Few remarks on Hamiltonian approach in classical theories

Paweł Urbański
urbanski@fuw.edu.pl
Faculty of Physics
University of Warsaw

Variational approach

is the way to describe interacting systems in opposite to observed systems.

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q
- (Infinitesimal) virtual displacements - positive homogeneous subspace D in TQ

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q
- (Infinitesimal) virtual displacements - positive homogeneous subspace D in TQ
- Virtual work (action) defined by a positive-homogeneous function $S: D \rightarrow \mathbb{R}$. The system is potential if $\mathrm{S}=\mathrm{dV}$

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q
- (Infinitesimal) virtual displacements - positive homogeneous subspace D in TQ
- Virtual work (action) defined by a positive-homogeneous function $S: D \rightarrow \mathbb{R}$. The system is potential if $S=\mathrm{dV}$
Potential systems represent forces - elements of $\mathrm{T}^{\star} Q$.

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q
- (Infinitesimal) virtual displacements - positive homogeneous subspace D in TQ
- Virtual work (action) defined by a positive-homogeneous function $S: D \rightarrow \mathbb{R}$. The system is potential if $S=\mathrm{dV}$
Potential systems represent forces - elements of $\mathrm{T}^{\star} Q$.

Variational approach

is the way to describe interacting systems in opposite to observed systems. Ingredients:

- Configurations of a system Q
- (Infinitesimal) virtual displacements - positive homogeneous subspace D in TQ
- Virtual work (action) defined by a positive-homogeneous function $S: D \rightarrow \mathbb{R}$. The system is potential if $S=\mathrm{dV}$
Potential systems represent forces - elements of $\mathrm{T}^{\star} Q$.

Dual formulation

The system from the previous slide can be described by the set $C \subset \mathrm{~T}^{\star} Q$ (constitutive set), defined by the variational principle:

$$
\mathrm{T}_{q}^{\star} Q \cap C=C_{q} \ni f \text { if } S(v) \geqslant f(v) .
$$

Dual formulation

The system from the previous slide can be described by the set $C \subset \mathrm{~T}^{\star} Q$ (constitutive set), defined by the variational principle:

$$
\mathrm{T}_{q}^{\star} Q \cap C=C_{q} \ni f \text { if } S(v) \geqslant f(v) .
$$

For each $q \in Q$ the set C_{q} is a convex, closed set in $\mathrm{T}_{q}^{\star} Q$. If the system is potential, then $C_{q}=\{\mathrm{d} U(q)\}$.

Dual formulation

The system from the previous slide can be described by the set $C \subset \mathrm{~T}^{\star} Q$ (constitutive set), defined by the variational principle:

$$
\mathrm{T}_{q}^{\star} Q \cap C=C_{q} \ni f \text { if } S(v) \geqslant f(v) .
$$

For each $q \in Q$ the set C_{q} is a convex, closed set in $\mathrm{T}_{q}^{\star} Q$. If the system is potential, then $C_{q}=\{\mathrm{d} U(q)\} . C_{q}$ is the list of forces which are in equilibrium at q with the system.

Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.

Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.
Dimension two: statics of membranes, dynamics of strings.

Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.
Dimension two: statics of membranes, dynamics of strings.
Dimension one and potential systems only with parameters \mathbb{R}, i.e. we consider mappings $\gamma: \mathbb{R} \rightarrow Q$.

Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.
Dimension two: statics of membranes, dynamics of strings.
Dimension one and potential systems only with parameters \mathbb{R}, i.e. we consider mappings $\gamma: \mathbb{R} \rightarrow Q$.

Potentials are given by a function $L: \mathrm{T} Q \rightarrow \mathbb{R}$

Extended, parameterized objects

Dimension one: statics of strings, dynamics of points.
Dimension two: statics of membranes, dynamics of strings.
Dimension one and potential systems only with parameters \mathbb{R}, i.e. we consider mappings $\gamma: \mathbb{R} \rightarrow Q$.

Potentials are given by a function $L: \mathrm{T} Q \rightarrow \mathbb{R}$
\mathbb{T} is a one dimensional current in the space of parameters.
Two cases: $\mathbb{T}=[a, b], \mathbb{T}=\frac{\partial}{\partial s}$ at $0 \in \mathbb{R}$.
Configurations $Q_{\mathbb{T}}$ are obtained by classification of curves in Q with respect to the action functional

$$
L_{\mathbb{T}}: \gamma \mapsto\langle\mathbb{T}, L \circ \mathrm{t} \gamma \mathrm{~d} s\rangle
$$

As results we get:

For $\mathbb{T}=[a, b], Q_{\mathbb{T}}=\{\gamma:[a, b] \rightarrow Q\}, L_{\mathbb{T}}([\gamma])=\int_{a}^{b} L \circ \mathrm{t} \gamma$, elements of $\mathrm{T} Q_{\mathbb{T}}$ are curves in $\mathrm{T} Q, \hat{v}:[a, b] \rightarrow \mathrm{T} Q$. A co-vector $\hat{a} \in \mathrm{~T}^{\star} Q_{\mathbb{T}}$ can be represented by a pair of curves $f, p:[a, b] \rightarrow \mathrm{T}^{\star} Q$ with $\pi_{Q} \circ f=\pi_{Q} \circ p$. The evaluation between vectors and co-vectors is given by

$$
\langle[(f, p)], \hat{v}\rangle=\langle p(b), \hat{v}(b)\rangle-\langle p(a), \hat{v}(a)\rangle-\int_{a}^{b}\langle f(s), \hat{v}(s)\rangle \mathrm{d} s
$$

As results we get:

For $\mathbb{T}=[a, b], Q_{\mathbb{T}}=\{\gamma:[a, b] \rightarrow Q\}, L_{\mathbb{T}}([\gamma])=\int_{a}^{b} L \circ \mathrm{t} \gamma$, elements of $\mathrm{T} Q_{\mathbb{T}}$ are curves in $\mathrm{T} Q, \hat{v}:[a, b] \rightarrow \mathrm{T} Q$. A co-vector $\hat{a} \in \mathrm{~T}^{\star} Q_{\mathbb{T}}$ can be represented by a pair of curves $f, p:[a, b] \rightarrow T^{\star} Q$ with $\pi_{Q} \circ f=\pi_{Q} \circ p$. The evaluation between vectors and co-vectors is given by

$$
\langle[(f, p)], \hat{v}\rangle=\langle p(b), \hat{v}(b)\rangle-\langle p(a), \hat{v}(a)\rangle-\int_{a}^{b}\langle f(s), \hat{v}(s)\rangle \mathrm{d} s
$$

For $\mathbb{T}=\frac{\partial}{\partial s}, Q_{\mathbb{T}}=\mathrm{T} Q, \mathrm{~T} Q_{\mathbb{T}}=\mathrm{TT} Q, L_{\mathbb{T}}(v)=L(v)$, and $\mathrm{T}^{*} Q_{\mathbb{T}}=\mathrm{T}^{*} \mathrm{~T} Q$.

As results we get:

For $\mathbb{T}=[a, b], Q_{\mathbb{T}}=\{\gamma:[a, b] \rightarrow Q\}, L_{\mathbb{T}}([\gamma])=\int_{a}^{b} L \circ \mathrm{t} \gamma$, elements of $\mathrm{T} Q_{\mathbb{T}}$ are curves in $\mathrm{T} Q, \hat{v}:[a, b] \rightarrow \mathrm{T} Q$. A co-vector $\hat{a} \in \mathrm{~T}^{\star} Q_{\mathbb{T}}$ can be represented by a pair of curves $f, p:[a, b] \rightarrow \mathrm{T}^{\star} Q$ with $\pi_{Q} \circ f=\pi_{Q} \circ p$. The evaluation between vectors and co-vectors is given by

$$
\langle[(f, p)], \hat{v}\rangle=\langle p(b), \hat{v}(b)\rangle-\langle p(a), \hat{v}(a)\rangle-\int_{a}^{b}\langle f(s), \hat{v}(s)\rangle \mathrm{d} s
$$

For $\mathbb{T}=\frac{\partial}{\partial s}, Q_{\mathbb{T}}=\mathrm{T} Q, \mathrm{~T} Q_{\mathbb{T}}=\mathrm{T} T Q, L_{\mathbb{T}}(v)=L(v)$, and $\mathrm{T}^{*} Q_{\mathbb{T}}=\mathrm{T}^{*} \mathrm{~T} Q$. And here comes Hamiltonian as a generating object (Morse family, in general) over $T^{*} Q$. We make use of the canonical isomorphism between $\mathrm{T}^{*} \mathrm{~T} Q$ and $\mathrm{T}^{*} \mathrm{~T}^{*} Q$. We see that Hamiltonian is related to the infinitesimal dynamics only!

One 2-dimensional case

In the dynamics of strings and statics of membranes, configurations are pieces of 2-dimensional submanifolds in Q equipped with a metric. Infinitesimal piece (a jet) we represent by a (simple) bi-vector on Q. Manifold of infinitesimal configurations is then $\wedge^{2} T Q$. The Nambu-Goto Lagrangian is given by $L(w)=\sqrt{(w \mid w)}$. Hamiltonian generating object is a Morse family

$$
\begin{align*}
H & : \wedge^{2} \top^{*} Q \times \mathbb{R}_{+} \rightarrow \mathbb{R} \\
& :(p, r) \mapsto r(\sqrt{(p \mid p)}-1) \tag{1}
\end{align*}
$$

One 2-dimensional case

In the dynamics of strings and statics of membranes, configurations are pieces of 2-dimensional submanifolds in Q equipped with a metric. Infinitesimal piece (a jet) we represent by a (simple) bi-vector on Q. Manifold of infinitesimal configurations is then $\wedge^{2} T Q$. The Nambu-Goto Lagrangian is given by $L(w)=\sqrt{(w \mid w)}$. Hamiltonian generating object is a Morse family

$$
\begin{align*}
& H: \\
& \wedge^{2} \mathrm{~T}^{*} Q \times \mathbb{R}_{+} \rightarrow \mathbb{R} \tag{2}\\
&:(p, r) \mapsto r(\sqrt{(p \mid p)}-1)
\end{align*}
$$

The infinitesimal phase dynamics is a subspace
$D \subset \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} Q$ given by $\mathrm{d} L, \mathrm{~d} H$ via canonical mappings

$$
\mathrm{T}^{*} \wedge^{2} \mathrm{~T}^{*} M \stackrel{\beta_{M}^{2}}{\leftrightarrows} \wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M \stackrel{\alpha_{M}^{2}}{M} \mathrm{~T}^{*} \wedge^{2} \mathrm{~T} M
$$

Analytical mechanics as a field theory
In field theories configurations are pieces of sections of a bundle. There is natural parametrization of a configuration by a domain of the base manifold. Let us see what happens in the case of the analytical mechanics of a point. The space-time is a manifold M fibred over time $T=\mathbb{R}, \tau: M \rightarrow T$. Motion of a point is a section of τ.

Analytical mechanics as a field theory
In field theories configurations are pieces of sections of a bundle. There is natural parametrization of a configuration by a domain of the base manifold. Let us see what happens in the case of the analytical mechanics of a point. The space-time is a manifold M fibred over time $T=\mathbb{R}, \tau: M \rightarrow T$. Motion of a point is a section of τ. Infinitesimal piece of a motion is its first jet. First jets are in one-to-one correspondence with vectors $v \in T M$ such that $\mathrm{T} \tau(v)=\frac{\partial}{\partial t}$.

$$
T_{1} M=\left\{\mathrm{T} M \ni v: \mathrm{T} \tau(v)=\frac{\partial}{\partial t}\right\}
$$

is an affine subbundle of $T M$. The affine dual bundle can be identified with $\mathrm{T}^{*} M$ fibred by the pull-back of $\mathrm{d} t$, $\pi: \mathrm{T}^{*} M \rightarrow \mathrm{~V}^{*} M$, where $\mathrm{V} M$ is the bundle of τ-vertical vectors.

Analytical mechanics as a field theory

In field theories configurations are pieces of sections of a bundle. There is natural parametrization of a configuration by a domain of the base manifold. Let us see what happens in the case of the analytical mechanics of a point. The space-time is a manifold M fibred over time $T=\mathbb{R}, \tau: M \rightarrow T$. Motion of a point is a section of τ. Infinitesimal piece of a motion is its first jet. First jets are in one-to-one correspondence with vectors $v \in T M$ such that $\mathrm{T} \tau(v)=\frac{\partial}{\partial t}$.

$$
T_{1} M=\left\{\mathrm{T} M \ni v: \mathrm{T} \tau(v)=\frac{\partial}{\partial t}\right\}
$$

is an affine subbundle of $T M$. The affine dual bundle can be identified with $\mathrm{T}^{*} M$ fibred by the pull-back of $\mathrm{d} t$, $\pi: \mathrm{T}^{*} M \rightarrow \mathrm{~V}^{*} M$, where $\mathrm{V} M$ is the bundle of τ-vertical vectors.
If Lagrangian is a function on $\mathrm{T}_{1} M$ then Hamiltonian is a section of π (energy level!).

Analytical mechanics as a field theory

In field theories configurations are pieces of sections of a bundle. There is natural parametrization of a configuration by a domain of the base manifold. Let us see what happens in the case of the analytical mechanics of a point. The space-time is a manifold M fibred over time $T=\mathbb{R}, \tau: M \rightarrow T$. Motion of a point is a section of τ. Infinitesimal piece of a motion is its first jet.
First jets are in one-to-one correspondence with vectors $v \in T M$ such that $\mathrm{T} \tau(v)=\frac{\partial}{\partial t}$.

$$
T_{1} M=\left\{\mathrm{T} M \ni v: \mathrm{T} \tau(v)=\frac{\partial}{\partial t}\right\}
$$

is an affine subbundle of $T M$. The affine dual bundle can be identified with $T^{*} M$ fibred by the pull-back of $\mathrm{d} t$, $\pi: \mathrm{T}^{*} M \rightarrow \mathrm{~V}^{*} M$, where $\mathrm{V} M$ is the bundle of τ-vertical vectors.
If Lagrangian is a function on $\mathrm{T}_{1} M$ then Hamiltonian is a section of π (energy leve!!). We end up in Geometry of Affine Values.

First order field theory

We have already seen that Hamiltonian approach is possible for infinitesimal states, infinitesimal in every direction. We may consider also states infinitesimal in a certain direction only.

First order field theory

We have already seen that Hamiltonian approach is possible for infinitesimal states, infinitesimal in every direction. We may consider also states infinitesimal in a certain direction only.

Let us discuss the case of a scalar field over the space-time M with Lagrangian depending on first jets only. For simplicity: $M=T \times Q, T=\mathbb{R}$ is the time, $Q=\mathbb{R}^{3}$ is the space. As a 4-dimensional current \mathbb{T} on M we take the vector field $\frac{\partial}{\partial t}$ at $\Omega_{t}=\{t\} \times \Omega$.
Ω is a compact domain with smooth boundary $\partial \Omega$.

Evaluation between a 4-form α and \mathbb{T} :

$$
\langle\mathbb{T}, \alpha\rangle=\int_{\Omega} \mathrm{i}_{\frac{\partial}{\partial t}} \alpha
$$

Evaluation between a 4-form α and \mathbb{T} :

$$
\langle\mathbb{T}, \alpha\rangle=\int_{\Omega} \mathrm{i}_{\frac{\partial}{\partial t}} \alpha
$$

$Q_{\mathbb{T}}$ is a vector space, hence $\mathrm{T} Q_{\mathbb{T}}=Q_{\mathbb{T}} \times Q_{\mathbb{T}}$ and
$\mathrm{T}^{\star} Q_{\mathbb{T}}=Q_{\mathbb{T}} \times Q_{\mathbb{T}}^{\star}$.
A co-vector $a \in Q_{\mathbb{T}}^{\star}$ can be represented by a pair (f, p), $f: M \rightarrow \wedge^{4} \mathrm{~T}^{*} M$ and $p: M \rightarrow \wedge^{3} \mathrm{~T}^{*} M$.
A vector $v \in Q_{\mathbb{T}}$ can be represented by $x: M \rightarrow \mathbb{R}$

Evaluation between a 4-form α and \mathbb{T} :

$$
\langle\mathbb{T}, \alpha\rangle=\int_{\Omega} \mathrm{i}_{\frac{\partial}{\partial t}} \alpha
$$

$Q_{\mathbb{T}}$ is a vector space, hence $\mathrm{T} Q_{\mathbb{T}}=Q_{\mathbb{T}} \times Q_{\mathbb{T}}$ and
$\mathrm{T}^{\star} Q_{\mathbb{T}}=Q_{\mathbb{T}} \times Q_{\mathbb{T}}^{\star}$.
A co-vector $a \in Q_{\mathbb{T}}^{\star}$ can be represented by a pair (f, p),
$f: M \rightarrow \wedge^{4} \mathrm{~T}^{*} M$ and $p: M \rightarrow \wedge^{3} \mathrm{~T}^{*} M$.
A vector $v \in Q_{\mathbb{T}}$ can be represented by $x: M \rightarrow \mathbb{R}$
The evaluation between vectors and co-vectors is given by

$$
\langle[(f, p)],[x]\rangle=\langle\mathbb{T}, \mathrm{d}(x p)-x f\rangle
$$

More precisely

$$
p=\mathrm{d} t \wedge \bar{p}+p^{0} \text { and }
$$

$$
\mathrm{i}_{\frac{\partial}{\partial t}} \mathrm{~d}(x p)=-\mathrm{d}^{3}(x \bar{p})+\partial_{t} x p^{0}+x \partial_{t} p^{0}
$$

$$
\langle\mathbb{T}, \mathrm{d}(x p)-x f\rangle=-\int_{\partial \Omega} x \bar{p}+\int_{\Omega}\left(\partial_{t} x p^{0}+x \partial_{t} p^{0}-x \mathrm{i}_{\frac{\partial}{\partial t}} f\right)
$$

More precisely

$$
\begin{aligned}
& p=\mathrm{d} t \wedge \bar{p}+p^{0} \text { and } \\
& \qquad \mathrm{i}_{\frac{\partial}{\partial t}} \mathrm{~d}(x p)=-\mathrm{d}^{3}(x \bar{p})+\partial_{t} x p^{0}+x \partial_{t} p^{0} \\
& \quad\langle\mathbb{T}, \mathrm{~d}(x p)-x f\rangle=-\int_{\partial \Omega} x \bar{p}+\int_{\Omega}\left(\partial_{t} x p^{0}+x \partial_{t} p^{0}-x \mathrm{i}_{\frac{\partial}{\partial t}} f\right)
\end{aligned}
$$

Dual pairs: x and $\partial_{t} p^{0}-\bar{f}$ on Ω; $\partial_{t} x$ and p^{0} on $\Omega ; x$ and \bar{p} on $\partial \Omega$.

More precisely

$$
p=\mathrm{d} t \wedge \bar{p}+p^{0} \text { and }
$$

$$
\begin{gathered}
\mathrm{i}_{\frac{\partial}{\partial t}} \mathrm{~d}(x p)=-\mathrm{d}^{3}(x \bar{p})+\partial_{t} x p^{0}+x \partial_{t} p^{0} \\
\langle\mathbb{T}, \mathrm{~d}(x p)-x f\rangle=-\int_{\partial \Omega} x \bar{p}+\int_{\Omega}\left(\partial_{t} x p^{0}+x \partial_{t} p^{0}-x \mathrm{i}_{\frac{\partial}{\partial t}} f\right)
\end{gathered}
$$

Dual pairs: x and $\partial_{t} p^{0}-\bar{f}$ on Ω; $\partial_{t} x$ and p^{0} on $\Omega ; x$ and \bar{p} on $\partial \Omega$.
Natural choice of topologies, e.g.for Klein-Gordon:

More precisely

$$
p=\mathrm{d} t \wedge \bar{p}+p^{0} \text { and }
$$

$$
\begin{gathered}
\mathrm{i}_{\frac{\partial}{\partial t}} \mathrm{~d}(x p)=-\mathrm{d}^{3}(x \bar{p})+\partial_{t} x p^{0}+x \partial_{t} p^{0} \\
\langle\mathbb{T}, \mathrm{~d}(x p)-x f\rangle=-\int_{\partial \Omega} x \bar{p}+\int_{\Omega}\left(\partial_{t} x p^{0}+x \partial_{t} p^{0}-x \mathrm{i}_{\frac{\partial}{\partial t}} f\right)
\end{gathered}
$$

Dual pairs: x and $\partial_{t} p^{0}-\bar{f}$ on Ω; $\partial_{t} x$ and p^{0} on $\Omega ; x$ and \bar{p} on $\partial \Omega$.
Natural choice of topologies, e.g.for Klein-Gordon:
$x \in H^{1}(\Omega), \partial_{t} p^{0}-\bar{f} \in H^{-1}(\Omega), \partial_{t} x \in H^{0}(\Omega), p^{0} \in H^{0}(\Omega)$,
$\left.x\right|_{\partial \Omega} \in H^{1 / 2}(\partial \Omega),\left.\bar{p}\right|_{\partial \Omega} \in H^{-1 / 2}(\partial \Omega)$

Dynamical system

To turn infinitesimal dynamics into dynamical (Hamiltonian) system we have to interpret in as a vector field on a Banach space

Dynamical system

To turn infinitesimal dynamics into dynamical (Hamiltonian) system we have to interpret in as a vector field on a Banach space
For this we choose $x \in H^{0}(\Omega)$ and $\partial_{t} p^{0}-\bar{f} \in H^{0}(\Omega)$

Dynamical system

To turn infinitesimal dynamics into dynamical (Hamiltonian) system we have to interpret in as a vector field on a Banach space
For this we choose $x \in H^{0}(\Omega)$ and $\partial_{t} p^{0}-\bar{f} \in H^{0}(\Omega)$
This implies $\bar{f}=0$ (no 'forces'), $\left.\bar{p}\right|_{\partial \Omega}=0$ (homogeneous boundary conditions)

AMEN

