
µ ∈ P(R) :

∫
V(x) · dµ(x) ≤ L

}
. (4.13)

Then, one gets

µN[Kc
L] ≤ eN2(C−c)e−2vN2L ·

( ∫

R

e−V(λ)dλ
)
. (4.14)

Hence,µN is exponentially tight.

We proceed exactly as in the proof of the LDP in proposition 3.1. Hence, we define

µN = Z(β)
N · µN (4.15)

and introduce

IV[µ] =
∫

R2

f (s, t) · dµ(s) ⊗ dµ(t) . (4.16)
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• Upper bound

Given anyµ ∈ P(R), we shall establish the bound

lim sup
δ→0

· lim sup
N→+∞

1

N2
ln µN

[
B(µ, δ)

] ≤ −IV[µ] (4.17)

For anyM > 0 set

fM(x, y) = min
[
f (x, y),M

]
. (4.18)

Then

µN

[
B(µ, δ)

]
≤

∫

{
λN : dBL(L

(λN )
N ,µ)<δ

}
λa,λb , a,b

exp
{
− N2

∫

x,y

fM(x, y) · dL(λN)
N (x) ⊗ dL(λN)

N (y)
}
·

N∏

s=1

e−V(λs) · dNλ (4.19)

where we have used that under any measure absolutely continuous in respect to Lebesgue’s one the integration
variables are almost surely distinct. As a consequence,L(λN)

N ⊗ L(λN)
N

({x = y}) = N−1 and thus

∫

x,y

fM(x, y) · dL(λN)
N (x) ⊗ dL(λN)

N (y) =
∫

fM(x, y) · dL(λN)
N (x) ⊗ dL(λN)

N (y) +
M
N
. (4.20)

Since fM is bounded, the functional

I (M)
V : µ 7→

∫
fM(x, y) · dµ(x) ⊗ dµ(y) (4.21)

is continuous and there exists anfM dependent constantC such that
∣∣∣I (M)

V [µ] − I (M)
V

[
L(λN)

N

]∣∣∣ ≤ Cδ (4.22)

provideddBL(L(λN)
N , µ) < δ. As a consequence,

lim sup
δ→0

· lim sup
N→+∞

1
N2

ln µN
[
B(µ, δ)

] ≤ −I (M)
V [µ] . (4.23)

Then, lettingM ր +∞, one concludes by the monotone convergence theorem.

• Lower bound

Forµ ∈ P(R), we now establish the bound

lim inf
δ→0

· lim inf
N→+∞

1

N2
ln µN

[
B(µ, δ)

] ≥ −IV[µ] . (4.24)

If µ has atoms thenIV[µ] = +∞ and the bound is trivial. Hence, we may just as well assume that µ has no atoms.
We then proceed as previously.

For anyδ > 0, there existsMδ such that for anyM ≥ Mδ the measure

µ(M)
=

1|x|≤M

µ
([ − M ; M

]) (4.25)
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satisfiesdBL(µ, µ(M)) < δ, wheredBL is the bounded Lipschitz metric. It then follows that

{
λN ∈ RN : d

(
µ, L(λ)

N ) < δ
)} ⊂

{
λN ∈ RN : d

(
µ̃, L(λ)

N

)
< 2δ

}
. (4.26)

We use this measureµ to introduce

xN
1 = inf

{
x : µ

(] −∞ ; x
]) ≥ 1

N + 1

}
and xN

a+1 = inf
{
x ≥ xN

a : µ
(]

xN
a ; x

]) ≥ 1
N + 1

}
a = 1, . . . ,N− 1

(4.27)

Further, for anyη > 0 there existsNη such that for anyN > Nη

dBL

(
µ,

1
N

N∑

p=1

δxN
p

)
< η . (4.28)

In the following, we assume thatN > Nη whereη is such that 0< η < δ/2. Then

Ωδ ≡
{
λN ∈ RN :

∣∣∣λa − xN
a

∣∣∣ < δ

2
a = 1, . . . ,N

}
⊂

{
λN ∈ RN : d

(
µ, L(λ)

N

)
< δ

}
. (4.29)

Assume thatλN ∈ Ωδ, then

−
N∑

a=1

V(λa) ≥ −
N∑

a=1

V
(
xN

a
) − δ ·̟δ ·

N∑

a=1

|V(
xN

a
)| . (4.30)

As a consequence,

µN
[
B(µ, 2δ)

] ≥ µN
[
B(µ(M), δ)

] ≥ exp
{
−N2

∫
V(s) ·dL(xN)

N (s) − N2δ ·̟δ ·
∫ ∣∣∣V(s)

∣∣∣ ·dL(xN)
N (s)

}
·Rδ (4.31)

where

Rδ =
∫

|λa−xN
a |< δ

2

N∏

b>a

∣∣∣λa − λb

∣∣∣2β ≥
∫

|λa|< δ
2

λ1<···<λN

N∏

b>a

∣∣∣λb − λa + xN
b − xN

a

∣∣∣2β

≥
N∏

b>a+1

∣∣∣xN
b − xN

a

∣∣∣2β ·
N−1∏

a=1

∣∣∣xN
a+1 − xN

a

∣∣∣β ×
δ/2∫

−δ/2
λ1<···<λN

N−1∏

a=1

∣∣∣λa+1 − λa

∣∣∣βdNλ . (4.32)

The last integral can be estimated through the change of variables

u1 = λ1 u j = λ j − λ j−1 j = 2, . . . ,N (4.33)

and the inclusion
{
λN : |λa| < δ/2 λ1 < · · · < λN

}
⊃

{
λN : |λ1| < δ/2N 0 < λ j+1 − λ j <

δ

2N

}
. (4.34)
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Indeed, then,

δ/2∫

−δ/2λ1<···<λN

N−1∏

a=1

∣∣∣λa+1 − λa

∣∣∣2βdNλ ≥
δ/2N∫

−δ/2N

N∏

a=2

∣∣∣ua

∣∣∣βdNu =
δ

2N
·
( 2
β + 1

( δ
2N

)β+1
)N−1

(4.35)

Furthermore, sincex 7→ ln x is increasing

xN
N∫

xN
1

x<y

ln |x− y| · dµ(M)(x) ⊗ dµ(M)(y) =
N−1∑

a,b=1

xN
a+1∫

xN
a

xN
b+1∫

xN
b

1x<y(x, y) ln |x− y| · dµeq(x) ⊗ dµeq(y)

≤ 1
N2

N−1∑

a=1

N−1∑

b=a+1

ln(xN
b+1 − xN

a ) +
N−1∑

a=1

ln(xN
a+1 − xN

a ) · 1
2N2

. (4.36)

Thus

N∏

b>a+1

∣∣∣xN
b − xN

a

∣∣∣2β ·
N−1∏

a=1

∣∣∣xN
a+1 − xN

a

∣∣∣β ≥ exp
{
2β

xN
N∫

xN
1

1x<y · ln |x− y| · dµ(M)(x) ⊗ dµ(M)(y)
}

(4.37)

Putting all the pieces together and repeating the handlingsoutlined in the course of the setting of the first LDP
established in proposition 3.1 and using that by the dominated convergence theorem

xN
N∫

xN
1

1x<y · ln |x− y| · dµ(M)(x) ⊗ dµ(M)(y) −→
N→+∞

1
2

∫

R2

· ln |x− y| · dµ(M)(x) ⊗ dµ(M)(y) (4.38)

we get

lim inf
N→+∞

1

N2
lnµN

[
B(µ, 2δ)

] ≥ −
∫

V(s) · dµ(M)(s) − δ ·̟δ ·
∫ ∣∣∣V(s)

∣∣∣ · dµ(M)(s)

− η(1+ δ ·̟δ)
(
||V1|x|≤M ||BL + || |V|1|x|≤M ||BL

)
+ β

∫

R2

ln |x− y| · dµ(M)(x) ⊗ dµ(M)(y) . (4.39)

Sending firstη→ 0+, then relaxingM ր +∞ and finally taking lim infδ→0 leads to

lim inf
δ→0

lim inf
N→+∞

1

N2
ln µN

[
B(µ, 2δ)

] ≥ IV[µ] . (4.40)

4.2 Some applications of the LDP

In the present section we are going to apply the LDP for the eigenvalue distribution so as to establish several
corollaries that allow one to answer positively to certain questions that have been raised in the introduction to this
series of lectures.

We shall start with the convergence of the density of eigenvalues
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Corollary 4.1 Let f be bounded Lipschitz onR and p(β)
1;N the one-eigenvalue distribution function:

p(β)
1;N(λ) =

∫

RN−1

P(β)
N (λ, λ2, . . . , λN) ·

N∏

a=2

dλa . (4.41)

Then,

lim
N→+∞

∫

R

f (λ) · p(β)
N (λ) · dλ =

∫
f (s) · dµeq(s) (4.42)

Proof —
It is readily seen that

∫

R

f (λ) · p(β)
N (λ) · dλ =

∫

RN

f (λ1) · dP(β)
N

(
λN

)

= P
(β)
N

[ ∫
f (s) · dL(λN)

N (s)
]
= µN

[ ∫
f (s) · dµ(s)

]
. (4.43)

Recall thatJβ attains a unique minimum at a compactly supported probability measureµeq onR. This guarantees
that, givenǫ > 0,

uǫ = inf
P(R)\B(µeq,ǫ)

Jβ
[
µ
]
> 0. (4.44)

Then, by the LDP for the sequenceµN, there existsN0 large enough such that

µN
[P(R) \ B(µeq, ǫ)

]
≤ e−

N2
2 uǫ (4.45)

for anyN ≥ N0. Furthermore,

µN
[ ∫

f (s) · dµ(s) −
∫

f (s) · dµeq(s)
]
= µN

[
1Bc(µeq,ǫ)

{ ∫
f (s) · dµ(s) −

∫
f (s) · dµeq(s)

}]

︸                                                            ︷︷                                                            ︸
|·| ≤ 2|| f ||∞ ·exp

{
−N2 uǫ

2

}

+ µN

[
1B(µeq,ǫ)

{ ∫
f (s) · dµ(s) −

∫
f (s) · dµeq(s)

}
· dµ(s)

]

︸                                                                     ︷︷                                                                     ︸
ǫ·|| f ||BL

. (4.46)

In other words, given anyǫ > 0, one has that

lim sup
N→+∞

{ ∫

R

f (λ)p(β)
N (λ) · f (λ) · dλ −

∫
f (s) · dµeq(s)

}
≤ ǫ , (4.47)

so that the claim follows.
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Corollary 4.2 Assume that the unique minimizerµeq of Jβ is absolutely continuous in respect to Lebesgue’s
measure:

dµeq(s) = ρ(s) · ds (4.48)

with connected support
[
α(−) ;α(+) ]. Let γ∗a, a = 1, . . . ,N denote the "classical" positions of the integration

variables which are understood to be orderedλ1 < · · · < λN, viz

a
N
=

γa∫

α(−)

dµeq(s) . (4.49)

Given anyǫ > 0,

P
(β)
N

[{
λN ∈ RN : ∃a |λa − γ∗a| > ǫ

}]
= O(N−∞) . (4.50)

Proof —
Givenǫ > 0, set

Υǫ =
{
λN ∈ RN : ∃a |λa − γ∗a| > ǫ

}
. (4.51)

Let λN ∈ RN
↑ . Pick a ∈ [[ 1 ; N ]] minimal such that|λa − γa| > ǫ. Let b ∈ [[ 1 ; N ]] se such that|λa − γb| is

minimal. The densityρ of the equilibrium measure is inL1([α(−) ;α(+) ], dx
)

andρ(x) > 0 a.e. on
[
α(−) ;α(+) ].

Hence, there existsηǫ > 0 such that for any

I ⊂ [
α(−) ;α(+) ] with |I | > ǫ/2 ⇒

∫

I

dµeq(s) > ηǫ (4.52)

As a consequence, provided thatN−1 < η, one has that uniformly in

c ∈ [[ 1 ; N ]] |γc+1 − γc| ≤
ǫ

2
. (4.53)

The latter bound implies that|λa − γb| ≤ ǫ/2 what, in its turn, ensures that

|γb − γa| ≥
∣∣∣∣|γb − λa| − |γa − λa|

∣∣∣∣ ≥
ǫ

2
. (4.54)

Furthermore, one gets that
∣∣∣∣∣∣

∫
1]−∞ ;γb

](s) · dL(γN)
N (s) −

∫
1]−∞ ;γb

](s) · dL(λN)
N (s)

∣∣∣∣∣∣ ≥
b− a

N

=

γb∫

γa

dµeq(s) ≥
γa+

ǫ
2∫

γa

dµeq(s) ≥ ηǫ > 0 (4.55)

It thus follows that, for anyλN ∈ Υǫ , dBL
(
L(λN)

N , µeq
)
> ηǫ , ie

Υǫ ⊂
{
λN ∈ RN

↑ : L(λN)
N ∈ Bc(µeq, ηǫ

)}
(4.56)

Thus, forN large enough,

P
(β)
N

[
Υǫ

]
≤ µN

[
Bc(µeq, ηǫ

)]
= e−CN2

, (4.57)

for someC > 0, as ensured by the uniqueness of the minimum ofJβ and the LDP for the sequenceµN.
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4.3 Existence and uniqueness of the equilibrium measure

Proposition 4.1 The functional

IV
[
µ
]
=

∫

R2

f (x, y) · dµ (x) dµ (y) with f (x, y) =
1
2

(
V(x) + V(y)

)
− β ln |x− y| , (4.58)

admits a minimum EV on the space of probability measures onR

EV = inf
µ∈P(R)

IV
[
µ
]
. (4.59)

This minimum is attained at a unique measureµV called the equilibrium measure. The supportsupp
[
µV

]
of the

equilibrium measure is compact.

Proof —
It follows from

|x− y| ≤
√

(x2 + 1)(y2 + 1) (4.60)

that for any probability measure onR,

IV
[
µ
] ≥ −β

2

∫

R

[
ln(x2

+ 1) + ln(y2
+ 1)

] · dµ(x) ⊗ dµ(y) +
∫

R

V(x)dµ(x) ≥ κ . (4.61)

Above, we have used that

ψV(x) = V(x) − β ln(x2
+ 1) , (4.62)

is continuous and thatψV −→
|x|→+∞

+∞, ie there exists a constantκ ∈ R such thatψV ≥ κ.
Also, IV is not identically+∞ , as follows by taking the probability measure

dµ(x) = e−V(x)dx ·
{ ∫

R

e−V(x)dx
}−1

. (4.63)

This means thatEV ∈ R. We now show that the minimum is attained. The functionalIV is lower semi-continuous
as the supremum of lower semi continuous functionals. As a consequence, given any weakly convergent sequence
µn to µ ∈ P(R), µn ⇀ µ it follows that

lim inf
n

IV[µn] ≥ IV[µ] . (4.64)

Next we show that any sequence of measuresµn such that

EV +
1
n
≥ IV[µn] (4.65)

is tight. Assume thatµn is not tight but satisfies (4.65). Then, there existsǫ > 0 such that for any compactK in R
one has

µn
[
R \ K

]
> ǫ . (4.66)
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AsψV(t) −→
|t|→+∞

+∞, there exists anM > 0 such thatψV ≥ [EV − κ+ 1]/ǫ onR \ [ −M ; M
]
. Then, it follows from

(4.61) that

EV +
1
n
≥ κ + [EV − κ + 1]/ǫ

∫

|x|≥M

dµn(x) = EV + 1 , (4.67)

a contradiction.
Yet, every sequence of tight probability measures admits a subsequence that is vaguely convergent to a proba-

bility measure. Hence, given a sequenceµn satisfying (4.65), one hasµnk ⇀ µ̃ ∈ P (R). It follows from (4.64) that
µ̃ satisfiesEV ≥ IV[µ̃]. Thence,̃µ is an equilibrium measure. The rest of the claim is a consequence of the below
series of lemmas.

Lemma 4.1 Every probability measureµ realizing the minimum of IV is compactly supported.

Proof —
Let µ be a probability measure onR such thatEV = IV[µ] andD ⊂ R such thatµ[D ] > 0. We then define, for

ǫ ∈ ] − 1 ; 1
[
, the probability measure

µǫ =
1

1+ ǫµ[D ]
(
µ + ǫµ|D

)
. (4.68)

ǫ 7→ IV[µǫ ] is smooth on
] − 1 ; 1

[
and attains a miniumu atǫ = 0. Hence

0 =
d
dǫ

IV[µǫ ] |ǫ=0= −2µ [D ] IV[µ] + 2
∫

R

f (x, y)dµD (x)dµ(y) ≥
∫

R

[
ψV(x)+

∫

R

ψV(y)dµ(y)−2IV [µ]
]
dµD (x) (4.69)

One has by hypothesis that

∫
ψV(y)dµ(y) < +∞ . (4.70)

Since alsoψV(x)→ +∞ when|x| → +∞, it follows that there exists anM > 0 such that

ψV(x) +
∫

R

ψV(y)dµ(y) − 2IV[µ] ≥ 1 ∀ |x| ≥ M . (4.71)

Thus, if there exists aD ⊂ R\ [ −M ; M
]
, (4.69)- (4.71) would lead to a contradiction. In other words, the support

of µ is compact.

Lemma 4.2 Let µ = µ+ − µ− be a compactly supported signed measure onR of zero mean. Then one has the
inequality

−
∫

R

ln |x− y| [dµ+(x)dµ+(y) + dµ−(x)dµ−(y)
] ≥ −

∫

R

ln |x− y| [dµ+(x)dµ−(y) + dµ−(x)dµ+(y)
]

(4.72)
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Moreover, should the lhs be finite, one has in fact the equality

−
∫

R

ln |w(x) − w(y)| [dµ+(x)dµ+(y) + dµ−(x)dµ−(y)
]

= −
∫

R

ln |w(x) − w(y)| [dµ+(x)dµ−(y) + dµ−(x)dµ+(y)
]
+ 2

+∞∫

0

∣∣∣̂µ(u)
∣∣∣2 · du

u
(4.73)

where

µ̂(u) =

+∞∫

0

eixs · ds (4.74)

Proof —
Given anyǫ > 0, one has the identity

ln(s2
+ ǫ2) = ln ǫ2

+ 2ℑ
( +∞∫

0

due−εu
eisu − 1

iu

)
. (4.75)

Moreover, the function ln
[
(x−y)2

+ǫ2] is continuous on the compact support ofµ. Applying Fubini’s theorem and
using the representation (4.75) along with the fact that themeasure has a zero mean, one readily gets the equality

−
∫

R

ln
[
(x− y)2

+ ǫ2] · [dµ+(x)dµ+(y) + dµ−(x)dµ−(y)
]

= −
∫

R

ln
[
(x− y)2

+ ǫ2] · [dµ+(x)dµ−(y) + dµ−(x)dµ+(y)
]
+ 2

+∞∫

0

du
u

e−ǫu
∣∣∣̂µ(u)

∣∣∣2 . (4.76)

The sequences of functions− ln
[
(x− y)2

+ ǫ2] and e−ǫu
∣∣∣̂µ(u)

∣∣∣2/u are increasing and the first one is bounded since
the support ofu is compact. One can thus apply the monotone convergence theorem leading to the claim.

Lemma 4.3 There exists a unique probability measureµV onR such that EV = IV[µV].

Proof —
Assume thatµ1 andµ2 both satisfyEV = IV[µ1] = IV[µ2]. Then, in virtue of lemma 4.1,µ1 andµ2 both have

compact supports. Therefore,V being continuous, it is integrable in respect toµk, k = 1, 2. As a consequence,
EV < +∞ ensures that

− ln |x− y| (4.77)

is integrable in respect toµk⊗µk, k = 1, 2. By (4.72), it is thus integrable in respect toµ1⊗µ2+µ2⊗µ1. Therefore,
it is integrable in respect to the measureτt = µ1 + t(µ2 − µ1). Yet, as follows from (4.76), the function

ρ(t) =
∫

R

f (x, y)dτt(x)dτt(y) (4.78)
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is convex asρ′′(t) ≥ 0. Yet, from

EV ≤ IV[τt] ≤ (1− t)IV[µ1] + tIV[µ2] , (4.79)

it follows thatρ is constant on
[
0 ; 1

]
. Thus,ρ′′(t) = 0 leading to

̂(
µ1 − µ2

)
(u) = 0 (4.80)

Hence,µ1 = µ2, what proves the uniqueness.

Lemma 4.4 In the case where this measure is continuous in respect to theLebesgue measure,dµV (x) = ψ (x) dx,
with ψ (x) continuous, one has that there exists a constantℓ such that:

V (x) − 2β
∫

R

ln |x− y|ψ (y) dy > cV for x ∈ R \ supp
[
µV

]

V (x) − 2β
∫

R

ln |x− y|ψ (y) dy = cV for x ∈ supp
[
µV

]
. (4.81)

Proof —
Let µV be the equilibrum measure and̃µ another compactly supported probability measure ofR such that

IV
[̃
µ
]
. SinceIV[µV] < +∞ andIV

[̃
µ
]
< +∞ we get that ln|x− y| is integrable in respect to both dµ̃(x) ⊗ d̃µ(y) and

dµV(x) ⊗ dµV(y). It is thus integrable in respect to the signed measure d(µ̃ − µV)(x) ⊗ d(̃µ − µV)(y) in virtue of
(4.72). As a consequenceIV[τt] with τt = µV + t(̃µ − µV) is well defined and

IV[τt] = IV[µV] + t
∫

R

{
V(x)−2β

∫

R

ln |x−y|dµV(y)
}
d(̃µ−µV)(x)−βt2

∫

R

ln |x−y|·d(̃µ−µV)(x)⊗d(̃µ−µV)(y) . (4.82)

Furthert = 0 is a minimum forIV[τt] so that

d
dt

IV[τt] |t=0 ≥ 0 what leads to
∫

R

{
V(x) − cV − 2β

∫

R

ln |x− y|dµV(y)
}
d̃µ(x) ≥ 0 . (4.83)

Here we have set

cV =

∫

R

V(x)dµV(x) − 2β
∫

R

ln |x− y| dµV(x) ⊗ dµV(y) . (4.84)

Let

B =
{
x ∈ R : V(x) − 2β

∫

R

ln |x− y| · dµV(y) < cV

}
. (4.85)

Assume that̃µ is such that̃µ[B] > 0. Then the probability measurẽµB = µ̃ · 1B/µ̃[B] has compact support and
satisfies

∫

R

{
V(x) − cV − 2β

∫

R

ln |x− y|dµV(y)
}
· d̃µB(x) < 0 (4.86)
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a contracdiction. Thus̃µ[B] = 0 for anyµ̃ ∈ P(R) with compact support and such thatIV[µ̃] < +∞. This holds
true for µ̃ = µV meaning that, by definition ofcV,

0 =
∫

R

{
V(x) − cV − 2β

∫

R

ln |x− y|dµV(y)
}
dµV(x) =

∫

R\B

{
U(x) − cV − 2β

∫

R

ln |x− y|dµV(y)
}
dµV(x) (4.87)

sinceµU [B] = 0. Hence,

U(x) − cV − 2β
∫

R

ln |x− y|dµV(y) = 0 µV a.e. . (4.88)

Note that, in the case when the measureµV is continuous in respect to the Lebesgue measure, with some
continuous densityψ, one has that the function above is continuous onR. As a consequence, (4.81) holds.

4.4 Explicit representation in the continuous case

In the remainder of this section, we assume that the equilibrium measure is continuous in respect to the Lebesgue
measure. As a consequence, it is described by a densityψ whose supportΣ consists of a union of disjoint intervals

Σ = ∪n
k=1

[
αk ; βk

]
with α1 < β1 < α2 < · · · < βn . (4.89)

Thus, the unknowns in the problem of characterizing the equlibrium measure are the densityψ, the numbern of
connected components of the support and the endpointsαi , βi of each connected component. In the following, we
show that the densityψ admits the representation

ψ (x) =
q+ (x) h (x)

2iπ
1Σ (x) with q (z) =

n∏

k=1

(z− αk)
1
2 (z− βk)

1
2 . (4.90)

Furthermore, ifV is analytic in some open neighborhood
◦
V

(
Σ
)

of Σ, then the functionh entering in this decom-
position is holomorphic on the same open neighborhood.

If the density of equilibrium measure exists, then, by taking the weak derivative of (4.81), one obtains a linear
integral equation for the density of equilibrium measure:

V′ (x) − 2β
?

Σ

ψ (y)
x− y

dy = 0 . (4.91)

In order to solve this singular integral equation onΣ we introduce the function

F (z) = − 1
2iπq(z)

∫

Σ

ψ (y)
z− y

dy with q(z) =
n∏

k=1

(z− αk)
1
2 (z− βk)

1
2 . (4.92)

It is readily checked thatF is the unique solution to below Riemann–Hilbert problem

• F+ (x) − F− (x) = − V′ (x)
2iπq+(x)β

for x ∈
◦
Σ ;

• F ∈ O (C \ Σ);
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• F (z) −→
z→∞

0;

Thus, the solution to the RHP forF takes the form

F (z) =
∫

Σ

ds
1

s− z
−V′ (s)

(2iπ)2 q+ (s) β
. (4.93)

In its turn, this leads to the representation for the densityof equilibum measure

ψ (x) = q+(x)
(
F+ (x) + F− (x)

)
= q+ (x)

?

Σ

ds

β (2iπ)2
· −V′ (s)

(s− x)q+ (s)
, (4.94)

which can be recast into one more regular by using thatV′ in holomorphic on an open neighborhood
◦
V

(
Σ
)

of Σ.

Thus, ifΓ(Σ) is a loop aroundΣ lying inside of
◦
V

(
Σ
)
,

?

Σ

ds

(2iπ)2 β

−V′ (s)
(s− x)q+ (s)

=

∮

Γ(Σ)

V′ (s)
(s− x)q (s)

ds

(2iπ)2 β
. (4.95)

It remains to write down the conditions fixing the numbern and the endpointsαi , βi .
As q(z) ∼ zn atz→ ∞ andq(z)F(z) ∼ −1/(2iπz) we get

−
∫

Σ

yp V′(y)
q+(y)

dy
2iπ
= δp,n p = 0, . . . , n . (4.96)

Then−1 remaining conditions follow from the fact that the constant cV is the same independently of the intervals[
αk ; βk

]
:

βk∫

αk

{
V′(x) − 2

?

Σ

ψ(y)
x− y

dy
}

dx = 0 . (4.97)

Note that should all of the above conditions be met, then the associatedψ(y) is thedensity of the equilibrum
measure dµeq in virtue of lemma 4.3.

One can also show that dµeq is continuous in respect to Lebesgue’s measure so that one ofthese conditions
is surely met. However, apart from exceptional cases, one cannot determine the associated parametersn, αk, βk

explicitly.
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