Matrix product states for quantum metrology arXiv:1301.4246

Marcin Jarzyna, Rafal Demkowicz-Dobrzanski

Faculty of Physics
University of Warsaw

7.06.2013 CEQIP

Goals of quantum metrology

- We want to measure some quantities more and more precisely - ultimately with the best possible precision.
- Gravitational waves detection (LIGO, GEO600 etc.).

- Precise measurements of frequencies.
- Atomic clocks.
- Magnetometry.
- Many others...

Scheme

Scheme

- We send N particle state $|\Psi\rangle$ through our system.

- We send N particle state $|\Psi\rangle$ through our system.
- System is modeled by some quantum channel Λ_{ϕ} which acts on $|\Psi\rangle$ and depends on some unknown parameter ϕ which we want to know.

Scheme

- We send N particle state $|\Psi\rangle$ through our system.
- System is modeled by some quantum channel Λ_{ϕ} which acts on $|\Psi\rangle$ and depends on some unknown parameter ϕ which we want to know.
- We make some general quantum measurement (POVM) $\hat{\Pi}_{x}$ at the output which gives us some value x and then we use estimator $\tilde{\phi}(x)$ to get estimated value $\tilde{\phi}$ of ϕ.
- The most basic and the most common situation measurement of observable \hat{A} at the output and estimation of ϕ from the average of our outcomes. What is the precision of such estimation procedure?
- The most basic and the most common situation measurement of observable \hat{A} at the output and estimation of ϕ from the average of our outcomes. What is the precision of such estimation procedure?
- Answer:

$$
\Delta \phi=\frac{\Delta \hat{A}}{\left|\frac{\partial\langle\hat{A}\rangle}{\partial \phi}\right|}
$$

where $\Delta \hat{A}$ is defined as usual $\Delta \hat{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$.

How to calculate the precision of a given observable?

- The most basic and the most common situation measurement of observable \hat{A} at the output and estimation of ϕ from the average of our outcomes. What is the precision of such estimation procedure?
- Answer:

$$
\Delta \phi=\frac{\Delta \hat{A}}{\left|\frac{\partial \hat{A}\rangle}{\partial \phi}\right|}
$$

where $\Delta \hat{A}$ is defined as usual $\Delta \hat{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$.

- Searching for optimal precision means that we have to optimize the input state $|\Psi\rangle$.

Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

$$
\Delta \phi \geq \frac{1}{\sqrt{k F(\phi)}}
$$

where $F(\phi)$ is quantum Fisher information (QFI) and k is the number of repetitions of experiment.

Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

$$
\Delta \phi \geq \frac{1}{\sqrt{k F(\phi)}}
$$

where $F(\phi)$ is quantum Fisher information (QFI) and k is the number of repetitions of experiment.

- QFI gives bound on precision optimized over all possible quantum measurements and unbiased estimators.

Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

$$
\Delta \phi \geq \frac{1}{\sqrt{k F(\phi)}}
$$

where $F(\phi)$ is quantum Fisher information (QFI) and k is the number of repetitions of experiment.

- QFI gives bound on precision optimized over all possible quantum measurements and unbiased estimators.
- Hard evaluation - need for diagonalization of $\hat{\rho}_{\phi}$.

Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

$$
\Delta \phi \geq \frac{1}{\sqrt{k F(\phi)}}
$$

where $F(\phi)$ is quantum Fisher information (QFI) and k is the number of repetitions of experiment.

- QFI gives bound on precision optimized over all possible quantum measurements and unbiased estimators.
- Hard evaluation - need for diagonalization of $\hat{\rho}_{\phi}$.
- Shot noise $\Delta \phi=1 / \sqrt{N}$, Heisenberg limit - $\Delta \phi=1 / N$.

Cramer-Rao bound and quantum Fisher information

Precision is bounded from below by Cramer-Rao inequality

$$
\Delta \phi \geq \frac{1}{\sqrt{k F(\phi)}}
$$

where $F(\phi)$ is quantum Fisher information (QFI) and k is the number of repetitions of experiment.

- QFI gives bound on precision optimized over all possible quantum measurements and unbiased estimators.
- Hard evaluation - need for diagonalization of $\hat{\rho}_{\phi}$.
- Shot noise $\Delta \phi=1 / \sqrt{N}$, Heisenberg limit - $\Delta \phi=1 / N$.
- Fact: For states $|\Psi\rangle=|\psi\rangle \otimes|\psi\rangle \otimes \cdots \otimes|\psi\rangle=|\psi\rangle^{\otimes k}$ QFI is equal to $F_{\psi}=k F_{\psi} \rightarrow$ only c / \sqrt{N} scaling.

Searching for optimal states

How to describe states?

Searching for optimal states

How to describe states?

- Any state of a chain of N, d-level particles can be written as

$$
|\psi\rangle=\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}} c_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

Searching for optimal states

How to describe states?

- Any state of a chain of N, d-level particles can be written as

$$
|\psi\rangle=\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}} c_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

- We need to know d^{N} coefficients to describe the state.

Searching for optimal states

How to describe states?

- Any state of a chain of N, d-level particles can be written as

$$
|\psi\rangle=\sum_{\sigma_{1}, \sigma_{2} \ldots \sigma_{N}} c_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

- We need to know d^{N} coefficients to describe the state.
- Practically impossible to implement any efficient algorithm of searching $c_{\sigma_{1} \sigma_{2} \ldots \sigma_{N}}$ - exponential scaling of their number with N.

Searching for optimal states

- Slightly better situation is when our state before and after the evolution is from symmetric subspace, than (in case of $d=2$)

$$
|\psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle
$$

Searching for optimal states

- Slightly better situation is when our state before and after the evolution is from symmetric subspace, than (in case of $d=2$)

$$
|\psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle
$$

- We have only $N+1$ coefficients to find.

Searching for optimal states

- Slightly better situation is when our state before and after the evolution is from symmetric subspace, than (in case of $d=2$)

$$
|\psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle
$$

- We have only $N+1$ coefficients to find.
- Also inefficient for large N, numerical optimization possible up to $N \sim 50$.

Searching for optimal states

- Slightly better situation is when our state before and after the evolution is from symmetric subspace, than (in case of $d=2$)

$$
|\psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle
$$

- We have only $N+1$ coefficients to find.
- Also inefficient for large N, numerical optimization possible up to $N \sim 50$.

Is there any other way to efficiently describe the state?

YES!

What is MPS?

Answer - matrix product states (MPS). They are defined as:

$$
|\psi\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}} \operatorname{Tr}\left(A_{\sigma_{1}} A_{\sigma_{2}} \ldots A_{\sigma_{N}}\right)\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

where $A_{\sigma_{i}}$ are some $D \times D$ matrices (D is called bond dimension) and $\mathcal{N}=\sum_{\sigma_{1} \ldots \sigma_{N}} \operatorname{Tr}\left[\left(A_{\sigma_{1}}^{*} \otimes A_{\sigma_{1}}\right) \ldots\left(A_{\sigma_{N}}^{*} \otimes A_{\sigma_{N}}\right)\right]$ is the normalization factor.

What is MPS?

Answer - matrix product states (MPS). They are defined as:

$$
|\psi\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}} \operatorname{Tr}\left(A_{\sigma_{1}} A_{\sigma_{2}} \ldots A_{\sigma_{N}}\right)\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

where $A_{\sigma_{i}}$ are some $D \times D$ matrices (D is called bond dimension) and $\mathcal{N}=\sum_{\sigma_{1} \ldots \sigma_{N}} \operatorname{Tr}\left[\left(A_{\sigma_{1}}^{*} \otimes A_{\sigma_{1}}\right) \ldots\left(A_{\sigma_{N}}^{*} \otimes A_{\sigma_{N}}\right)\right]$ is the normalization factor.

- Only $d D^{2} N$ coefficients needed to describe any MPS with bond dimension D.

What is MPS?

Answer - matrix product states (MPS). They are defined as:

$$
|\psi\rangle=\frac{1}{\sqrt{\mathcal{N}}} \sum_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}} \operatorname{Tr}\left(A_{\sigma_{1}} A_{\sigma_{2}} \ldots A_{\sigma_{N}}\right)\left|\sigma_{1} \sigma_{2} \ldots \sigma_{N}\right\rangle
$$

where $A_{\sigma_{i}}$ are some $D \times D$ matrices (D is called bond dimension) and $\mathcal{N}=\sum_{\sigma_{1} \ldots \sigma_{N}} \operatorname{Tr}\left[\left(A_{\sigma_{1}}^{*} \otimes A_{\sigma_{1}}\right) \ldots\left(A_{\sigma_{N}}^{*} \otimes A_{\sigma_{N}}\right)\right]$ is the normalization factor.

- Only $d D^{2} N$ coefficients needed to describe any MPS with bond dimension D.
- Any state can be described by MPS, perhaps with large bond dimension D.

MPS - properties and extensions

MPS has some more nice properties:

MPS - properties and extensions

MPS has some more nice properties:

- Very good to describe states with "local" correlations.

MPS - properties and extensions

MPS has some more nice properties:

- Very good to describe states with "local" correlations.
- For translationally invariant states matrices $A_{\sigma_{i}}$ do not depend on i (they are the same for all particles).

MPS - properties and extensions

MPS has some more nice properties:

- Very good to describe states with "local" correlations.
- For translationally invariant states matrices $A_{\sigma_{i}}$ do not depend on i (they are the same for all particles).
- For permutationally invariant states (states from symmetric subspace) all permutations of $A_{\sigma,}$'s should have the same trace.

MPS - properties and extensions

MPS has some more nice properties:

- Very good to describe states with "local" correlations.
- For translationally invariant states matrices $A_{\sigma_{i}}$ do not depend on i (they are the same for all particles).
- For permutationally invariant states (states from symmetric subspace) all permutations of $A_{\sigma_{i}}$'s should have the same trace.
- Easy evaluation of average values of single particle operators.

Example

For example: NOON state $=\mathrm{GHZ}$ state.

Example

For example: NOON state $=\mathrm{GHZ}$ state.

$$
\begin{aligned}
|\mathrm{N} 00 \mathrm{~N}\rangle & =\frac{1}{\sqrt{2}}(|N, 0\rangle+|0, N\rangle)= \\
& =\frac{1}{\sqrt{2}}(|1,1,1, \ldots, 1\rangle+|0,0,0, \ldots, 0\rangle)=|\mathrm{GHZ}\rangle
\end{aligned}
$$

Example

For example: NOON state $=\mathrm{GHZ}$ state.

$$
\begin{aligned}
|\mathrm{N} 00 \mathrm{~N}\rangle & =\frac{1}{\sqrt{2}}(|N, 0\rangle+|0, N\rangle)= \\
& =\frac{1}{\sqrt{2}}(|1,1,1, \ldots, 1\rangle+|0,0,0, \ldots, 0\rangle)=|\mathrm{GHZ}\rangle
\end{aligned}
$$

- This state is MPS with minimal bond dimension $D=2$ and matrices

$$
A_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

Why MPS? - Intuition

Fact: in the presence of noise asymptotically we have only SQL-like scaling $\Delta \phi \sim c / \sqrt{N} \rightarrow$ the same as with product states!

Asymptotically optimal state should have structure $|\Psi\rangle=|\psi\rangle^{\otimes k}$ -entanglement only in small groups!

Losses

Let's consider one of the most common cases $d=2$, i.e photons in interferometer, two-level atoms etc. and losses of probes:

Losses

Let's consider one of the most common cases $d=2$, i.e photons in interferometer, two-level atoms etc. and losses of probes:

- Our channel is composition of unitary evolution $\hat{U}_{\phi}=e^{i \hat{n} \phi}$ and noisy channel responsible only for losses.

Losses

Let's consider one of the most common cases $d=2$, i.e photons in interferometer, two-level atoms etc. and losses of probes:

- Our channel is composition of unitary evolution $\hat{U}_{\phi}=e^{i \hat{n} \phi}$ and noisy channel responsible only for losses.
- We loose each of the probes independently with the probability $1-\eta$.

Losses

- We can write the state as $|\Psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle$.
- We can write the state as $|\Psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle$.
- States are translationally invariant \rightarrow we need only two matrices A_{0}, A_{1} (corresponding to states $|0\rangle$ and $|1\rangle$ of each particle).
- We can write the state as $|\Psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle$.
- States are translationally invariant \rightarrow we need only two matrices A_{0}, A_{1} (corresponding to states $|0\rangle$ and $|1\rangle$ of each particle).
- States are from symmetric subspace \rightarrow trace of any permutation of k matrices A_{0} and $N-k$ matrices A_{1} is the same \rightarrow diagonal matrices are sufficient \rightarrow only $2 D$ parameters for any N.
- We can write the state as $|\Psi\rangle=\sum_{n=0}^{N} c_{n}|n, N-n\rangle$.
- States are translationally invariant \rightarrow we need only two matrices A_{0}, A_{1} (corresponding to states $|0\rangle$ and $|1\rangle$ of each particle).
- States are from symmetric subspace \rightarrow trace of any permutation of k matrices A_{0} and $N-k$ matrices A_{1} is the same \rightarrow diagonal matrices are sufficient \rightarrow only $2 D$ parameters for any N.
- Output state is mixed but also from symmetric subspace.

- $\eta=0.9$.
- Very good approximation for low D up to large N.
- Insight into the structure of optimal states:
- A_{0}, A_{1} have the same diagonal elements ordered complementarily - the largest with lowest etc.
- The higher is N the closer are diagonal elements of A 's.
- We have N two-level atoms \approx one spin $j=N / 2$ particle.
- We have N two-level atoms \approx one spin $j=N / 2$ particle.
- Apply $\pi / 2$ pulse, let everything evolve, apply another $\pi / 2$ pulse and measure difference in population $\left(\hat{J}_{z}\right)$.
- We have N two-level atoms \approx one spin $j=N / 2$ particle.
- Apply $\pi / 2$ pulse, let everything evolve, apply another $\pi / 2$ pulse and measure difference in population $\left(\hat{J}_{z}\right)$.
- Effectively: rotation around J_{z} about angle ϕ and measurement of J_{x}

- We have N two-level atoms \approx one spin $j=N / 2$ particle.
- Apply $\pi / 2$ pulse, let everything evolve, apply another $\pi / 2$ pulse and measure difference in population $\left(\hat{J}_{z}\right)$.
- Effectively: rotation around J_{z} about angle ϕ and measurement of J_{x}

- Optimal angle is $\phi=0$.
- We have N two-level atoms \approx one spin $j=N / 2$ particle.
- Apply $\pi / 2$ pulse, let everything evolve, apply another $\pi / 2$ pulse and measure difference in population $\left(\hat{J}_{z}\right)$.
- Effectively: rotation around J_{z} about angle ϕ and measurement of J_{x}

- Optimal angle is $\phi=0$.
- Precision:

$$
\Delta \phi=\sqrt{\frac{\Delta^{2} \hat{\jmath}_{x}}{\left\langle\hat{\jmath}_{y}\right\rangle^{2}}+\frac{1-\eta}{\eta} \frac{N}{4\left\langle\hat{\jmath}_{y}\right\rangle^{2}}} .
$$

- Larger D than previously but still good approximation.
- Insight into the structure of optimal states:
- A_{0}, A_{1} have the same diagonal elements ordered complementarily - the largest with lowest etc.
- The higher is N the closer are diagonal elements of A 's.

Conclusions

- Matrix product states are feasible for numerical optimization in quantum metrology.
- We have insight into the structure of optimal states.

Thank You!

