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A Abstract

We consider the problem of phase estimation when no ‘a priori’ knowledge about its initial

5) N-photon input state

value Is present. \We use the covariant positive operator valued measurement (POVM) scheme, . . B (), 1IN/ 9 .
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In order to find the optimal states that yield the highest estimation fidelities. We investigate the i ;
effect of losses in the system, by introducing a fictitious beamsplitter and derive the optimal ] Q(p rﬁ:‘ﬁfggr VU U fi
usage of coherent and N-photon input states. We prove analytically that in the asymptotic N N measurement POVM
S - = > —oCn |0, N —n) N L

limit of infinite photons the guantum precision enhancement amounts at most to a constant

factor improvement over classical strategies.

* The output state — mixture over the number of photons lost, | :
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where B)i = ( . ) (m"="(1 =n)" are the binomial factors parameterised by beamsplitter’s
transmission coefficient, .

BHlypiIcal approach — Mach-Zehnder Interferometer

 Measurement
(M1 — n2) = |al? cos ¢

» Estimator » Average Tidelity: Fn = Z Z QU Qs \/B(?’})?’B(T?)}]'IAH—“& (n" —I,N —n'|Ilg|n —1I,N —n)
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« Variance o + Maximal when 11y = 32N, e/ (®n=t=0w ) |0, N —n) (W', N — /|, 6, = arg (o)
A25 — 1 1 » Optimal input = eigenvector corr. to maximal eigenvalue of: | £y, = a"TMa
 |al?sin? ¢ = @sin? @ —

Gain function: A (¢, @) = cos? (3"—;@) — Ao =3, Ay1 = 5
= M — tridiagonal matrix
For n = 1, analytically solvable, [4], — Heisenberg Limit for large N A2

) and for N>>1, Frmoer ~ 1 — 1)

“classical” states of light

6) Coherent input state

(n),
‘O) SO /A covariant
\ - : 0 (UL UL JE
‘Oﬁ) A(Tfm N POVM

» Looking for schemes that beat SQL.

POVM

» A mixed state at the input, will
always be worse than a pure state.

» By the method of maximising the Quantum Fisher Information, [1], it has been proved
that non-classical, entangled states can greatly improve the precision, ideally leading to the
(for N photon Input states)

* Average fidelity:
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— AZQO X ]\}2 Heisenberg Limit non - "classical” states of light

 The most celebrated example that saturates the bound is the NOON state

highly entangled = extremely fragile: « Optimal T, for A== =
__ 1 . i S3 (lal®Tin Ss (lal?(1=Tin) f
W) — (|N7 O) + ‘07 N)) loss of one photon makes it useless 9 _ (1—-n)|a]” =2 AL n) L 3 ) 1—2Tin
V2 _ 57— Lcon =0 Tin Sy (lalPrinn) ~ 1=Tin 5y (Jol2(1=7in))  ZFin(1=Tin)
= only optimal for lossless systems ! 2
_ | o — - where s, (z) =30, oo are Bell polynomlals of fractional order — compute numerically.
» In order to achieve 77z , we need to be estimating within small variations from the - In weak and strong beam (Standard Quantum Limit) regimes: L (14 7)
”a priori” known initial phase, @,. n 1 ; VR Fetreoh =1 — 6> 7
e.g. for NOON we can effectively estimate only within ¢y= +- , = local o] < Tin =35 +7(1—n) | > 1| 83 (@)~ _
as ¢ - v=101+v2) (3v2—4) o/ Tin = S1 (z) ~ \/ze (e¥ — 1) A2p ~ A+ 1
Usr Q15 ‘NOON) _ ‘NOON) = NOT optimal when no ‘a priori 8 1+.,m °% in =
N

knowledge is present !

7) Results

PLOT: input noloss: 1) = 1 n=0.8 n=0.9
nce against the
average number of photons | pure N photon | —— | — — — =|= = — = —.

S) Interferometric setup considered

» O is possibly mixed
due to losses.

e The set of POVMs
serves to form an
estimator of .

 \We consider again a pure input state. However, If |¢> IS a superposition over total photon
numbers, then, as we have no extra reference beam we have to average over the external

phase [2]. 9
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» State evolution In the system
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« Covariant measurement < optimally to parameterise the POVM by the estimated

arameter’s group G, [3]. _ _ _
g Here?G :pu(lg gnd discrete {II;} — continuous {H(p = U@HOU;}

V)

:

worse than SQL
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completeness
constraint

L, =1 — | doll, =1 Estimator: 95(90)290 - _ _ _
2 J detl, st (quantum mechanically disallowed region)
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43 Average fidelity of estimation

The functional that quantifies the precision of estimation: Average Fidelity

KEY RESULT: ALREADY INFINITESIMAL AMOUNT OF LOSS DESTROYS THE
ASYMPTOTIC HEISENBERG SCALING !!]

F = fU(l) dg@p (90) fU(l) d<,5 A (goj 95) p (@\np) A*G=4(1-F) PROOF: We_derive a lower bound on the variance, . 1—n 1
which scales as SQL for any 1 # 1 Ap > N
“a priori’ ¢ distribution gain (figure of merit) function probability of 95 estimation
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