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Stokesian dynamics simulations of close particles are reported, taking into account

lubrication forces and many-body hydrodynamic interactions between spheres. A pe-

riodic trajectory of three particles maintaining a constant proximity to each other

has been found and analyzed. This solution is used as a benchmark to study the

accuracy and stability of various numerical integration schemes. In particular, dif-

ferent methods of preventing unphysical overlaps of the particles are considered and

potential artifacts discussed.

I. INTRODUCTION

The paper is focused on hydrodynamic interactions between very close solid spheres

moving in a viscous fluid at the low Reynolds number [1, 2]. Hydrodynamic interactions

influence significantly statistical properties of suspensions, and therefore a lot of work has

been done to analyze them theoretically [1] and to construct numerical codes suited for

efficient and accurate computations, such as lattice Boltzmann [3] and Stokesian dynamics [4,

5]. For dense systems, interaction between very close particle surfaces is essential. As the

spheres approach each other at a very small distance it becomes increasingly difficult to

squeeze out the thin lubrication layer of fluid from in between them. The hydrodynamic

lubrication forces associated with this motion [6] prevent the particles from touching each

other. Lubrication of very close solid surfaces is hard to tackle numerically. In particular,

due to the numerical errors in the finite-difference schemes, there is often a possibility of an

unphysical overlap of the particles, which needs to be carefully avoided in the simulations.

Several methods for assisting with this problem have been devised [7–12]. However, they
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introduce numerical artifacts, which may significantly influence the dynamics of the particles

at short distances [10, 12, 13]. In this paper, we investigate these effects.

In a number of systems, motion of several spheres was detected experimentally or eval-

uated by the Stokesian dynamics, and some very close configurations of the spheres were

observed, with the distance between the sphere surfaces smaller than 10−2 radii [14–16]. A

lot of examples of ‘scattering processes’ is known, during which very small gaps between the

particle surfaces are reached and then particles again separate – for example, a sphere falling

under gravity onto the other one held fixed or moving slower below [14, 15]. The question

arises if there exist stable systems of a different nature – with at least three spheres staying

very close to each other for a long time.

In this paper, Stokesian dynamics method based on irreducible multipole representa-

tion [5, 17] is used to find and investigate a family of such “benchmark clusters”, made of a

small number of close particles, which settle under gravity. We study a periodic trajectory

of three spheres, during which all of them remain in a close proximity of each other. Such

a trajectory is ideally suited for testing various numerical schemes, since - as it turns out

- even small numerical errors or artifacts may result in significant changes of the observed

period of motion. Moreover, the oscillations of very close sedimenting triplets are also of

fundamental physical importance.

In Sec. II, theoretical foundations of the Stokesian dynamics – the multipole algorithm [5]

and the numerical procedure [17] – are outlined. Sec. III contains a brief review of methods

used to integrate numerically the dynamics of very close spheres. In Sec. IV, the periodic

motion of three very close spheres is analyzed. In Sec. V, this system is used to test selected

numerical procedures, with the conclusions presented in Sec. VI.

II. DYNAMICS

Consider a system made of identical solid spheres of diameters d, which settle under

gravitational forces f in a fluid of viscosity η. The spheres are close to each other, but their

surfaces do not touch. The Reynolds number of the generated flow is much smaller than

unity. Therefore the fluid velocity u and pressure p satisfy the Stokes equations,

η∇2u − ∇p = 0, (1)

∇ · u = 0. (2)
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The no-slip boundary conditions are satisfied at the sphere surfaces. Positions of the sphere

centers ri evolve according to the following Stokesian dynamics equations,

dri

dt
= vi(r1, r2, . . . , rN), i = 1, 2, ..., N, (3)

vi =

[
N∑

k=1

µik

]
· f , (4)

where µik(r1, r2, . . . , rN) are the N -particle translational-translational mobility matrices [1],

[18], evaluated numerically by the multipole expansion of the Stokes equations. The al-

gorithm from Ref. [5] and its precise numerical FORTRAN implementation described in

Ref. [17] have been used with the multipole order L = 4. To describe accurately dynamics

of close spheres, lubrication correction has been applied according to the procedure taken

from Ref. [17]. For rigid-body motions, the relative accuracy of the mobility matrix is

typically of the order of 0.01% for L = 4, see Ref. [5].

It is convenient to use 3N -dimensional vectors of the particle positions & velocities, and

the forces exerted by them on the fluid, X = (r1, r2, . . . , rN), V = (v1,v2, . . . ,vN), and

F = (f , f , . . . , f), respectively. In this notation, the system of Eqs. (3)-(4) reads

dX

dt
= V(X), (5)

V = µ · F. (6)

The dimensionless variables are obtained by dividing positions by the sphere diameter d

and time by twice the Stokes time,

τs = 3πηd2/f, (7)

with f = |f |. Therefore velocities are normalized by the Stokes velocity vs = f/(3πηd).

From now on, ri, vi and t will denote the dimensionless quantities.

III. NUMERICAL INTEGRATION

In general, due to lubrication forces, the normal relative motion of the particle pair is

strongly hindered as the dimensionless gap between them, gij = |rj − ri|/d − 1, goes to

zero. This effect prevents the particle contact during the evolution. However, when a fixed

time step is used in the numerical integration of the equations of motion, the particles may
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overlap. It is important to realize that it is a pure numerical artifact of the integrating

routine. This problem was already noted in the literature and was dealt with in variety of

ways. One of the possibilities is to introduce a short-ranged repulsive potential to prevent

the overlaps (see eg. [7, 9, 11–13]). A number of different potentials has been considered

(e.g. inverse Hookean springs, power law etc.). Interestingly, in some cases the form and

magnitude of the potential was found to significantly influence both the transport properties

and the particle distribution function in the system [12, 13, 19]. Alternatively, in [20] the

particles were allowed to overlap for a short period of time. However, the mobility matrix

µ is not defined for overlapping particles. To circumvent that difficulty, the authors of [20]

for the sake of calculating mobility functions were shifting the overlapping particles apart

so that they were separated by a non-dimensional gap of 10−8.

Yet another method was used by Ladd [8]: reflect the particles elastically each time

they are going to overlap. To be more precise, after calculating the particle velocities

according to Eq. (4), the hard sphere dynamics is implemented over one time step: the

possible collisions between the particles are located and then carried out, as described by

Alder and Wainwright [21]. After the completion of the time step, δt, the hydrodynamic

mobility matrix μ is calculated again, for the new particle positions (X(t + δt)), and then

the procedure is repeated.

The overlap problem may be avoided by decreasing the timestep as the spheres approach

each other. One of such schemes was proposed by Ball and Melrose [10]: given the set of

velocities calculated from (4), they detected the potential overlaps and decreased the time

step in such a way as to prevent them.

In our numerical simulations we observed that the overlap may be avoided in an even more

straightforward way by using the variable time-step Runge-Kutta method [22] as described

in [16], for sufficiently high accuracy requirements (see also the discussion in Section V).

However, no matter which variable time step method is used, there is a price to pay: although

the particles no longer overlap, because of the presence of singular forces the close encounters

of the particles involve very small timesteps and hence a considerable amount of computer

time. This is undesirable when simulating many-particle systems, such as concentrated

colloidal suspensions in which close encounters of the particles occur frequently. In this

context, it is worth to explore in more detail alternative ways of preventing particle overlaps

in order to find a method which would be both acceptably fast and accurate. To assess
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the accuracy and effectiveness of the methods there is a a need for benchmark test system.

Below, we propose such a benchmark trajectory, which involves three particles which remain

constantly in close contact. A precise determination of the particle evolution along this

trajectory constitutes a stringent test for the numerical methods, since the potential artifacts

introduced by numerical treatment of overlaps in this case will become amplified in the course

of time.

IV. PERIODIC MOTIONS OF VERY CLOSE SPHERES

In a number of systems, gravitational settling of a group of spheres has been detected

experimentally [23] or evaluated by the Stokesian dynamics [24, 25], and a generic ’scat-

tering’ pattern of evolution has been found: initially well-separated particles approach each

other, interact for some time, and separate again. The evolution can be very sensitive to

a small change of the initial conditions [25]. Such a scenario sometimes involves very close

configurations of the spheres, with the distance between the sphere surfaces smaller than

10−2 radii, for example when a sphere falls under gravity onto the other one held fixed or

moving slower almost exactly below. [14, 15]. The particles stay close to each other, but for

a short time only, and later on the interparticle distances grow indefinitely.

To test Stokesian dynamics at small separations between the particle surfaces, solutions

of a different nature are needed: with a small number of non-touching spheres, which would

move with respect to each other but stay very close for a long time. (Two identical spheres

settle with no change of the relative configuration, therefore the simplest benchmark consists

of three identical spheres.) Moreover, the particles should not change significantly their

evolution under a small perturbation of the configuration. Therefore an ideal benchmark

would be a periodic trajectory of close spheres.

Periodic oscillations of three settling particles are known from the literature, but for well-

separated surfaces. The first experimental evidence [23] and theoretical derivation within

the point-particle approximation [24] were followed by extended mathematical analysis of

periodic solutions for points [26] and by investigation of periodic solutions for spherical

particles [27].

In this work, we have found and analyzed periodic motion of three identical spheres set-

tling under gravitational forces f , with at least two very small gaps between their surfaces
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at a time. Actually, we have found a class of quasi-periodic solutions with two incommensu-

rate frequencies of oscillations. They surround a single-frequency solution, which will now

be presented.

The z axis is chosen antiparallel to the gravitational force f = (0, 0,−f), with f > 0.

The motion is restricted to a vertical plane y=0. Positions of the sphere centers are denoted

as ri = (xi, 0, zi), i = 1, 2, 3, and positions and velocities of the center of mass as rCM =

(xCM , 0, zCM) and vCM = (vx,CM , 0, vz,CM), respectively.

The initial positions of the sphere centers, corresponding to the single frequency solution,

are

x1 = −x3 ≈ 0.626266, z1 = −z3 ≈ −0.779612 and x2 = z2 = 0. (8)

Therefore initially the sphere centers are aligned, with two equal interparticle distances,

r12 = r23, where rij = |rij| and rij = ri−rj , corresponding to narrow gaps r12−1 ≈ 2×10−6

between the sphere surfaces. This configuration is shown in the first frame of Fig. 1.

The solution of the dynamics given by Eqs. (3), (4) and (8) is a superposition of a periodic

motion with the period T ≈ 170, and the gravitational settling with the time-averaged

velocity

V =
1

T

∫ T

0

vCM dt ≈ −1.85 ez. (9)

Evolution of the system is illustrated in Fig. 1, as seen by an observer moving vertically

with the time-averaged velocity V, and taking snapshots at the subsequent time instants

separated by T/36. Two characteristic symmetric configurations of the spheres are observed.

In the first one, seen at t = 0 and then every T/6, the centers are aligned at the angle θ ≈ 39◦

with respect to gravity, with the equal sizes of both gaps between the particle surfaces. In

the second configuration, which appears at t = T/12 and later after each T/6, the sphere

centers form an isosceles triangle with a vertical base, not much different from the equilateral

one. The generic pattern of the evolution during T/6, depicted in Fig. 1, is then repeated,

with the corresponding interchange of the particles, and the left-right symmetry between

the configurations at t and t + T/6.

As shown in Fig. 1, the center-of-mass oscillates while settling, with the dominant hori-

zontal component. The horizontal velocity is the largest for the first and the last snapshots

of Fig. 1, i.e. for the aligned particles, see also Fig. 2. In this case, the sideways motion can

be understood by analogy with two settling spheres or an oblique rod [28, 29].
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FIG. 1: Configurations of the sphere centers at t = T (n− 1)/36, with n = 1, 2, ..., 7, as seen by an

observer settling vertically with the time-averaged velocity V.

The explicit time-dependence of vCM is shown in Fig. 2, where the horizontal and vertical

components of the center-of-mass velocity are plotted as functions of time, in the frame

settling vertically with the time-averaged velocity V. Note that the center-of-mass motion

is characterized by the period equal to T/3 rather than T . The time-dependence of vz,CM
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FIG. 2: The instantaneous center-of-mass velocity as measured by an observer settling with the

time-averaged velocity V . The symbols ◦ denote the positions at every T/12.

indicate that vertical settling is the fastest for the almost equilateral configuration of the

sphere centers seen at the middle snapshot of Fig. 1, i.e. at t = T/12, and then after every

T/6. On the other hand, settling is the slowest for the configurations seen at the second

and the last but one snapshot, at t = T/36 and t = 5T/36, and then every T/6 after these

time instants. Such a configuration corresponds also to the minimum of the inter-particle

distances, as shown in Fig. 3. The minimal gap size is reached for only one pair of the

spheres at a time and it is as small as 3.5 × 10−8. Therefore, the logarithmic scale is used

in Fig. 3 while plotting the distance between the sphere surfaces rij − 1 versus time.
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FIG. 3: The logarithm of the distance between the sphere surfaces. The symbols ◦ denote values

of log(r13 − 1) at every T/12.

Trajectories of the centers of the spheres zi(xi) and of the center of mass zCM(xCM)

during a single period T are plotted in Fig. 4.
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FIG. 4: Trajectories of the sphere centers (left) and of their center of mass (right), in the lab frame.

One period T ≈ 170 is shown. The symbols ◦ denote the positions at every T/12.

It is worthwhile to subtract the settling motion and obtain closed trajectories of the

sphere centers. One possibility is to adopt the center-of-mass frame. The corresponding

trajectories, zi − zCM versus xi − xCM , are plotted in Fig. 5, with the corresponding movie

linked on line. A striking feature is that we obtain as the result a single closed trajectory
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for all the three spheres. The particles circle along the same orbit, with the T/3 shift with

respect to each other. The “butterfly” shape of this trajectory is also of a special interest

because of the existence of cusps – points, where the motion rapidly changes direction.
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FIG. 5: The unique “butterfly” trajectory of all the sphere centers, in the center-of- mass frame.

The sense of the motion is indicated by the arrows. The symbols ◦ denote the positions at every

T/12 (enhanced on line).

An alternative description of the relative motion is to use the relative coordinates of the

sphere centers, (xij , 0, zij) = rij . The resulting trajectory, z23(x23), identical to −z13(x13),

is plotted in Fig. 6. Surprisingly, this curve contains tips – the turning points, where the

direction of the relative motion is reversed. The motion of the sphere centers with respect to

the center of sphere 3 is shown in the movie linked on line. This movie illustrates that, most

of the time, the shearing motion of the surfaces dominates the squeezing one. In Fig. 7, both

squeezing vn and shearing vt components of the relative velocity v23 are plotted versus time.

Indeed, the squeezing component vn is practically negligible most of the time. Moreover,

rapid changes of vn from/to zero correspond to significant changes of the direction of the

relative motion, observed at the cusps and tips of the relative trajectory in Fig. 6.

With three dimensional numerical codes, we did not observe separation of the particles

nor a change of the periodic benchmark solution even after 100 periods. The periodic

solution presented above is robust, although it slowly moves out of the vertical plane and

eventually the particles separate, if an off- plane perturbation is applied. On the other
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FIG. 6: The relative trajectory of the sphere centers. The positions are denoted by ◦ at every

T/12 (enhanced on line).
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FIG. 7: Evolution of the squeezing and shearing components of the relative velocity, vn = v23 · n̂
and vt = v23 · t̂, with n̂ = r23/r23 = (sin θ, 0, cos θ) and t̂ = (cos θ, 0,− sin θ).

hand, if the “optimal” initial conditions (8) are slightly perturbed within the plane, the

particles still oscillate, but quasi-periodically, with a second additional frequency. Such a

behavior is generic even for such a symmetric initial configuration of the particle centers as
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the equilateral triangle with a vertical base. For example, for the size of its side equal to

1.01, the spectral density of x2(t) was computed and plotted in Fig. 8, side by side with the

spectral density corresponding the the “optimal” solution. The frequency f1 corresponds

FIG. 8: Spectral density Φ (square of the magnitude of the Fourier transform) of x2(t), i.e. the

horizontal coordinate of a particle as a function of time. Left: the optimal trajectory with initial

conditions given by Eq. (8). Right: a slightly perturbed trajectory with respect to the optimal

one. The spectral density Φ(f) was normalized to one at the maximum.

to the period of oscillations of the relative motion (T ≈ 170 for the optimal trajectory),

whereas the frequency f2 = 3f1 corresponds to the oscillations of the center of mass of the

system (cf. Fig. 1). Finally, a smaller peak (f3) on the right panel corresponds to the slow

modulation around the periodic orbit. This modulation is inherent to the motion of the

center of mass. For the solutions analyzed in Fig. 8, the corresponding plots of the spectral

density of x2 − xCM contain only the single peak f1, and the plot of the spectral density

of xCM – only peaks f2 and f3 for the perturbed trajectory. Note that the positions of the

peaks on both panels do not coincide, which shows that the period of the motion changes

as the trajectory is perturbed.

V. TESTING INTEGRATION SCHEMES

In this section we analyze influence of integration routine and the method of avoiding

overlaps on the sphere dynamics. We test three different algorithms to integrate Eqs. (5)-

(6). In each of them we apply the same procedure to evaluate the mobility matrix, following

Sec. II. As mentioned in Sec. III, constant time-step methods can lead to non-physical
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overlapping of spheres. Adaptive routines can avoid that problem, but they are slow, because

as the spheres approach each other, the time step is decreased to very small values. Testing

the accuracy of fixed time-step procedures, we will use the fourth order Runge- Kutta with

adaptive time-step (RK) and the error density per unit time ρ = 10−10 (for the definition

see Appendix A) as the benchmark routine. In RK method, the overlaps are avoided by an

additional decreasing of the time-step by the factor of two if a potential overlap is detected.

However, it turns out that for ρ ≤ 10−6, even the standard adaptive RK procedure does not

lead to the overlaps and the additional time- step reduction is not needed.

As the method of avoiding overlaps in the fixed time-step methods we apply elastic

collision method, described in Ref. [8] and outlined in Section III. Collisions are incorpo-

rated into two integration schemes: fourth order Runge- Kutta method and implicit Euler

technique (described in Appendix B). Summarizing, we compare results of three different

integrating algorithms: adaptive fourth order Runge-Kutta (RK), constant time step fourth

order Runge-Kutta with collisions (RKC) and implicit Euler with collisions (IEC).

As a benchmark problem for assessing the accuracy and the efficiency of various numerical

schemes, we use the periodic motion of three spheres described in the previous section. This

gives a possibility to monitor such characteristics as the period or the minimal distance

between the sphere surfaces on the trajectory, depending on the method.

Using less accurate routines is reasonable if they are faster then our reference method.

To measure routine efficiency we will use TCPU , which is the time (in seconds) that CPU

needs to calculate the system evolution during the time unit τs, defined in Eq. ( 7). For

constant time-step routines, TCPU is almost constant during evolution. In adaptive Runge-

Kutta method time step is decreasing when spheres are closer to each other, so TCPU should

increase in such cases. Indeed, such a tendency can be observed in Fig. 9, where we plot

TCPU and the minimal distance between all the three pairs of spheres,

ξ = min(r12, r23, r31) − 1. (10)

The results obtained with different integration schemes are compared in Fig. 10 and

Table I. For the fixed time-step routines, three values of the time step are used to control

the convergence. For RK procedure the time-step is changing, but we can control average

time-step < dt > by changing error density per unit time ρ. For the data in Fig. 10 and

Table I we choose ρ in such a way as to obtain < dt > similar to the values used in the fixed
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FIG. 9: Computational time of the adaptive RK method TCPU (solid line) and the corresponding

minimal distance ξ given by Eq. (10) (dashed line) as a function of time. Initial positions of all the

three spheres are given by Eq. (8) and the error density per unit time ρ = 10−9.

time-step routines. In Fig. 10 the logarithm of the distance between surfaces of one pair of

spheres is shown as a function of time, whereas in Table I also other features of the periodic

trajectory are explicitly compared: period T , minimal distance rmin between the surfaces

on the trajectory and the average computational time < TCPU >.

time-step period T minimal distance rmin 〈TCPU 〉 [s]

dt = 0.1 151 3 · 10−10 3.2

IEC dt = 0.01 186 1.1 · 10−12 5.2

dt = 0.001 209 5 · 10−15 60.4

dt = 0.1 129 10−5 0.9

RKC dt = 0.01 153 2 · 10−7 9.2

dt = 0.001 170 3.5 · 10−8 170

RK ρ = 10−1 〈dt〉 ≈ 0.081 147 3.3 · 10−7 1.2

ρ = 10−6 〈dt〉 ≈ 0.009 171 2.7 · 10−8 15

ρ = 10−10 〈dt〉 ≈ 0.001 170 3.7 · 10−8 110

TABLE I: Comparison of three different integration schemes (IEC, RKC, RK), applied to the same

initial condition given by Eq. (8). Basic features of the calculated periodic trajectories (period and

minimal distance) and average efficiency of the numerical computation 〈TCPU〉.
.
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FIG. 10: The distance between surfaces of two spheres, labeled 1 and 2, as a function of time,

obtained with the use of three methods: IEC, RKC and RK. The corresponding time-steps (or

average time-step for RK) are indicated in panels. The initial positions of all the spheres are given

by Eq. (8).

A striking feature of Fig. 10 is the presence of long chains of collisions, corresponding

to non-smooth parts of the plots. This shows, surprisingly, that single collisions are rare.

The effect of collisions is the most significant in the IEC procedure; actually, the collisions

change the dynamics of very close particles in a profound way. In case of the implicit Euler

scheme, paradoxically, the collisions induce the tendency of particles to stay together longer

and at smaller distances that the ones calculated by the reference fourth order adaptive

RK scheme [31]. Decreasing the time-step in IEC procedure, we observe that period of the

motion is constantly increasing whereas minimal distance between the spheres surfaces is

decreasing, reaching the numerical noise level at dt = 0.001. Therefore IEC routine does

not seem to converge. Moreover, the results of IEC method differ from those obtained with

the RK routine. For the IEC scheme with the smallest time-step dt = 0.001 the period is

T = 209 and the minimal distance between the sphere surfaces rmin = 5 · 10−15. For the

reference RK with the average < dt >= 0.001, the period and the minimal distance between
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the sphere surfaces are T = 170 and rmin = 3 · 10−8, respectively.

Contrary to the IEC, the RKC routine does converge. Decreasing the time-step in RKC,

we reproduce the reference result of the RK integration scheme, as indicated in Fig. 10

and Table I. Such result is to be expected, because for dt ≤ 0.001 there are no collisions.

However, for such small dt, the computational time TCPU increases considerably, and it

becomes even larger than for adaptive RK. If we use larger time-steps in RKC, there is some

gain in TCPU , but the period and minimal distance change significantly.

VI. CONCLUSIONS

In this study, we considered the dynamics of close spherical particles moving in a vis-

cous fluid. A benchmark periodic trajectory of three spheres was found, with the particles

remaining constantly within a very short distance to each other. The period of the motion

corresponds to about 170 τs (85 Stokes times), and the longest simulations reported reached

more than 100 periods. Most of the time the particles are in sliding motion relative to

each other, followed by rapid changes of direction of the relative motion. The smallest gap

between the particles constantly remains below 1% of their diameter. This is in contrast

to previously reported trajectories which have mostly a scattering character, i.e. after some

interaction time initially close particles drift away from each other. Constant proximity of

the particles makes the considered trajectory an ideal benchmark problem for a comparison

of accuracy between different numerical methods. In particular, it is then possible to test

different approaches of solving the problem of particle overlaps, which are a non-physical,

numerical artifact of most fixed time-step integrating routines. The results of our analysis

show that the details of the particle motion strongly depend on both numerical method used

to integrate the equations of motion and the adopted method of avoiding the overlaps. In

particular, we show that the elastic collision method (in which the particles are reflected

elastically each time they are going to overlap) inevitably introduces significant errors, which

are hard to control, unless the timestep is sufficiently reduced so that the collisions are rare.

The adaptive time step routines, although slower in terms of computational speed, are in

general much more accurate than collision methods and thus appear to be the method of

choice for the Stokesian dynamics simulations of close particles.
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APPENDIX A: ERROR CALCULATION IN ADAPTIVE RUNGE-KUTTA

METHOD

In this Appendix, we discuss the accuracy of the adaptive Runge-Kutta algorithm, fol-

lowing [22]. A good estimate of a truncation error of the algorithm is

Δ1(dt) =

√√√√ 3∑
i=1

|r(5)
i (t + dt) − r

(4)
i (t + dt)|2, (A1)

where |r(5)
i (t+dt)−r

(4)
i (t+dt)| is the difference between fifth order and fourth order Runge-

Kutta results for the position of particle i at the next timestep, dt. This error is then

compared with the desired accuracy, Δ0:

Δ0(dt) = ρdt, (A2)

where ρ is the error density per unit time, specified at the beginning of the simulation. A

new value of the timestep, dt′, is then calculated as [22]:

dt′ =

⎧⎪⎨
⎪⎩

Sdt
∣∣∣Δ0

Δ1

∣∣∣1/5

if Δ0 ≥ Δ1,

Sdt
∣∣∣Δ0

Δ1

∣∣∣1/4

if Δ0 < Δ1,
(A3)

where we take the safety factor S equal to 0.95.

APPENDIX B: IMPLICIT AND EXPLICIT EULER METHOD WITH

COLLISIONS

As described in III, the explicit Euler method with hard-sphere collisions may be repre-

sented formally as

X(t + δt) = X(t) + [V(X(t))δt]HS (B1)
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where an index HS means that a hard sphere dynamics is used to advance the system by

δt. In the above equation the particle velocities are computed at the beginning of the time

step, just as in any explicit (forward) Euler method. However, explicit Euler method suffers

from numerical instability problem and one needs to resort to impractically short time steps

to obtain reliable results. To avoid this problem, a following implicit scheme may be used

X(t + δt) = X(t) + [V(X(t + δt))δt]HS (B2)

which we are going to call “implicit Euler method with collisions” (IE). A downside of this

method is that X(t + δt) is given only implicitly by the above equation. To find X(t + δt),

we use a fixed point iteration scheme, with an initial guess X0(t+δt) = X(t). The iterations

are stopped when the difference between the values of X(t + δt) calculated in successive

iterations is smaller than 10−5.
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