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Variational approach
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Dual formulation

The system from the previous slide can be described by the set

C ⊂ T
⋆Q (constitutive set), defined by the variational

principle:

T
⋆
qQ ∩ C = Cq ∋ f if S(v) > f(v).
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The system from the previous slide can be described by the set

C ⊂ T
⋆Q (constitutive set), defined by the variational

principle:

T
⋆
qQ ∩ C = Cq ∋ f if S(v) > f(v).

For each q ∈ Q the set Cq is a convex, closed set in T
⋆
qQ. If the

system is potential, then Cq = {dU(q)}. Cq is the list of forces
which are in equilibrium at q with the system.
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Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.
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Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.

Dimension two: statics of membranes, dynamics of strings.

Dimension one and potential systems only with parameters R,
i.e. we consider mappings γ : R→ Q.

Potentials are given by a function L : TQ→ R

T is a one dimensional current in the space of parameters.
Two cases: T = [a, b], T = ∂

∂s at 0 ∈ R.
Configurations QT are obtained by classification of curves in Q

with respect to the action functional

LT : γ 7→ 〈T, L ◦ tγds〉

Kazury, 27.05.2020 – p. 4/12



As results we get:

For T = [a, b], QT = {γ : [a, b]→ Q}, LT([γ]) =
∫ b
a L ◦ tγ,

elements of TQT are curves in TQ, v̂ : [a, b]→ TQ.
A co-vector â ∈ T

⋆QT can be represented by a pair of curves
f, p : [a, b]→ T

⋆Q with πQ ◦ f = πQ ◦ p. The evaluation between
vectors and co-vectors is given by

〈[(f, p)], v̂〉 = 〈p(b), v̂(b)〉 − 〈p(a), v̂(a)〉 −

∫ b

a
〈f(s), v̂(s)〉ds

Kazury, 27.05.2020 – p. 5/12



As results we get:

For T = [a, b], QT = {γ : [a, b]→ Q}, LT([γ]) =
∫ b
a L ◦ tγ,

elements of TQT are curves in TQ, v̂ : [a, b]→ TQ.
A co-vector â ∈ T
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A co-vector â ∈ T

⋆QT can be represented by a pair of curves
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⋆Q with πQ ◦ f = πQ ◦ p. The evaluation between
vectors and co-vectors is given by

〈[(f, p)], v̂〉 = 〈p(b), v̂(b)〉 − 〈p(a), v̂(a)〉 −

∫ b

a
〈f(s), v̂(s)〉ds

For T = ∂
∂s , QT = TQ, TQT = TTQ, LT(v) = L(v), and

T
∗QT = T

∗
TQ. And here comes Hamiltonian as a generating

object (Morse family, in general) over T∗Q. We make use of the
canonical isomorphism between T

∗
TQ and T

∗
T
∗Q. We see that

Hamiltonian is related to the infinitesimal dynamics only!

Kazury, 27.05.2020 – p. 5/12



One 2-dimensional case

In the dynamics of strings and statics of membranes,
configurations are pieces of 2-dimensional submanifolds in Q

equipped with a metric. Infinitesimal piece (a jet) we represent
by a (simple) bi-vector on Q. Manifold of infinitesimal
configurations is then ∧2TQ. The Nambu-Goto Lagrangian is
given by L(w) =

√

(w|w). Hamiltonian generating object is a
Morse family

H : ∧2 T∗Q× R+ → R

: (p, r) 7→ r(
√

(p|p)− 1)
(1)
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by a (simple) bi-vector on Q. Manifold of infinitesimal
configurations is then ∧2TQ. The Nambu-Goto Lagrangian is
given by L(w) =

√

(w|w). Hamiltonian generating object is a
Morse family

H : ∧2 T∗Q× R+ → R

: (p, r) 7→ r(
√

(p|p)− 1)
(2)

The infinitesimal phase dynamics is a subspace
D ⊂ ∧2T ∧2 T∗Q given by dL, dH via canonical mappings

T
∗ ∧2 T∗M

β2

M←− ∧2T ∧2 T∗M
α2

M−→ T
∗ ∧2 TM
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Analytical mechanics as a field theory

In field theories configurations are pieces of sections of a
bundle. There is natural parametrization of a configuration by a
domain of the base manifold. Let us see what happens in the
case of the analytical mechanics of a point. The space-time is a
manifold M fibred over time T = R, τ : M → T . Motion of a point
is a section of τ .
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bundle. There is natural parametrization of a configuration by a
domain of the base manifold. Let us see what happens in the
case of the analytical mechanics of a point. The space-time is a
manifold M fibred over time T = R, τ : M → T . Motion of a point
is a section of τ . Infinitesimal piece of a motion is its first jet.
First jets are in one-to-one correspondence with vectors v ∈ TM

such that Tτ(v) = ∂
∂t .

T1M = {TM ∋ v : Tτ(v) =
∂

∂t
}

is an affine subbundle of TM . The affine dual bundle can be
identified with T

∗M fibred by the pull-back of dt,
π : T∗M → V

∗M , where VM is the bundle of τ -vertical vectors.
If Lagrangian is a function on T1M then Hamiltonian is a section
of π (energy level!). We end up in Geometry of Affine Values.
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First order field theory

We have already seen that Hamiltonian approach is possible for
infinitesimal states, infinitesimal in every direction. We may
consider also states infinitesimal in a certain direction only.
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First order field theory

We have already seen that Hamiltonian approach is possible for
infinitesimal states, infinitesimal in every direction. We may
consider also states infinitesimal in a certain direction only.

Let us discuss the case of a scalar field over the space-time M

with Lagrangian depending on first jets only. For simplicity:
M = T ×Q, T = R is the time, Q = R

3 is the space. As a
4-dimensional current T on M we take the vector field ∂

∂t at
Ωt = {t} × Ω.
Ω is a compact domain with smooth boundary ∂Ω.
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Evaluation between a 4-form α and T:

〈T , α〉 =

∫

Ω

i ∂

∂t

α
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Ω
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α

QT is a vector space, hence TQT = QT ×QT and

T
⋆QT = QT ×Q⋆

T
.

A co-vector a ∈ Q⋆
T

can be represented by a pair (f, p),
f : M → ∧4T∗M and p : M → ∧3T∗M .
A vector v ∈ QT can be represented by x : M → R

Kazury, 27.05.2020 – p. 9/12



Evaluation between a 4-form α and T:

〈T , α〉 =

∫

Ω

i ∂

∂t

α

QT is a vector space, hence TQT = QT ×QT and

T
⋆QT = QT ×Q⋆

T
.

A co-vector a ∈ Q⋆
T

can be represented by a pair (f, p),
f : M → ∧4T∗M and p : M → ∧3T∗M .
A vector v ∈ QT can be represented by x : M → R

The evaluation between vectors and co-vectors is given by

〈[(f, p)], [x]〉 = 〈T, d(xp)− xf〉

.
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More precisely

p = dt ∧ p̄+ p0 and

i ∂

∂t

d(xp) = −d3(xp̄) + ∂txp
0 + x∂tp

0

〈T, d(xp)− xf〉 = −

∫

∂Ω
xp̄+

∫

Ω

(∂txp
0 + x∂tp

0 − xi ∂

∂t

f)
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∫
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xp̄+

∫

Ω

(∂txp
0 + x∂tp

0 − xi ∂

∂t

f)

Dual pairs: x and ∂tp
0 − f̄ on Ω; ∂tx and p0 on Ω ; x and p̄ on

∂Ω.

Natural choice of topologies, e.g.for Klein-Gordon:
x ∈ H1(Ω), ∂tp

0 − f̄ ∈ H−1(Ω), ∂tx ∈ H0(Ω), p0 ∈ H0(Ω),
x|∂Ω ∈ H1/2(∂Ω), p̄|∂Ω ∈ H−1/2(∂Ω)
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Dynamical system

To turn infinitesimal dynamics into dynamical (Hamiltonian)
system we have to interpret in as a vector field on a Banach
space
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Dynamical system

To turn infinitesimal dynamics into dynamical (Hamiltonian)
system we have to interpret in as a vector field on a Banach
space

For this we choose x ∈ H0(Ω) and ∂tp
0 − f̄ ∈ H0(Ω)

This implies f̄ = 0 (no ’forces’), p̄|∂Ω = 0 (homogeneous
boundary conditions)
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AMEN
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