Experimental security analysis of a four-photon private state

Konrad Banaszek Rafał Demkowicz-Dobrzański Michał Karpiński

Wydział Fizyki Uniwersytet Warszawski

Krzysztof Dobek

Wydział Fizyki, Uniwersytet Adama Mickiewicza w Poznaniu

COLUGL

Paweł Horodecki

Wydział Fizyki Technicznej i Matematyki Stosowanej, Politechnika Gdańska

Karol Horodecki

Instytut Informatyki, Uniwersytet Gdański

Bell's inequalities

Clauser-Horne-Shimony-Holt inequality is violated!

$$\langle AB \rangle + \langle A'B \rangle + \langle AB' \rangle - \langle A'B' \rangle = 2\sqrt{2}$$

Quantum cryptography

A. K. Ekert, Phys. Rev. Lett. 67, 661 (1991)

For each photon pair Alice and Bob select randomly measurement bases...

A₁: $\theta_a = 45^\circ$ A₂: $\theta_a = 0^\circ$ B₁: $\theta_b = 22.5^\circ$ B₂: $\theta_b = 67.5^\circ$ B₃: $\theta_b = 0^\circ$

...and compare measurements over a public channel afterwards.

Perfect correlations \rightarrow one-time pad

Security test

Entangled photon pairs

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Phys. Rev. A **60**, R773 (1999)

Output state:

 $\overline{|\Phi_{+}\rangle \propto} |\leftrightarrow\leftrightarrow\rangle + |\uparrow\uparrow\rangle\rangle$

Entanglement monogamy

- Even when the pair has been prepared by Eve...
- ...if Alice and Bob verify that the systems arrived in a maximally entangled pure state...
- ...measurement results will be known *only* to Alice and Bob.

Statistical mixture

Define:
$$|\Phi_{\pm}\rangle_{AB} = \frac{1}{\sqrt{2}}(|00\rangle_{AB} \pm |11\rangle_{AB})$$

Equally weighted mixture: $\frac{1}{2}|\Phi_{+}\rangle_{AB}\langle\Phi_{+}| + \frac{1}{2}|\Phi_{-}\rangle_{AB}\langle\Phi_{-}|$
 $= \frac{1}{2}(|00\rangle_{AB}\langle00| + |11\rangle_{AB}\langle11|)$
 $= \operatorname{Tr}_{E}(|\Psi\rangle_{ABE}\langle\Psi|)$

Density matrix

Maximally entangled state $|\Phi_{+}\rangle_{AB}\langle\Phi_{+}|$

Statistical mixture $\frac{1}{2} \left(|\Phi_{+}\rangle_{AB} \langle \Phi_{+}| + |\Phi_{-}\rangle_{AB} \langle \Phi_{-}| \right)$

Correlations between measurement outcomes in the key basis

Security tested by the violation of Bell's inequalities (If trusting quantum theory, could be also tested by measurements in the $(|0\rangle \pm |1\rangle)/\sqrt{2}$ basis.)

Noisy entanglement

$$\frac{1}{4}|\Phi_{+}\rangle_{AB}\langle\Phi_{+}|+\frac{3}{4}|\Phi_{-}\rangle_{AB}\langle\Phi_{-}|$$

How much secure key can be extracted from a noisy state?

Distillation

Example I

 $\hat{\varrho}_{AA'BB'} = \frac{3}{4} |\Phi_{+}\rangle_{AB} \langle \Phi_{+}| \otimes \hat{\varrho}_{A'B'}^{(+)} + \frac{1}{4} |\Phi_{-}\rangle_{AB} \langle \Phi_{-}| \otimes \hat{\varrho}_{A'B'}^{(-)}$ Shield states:

 $\hat{\varrho}_{A'B'}^{(+)} = |00\rangle_{A'B'} \langle 00|, \quad \hat{\varrho}_{A'B'}^{(-)} = |11\rangle_{A'B'} \langle 11|$

enable Alice and Bob to distinguish locally $|\Phi_{\pm}\rangle_{AB}$ and generate the key using the standard strategy. Hence $E_D=1$

Example II

What if

$$\hat{\varrho}_{A'B'}^{(+)} = \frac{1}{3}(\hat{\mathbb{1}} - |\Psi_-\rangle_{A'B'}\langle\Psi_-|)$$

$$\hat{\varrho}_{A'B'}^{(-)} = |\Psi_-\rangle_{A'B'}\langle\Psi_-| \qquad |\Psi_-\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

• States $\hat{\varrho}_{A'B'}^{(+)}$ and $\hat{\varrho}_{A'B'}^{(-)}$ cannot be discriminated unambiguously using local operations and classical communication.

• Distillable entanglement bounded by log-negativity:

$$E_D \leq \log_2 3 - 1 \approx 0.585$$

Eavesdropping

K. Horodecki, M. Horodecki, P. Horodecki, and J. Oppenheim, Phys. Rev. Lett. **94**, 160502 (2005)

The worst case scenario: all the noise is controlled by Eve

 $\hat{\varrho}_{AA'BB'} = \operatorname{Tr}_E(|\Psi\rangle_{AA'BB'E}\langle\Psi|)$

Alice \rightarrow Eve channel

Alice measures an outcome *a* with a probability

$$p_a = \operatorname{Tr}_{A'BB'E} \left({}_A \langle a | \Psi \rangle \langle \Psi | a \rangle_A \right)$$

Eve infers *a* from the conditional state of her subsystem *E*: $\hat{\varrho}_{E}^{(a)} = \frac{1}{p_{a}} \operatorname{Tr}_{AA'BB'}[|\Psi\rangle \langle \Psi|(|a\rangle_{A}\langle a| \otimes \hat{I}_{A'BB'})]$

Holevo quantity:

$$\mathcal{X}(A:E) = S\left(\sum_{a} p_{a} \widehat{\varrho}_{E}^{(a)}\right) - \sum_{a} p_{a} S\left(\widehat{\varrho}_{E}^{(a)}\right)$$

Key rate

Mutual information $\mathcal{I}(A : B)$

B

Key rate $K_D \geq \mathcal{I}(A:B) - \mathcal{X}(A:E)$

For Example II, Eve's subsystem contains no information about outcomes of Alice's measurement on her qubit, hence $K_D = 1$.

Shield

Double photon pairs

Experimental setup

Quantum state tomography

Projective qubit measurements: $\widehat{\sigma}_x, \widehat{\sigma}_y, \widehat{\sigma}_z$

Four-qubit POVM:

$$\widehat{M}_{i} = |\pm_{i_{A}}\rangle \otimes |\pm_{i_{A'}}\rangle \otimes |\pm_{i_{B}}\rangle \otimes |\pm_{i_{B'}}\rangle$$

 $3^4 = 81$ measurement bases

 $3^4 \times 2^4 = 1296$ event types

Probability of an outcome *i*:

 $p(i|\hat{\varrho}) = Tr(\hat{M}_i\hat{\varrho})$

 n_i : number of events i

Density matrix estimate $\hat{\varrho}$

 $\sum n_i pprox 5 imes 10^5$

Maximum likelihood reconstruction

Probability of an outcome *i*:

 $p(i|\hat{\varrho}) = Tr(\hat{M}_i\hat{\varrho})$

 n_i – number of events i

Likelihood function:

 $\mathcal{L}(\hat{\varrho}) = p(\{n_i\}|\hat{\varrho}) = \prod_i [p(i|\hat{\varrho})]^{n_i}$

Maximum-likelihood estimate \hat{Q}_{ML} maximizes $\mathcal{L}(\hat{Q})$

ML: Parametrisation

K. Banaszek, G. M. D'Ariano, M. G. A. Paris, and M. F. Sacchi, Phys. Rev. A **61**, 010304(R) (1999)

 $\mathcal{L}(\hat{\varrho})$

Ensuring positivity: $\hat{\varrho} = \hat{T}^{\dagger}\hat{T}, \quad \hat{T} = \mathbf{n}$ Task: maximize $\log \mathcal{L}(T^{\dagger}T)$ with a constraint $\operatorname{Tr}(T^{\dagger}T) = 1$

PRO: - Guaranteed positivity

CON: - Impractical in higher dimensions (>6 qubits)
 - Underestimates errors, difficult to include uncertainty of the measuring device (Monte Carlo simulations)
 - Biased towards low-rank matrices for undersampled data

Bayesian approach

K. Audenaert and S. Scheel, New J. Phys. **11**, 023028 (2009)

A priori distribution $p(\hat{\varrho})$ A posteriori: $p(\hat{\varrho}|\{n_i\}) \propto p(\{n_i\}|\hat{\varrho})p(\hat{\varrho})$ Estimate: $\hat{\varrho}_{\text{Bayes}} = \int d\varrho \ \hat{\varrho} p(\hat{\varrho}|\{n_i\})$

Gaussian approximation

• Truncated to positive definite density operators

- **PRO:** Clear statistical interpretation
 - Provides uncertainty
 - No numerical optimisation
- **CON:** Difficult to normalise probability distribution
 - A priori distribution not well defined

State reconstruction

K. Dobek. M. Karpiński, R. Demkowicz-Dobrzański, K. Banaszek, and P. Horodecki, Phys. Rev. Lett. **106**, 030501 (2011)

Privacy characterisation

Distillable entanglement: $E_D \le 0.581(4)$ Key (cqq scenario): $K \ge 0.690(7)$

Distillation protocol

$$\widehat{\varrho}_{AA'BB'} = \frac{1}{4} |\Phi_{+}\rangle_{AB} \langle \Phi_{+}| \otimes \left(\widehat{\mathbb{1}}_{A'B'} - |\Psi_{-}\rangle_{A'B'} \langle \Psi_{-}|\right)$$
$$+ \frac{1}{4} |\Phi_{-}\rangle_{AB} \langle \Phi_{-}| \otimes |\Psi_{-}\rangle_{A'B'} \langle \Psi_{-}|$$

Measure qubits A'B' in the same basis.

Identical outcomes

 $\hat{\varrho}_{AB} = |\Phi_{+}\rangle \langle \Phi_{+}|$

Opposite outcomes

50%

 $\hat{\varrho}_{AB} = \frac{1}{2} \left(|00\rangle \langle 00| + |11\rangle \langle 11| \right)$

Witnessing privacy

$${}_{AA'BB'} = \begin{pmatrix} \hat{A}_{00,00} & \hat{A}_{00,01} & \hat{A}_{00,10} & \hat{A}_{00,11} \\ \hat{A}_{01,00} & \hat{A}_{01,01} & \hat{A}_{01,10} & \hat{A}_{01,11} \\ \hat{A}_{10,00} & \hat{A}_{10,01} & \hat{A}_{10,10} & \hat{A}_{10,11} \\ \hat{A}_{11,00} & \hat{A}_{11,01} & \hat{A}_{11,10} & \hat{A}_{11,11} \end{pmatrix}$$

 $K\left(\hat{\varrho}_{AA'BB'}\right) \geq K\left(\hat{\sigma}_{AB}\right)$

where

 $\widehat{\varrho}$

$$\hat{\sigma}_{AB} = \frac{1}{2} \begin{pmatrix} p_{+} & \cdot & \cdot & c_{+} \\ \cdot & p_{-} & c_{-} & \cdot \\ \cdot & c_{-} & p_{-} & \cdot \\ c_{+} & \cdot & \cdot & p_{+} \end{pmatrix}$$

 $p_{+} = ||\hat{A}_{00,00} + \hat{A}_{11,11}||$ $c_{+} = ||\hat{A}_{00,11} + \hat{A}_{11,00}||$

Single witness

K. Banaszek, K. Horodecki, and P. Horodecki, Phys. Rev. A **85**, 012330 (2012)

Suppose we have measured

$$w = \left| \left\langle (\sigma_A^x \otimes \sigma_B^x - \sigma_A^y \otimes \sigma_B^y) \otimes \widehat{U}_{A'B'} \right\rangle \right|$$

where $\widehat{U}^{\dagger}\widehat{U}\leq\widehat{I}$

We have:

$$p_+ \ge c_+ \ge w$$

Take the worst-case scenario for p_{-}, c_{-}

Two observables

K. Banaszek, K. Horodecki, and P. Horodecki, Phys. Rev. A **85**, 012330 (2012)

$$w_x = \left| \left\langle \sigma_A^x \otimes \sigma_B^x \otimes \hat{U}_{A'B'} \right\rangle \right|$$

We have:

 $c_{+} + c_{-} \ge w_{x}$ $p_{\pm} = \frac{1}{2}(1 \pm w_{z})$ $c_{-} \le p_{-}$

Conclusions

- Experimental demonstration of the separation between distillable entanglement and cryptographic key contents
- Practical comparison of quantum state reconstruction methods for a noisy multiqubit state
- Full privacy analysis based on the reconstructed state
- Evaluation of highly non-linear information theoretic quantities
- Implementation of a simple entanglement distillation protocol
- Witnessing privacy with few observables
- Multiple degrees of freedom?