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Overview

0 Motivation

1 Construction / Regularization / Implementation on Hy;,

2 Evaluation of Matrix Elements (Rep'n. Theory / Combinatorics)
3 Spectral Properties.

4 To Do.
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Gauge Invariant 4-Vertex
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N-Vertex: Simplified Expression for the Matrix Element
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4-\ertex

Analytical Insights

m Special Form: only 1 antisymmetric, D-dim tridiagonal matrix, sign
factor 0(123) only gives overall scaling of the spectrum.

0 -1 0 -~ 0 0 0

g1 0 —q -~ O 0 0

0 ¢ 0 -~ 0 0 0
6123: . . . E . .

0 0 0 0 —gp2 O

0 0 O qD—2 0 —qp-1

0 0 0 0 gp-1 O

where qr = qx(j1, J2, J3, ja)
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Numerical Results.

Histograms for the generic (gauge invariant) 4-vertex

. Up to Jmax < 126/2. (By ‘generic’ we mean excluding co-planar edges.)
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Oriented Matroids

Motivation from Vectors |

R, M vector config with sorted ground set E = (ey,...,es).

\é3
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Oriented Matroids

Motivation from Vectors |

R3, M vector config with sorted ground set E = (ey, ...
Characterized by linear dependence modulo
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Oriented Matroids

Motivation from Vectors |

R3, M vector config with sorted ground set E = (ey, ...
Characterized by linear dependence modulo

(i) reorientation e — —ey,
(i) re-labelling

\ég
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Oriented Matroids

Motivation from Vectors |

R3, M vector config with sorted ground set E = (ey, ...

Oriented Bases B(M)
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Oriented Matroids

Motivation from Vectors |

R, M vector config with sorted ground set E = (ey,...,es).

Oriented Bases B(M)

m Family B(M) of sorted bases
- B= {B = (bl,bg,bg) C E:B spans ]Rs}

\ég
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Oriented Matroids

Motivation from Vectors |
R3, M vector config with sorted ground set E = (e, ..., es).
Oriented Bases B(M) e
€3

m Family B(M) of sorted bases

- B= {B = (bl,bg,bg) C E:B spans ]RB}
m Basis orientation xp (chirotope), SC E

+15eB ey
_XB(S):{ i .

. in our example xg(B) = +sgn(det B) (if xp chirotope, then also
—xs, depending of our notion of 'positive’ orientation)
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Oriented Matroids

Motivation from Vectors |
R3, M vector config with sorted ground set E = (ey, ...

Oriented Bases B(M)

&
m Family B(M) of sorted bases
- B={B = (b1,bs,b3) C E: B spans R3}
m Basis orientation xp (chirotope), SC E

+15eB ey
_XB(S):{ i .

. in our example xg(B) = +sgn(det B) (if xp chirotope, then also
—xs, depending of our notion of 'positive’ orientation)

B ||123|124]|125|134|135|145|234|235|245|345
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Oriented Matroids

Motivation from Vectors |

R3, M vector config with sorted ground set E = (e, ..., es).
Oriented Bases B(M) e
€3
m Family B(M) of sorted bases ‘
- B={B = (b1,bs,b3) C E: B spans R3}
m Basis orientation x5 (chirotope), S C E
+1 SeB €
- xs(8) = { 0S¢B / e1~/’"
.. in our example xp(B) = +sgn(det B) (if x5 chirotope, then also
—xs, depending of our notion of 'positive’ orientation)
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Oriented Matroids

Motivation from Vectors |
R3, M vector config with sorted ground set E = (ey, ...

Oriented Bases B(M)

&
m Family B(M) of sorted bases
- B={B = (b1,bs,b3) C E: B spans R3}
m Basis orientation xp (chirotope), SC E

e = {5050 o

. in our example xg(B) = +sgn(det B) (if xp chirotope, then also
—xs, depending of our notion of 'positive’ orientation)

B ||123|124]|125|134|135|145|234|235|245|345
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Oriented Matroids

Motivation from Vectors |
R3, M vector config with sorted ground set E = (ey, ...

Oriented Bases B(M)

&
m Family B(M) of sorted bases
- B={B = (b1,bs,b3) C E: B spans R3}
m Basis orientation xp (chirotope), SC E

)= {0 550 -

. in our example xg(B) = +sgn(det B) (if xp chirotope, then also
—xs, depending of our notion of 'positive’ orientation)

B ||123|124]|125|134|135|145|234|235|245|345
xsB)| + [+ [0 [ —]—]-[+[+]+]0
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Oriented Matroids

Motivation from Vectors |

Re-labelling and reorientation act non-trivially on x3(B). One finds in total
4 (1 uniform) equivalence classes of chirotopes for D =3, N = 5:
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Oriented Matroids

Motivation from Vectors |

Re-labelling and reorientation act non-trivially on x3(B). One finds in total
4 (1 uniform) equivalence classes of chirotopes for D =3, N = 5:

B ||123]124|125|134|135|145|234|235| 245|345

xgiB)| + |+ |||+ ]|+
xgeB)| + |+ |+ |+ |+ |+ ]| +]|+|+]|0
xg3B)|| + |+ [0 |+ |+ |+ [+ ]|+ ]+]0
xgaB)|| + |+ |+ |+ |+ |[+]0[0]0|0

Our example

B ||123|124]|125|134|135|145|234|235|245|345
xs@B)[ + 1+ 0] =] -[-[+[+[+]0

is contained in equiv. class 3 (set ex — —ex for K = 1,3,4,5 and use
properties of det)
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set £ = {ey, ...

Signed Circuits C
leg
m Circuits
» C={C CE:C min. lin. dep. }
Min. lin. dep. 0 = 09 Arex
(eK e€eC, Mk € ]R)
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set £ = {ey, ...

Signed Circuits C P
. €3
m Circuits
» C={C CE:C min. lin. dep. }
Min. lin. dep. 0 = YN Arex
(eK e€eC, Mk € ]R)
m Signed Subsets, S C E
» C={C*,C~} where C* = {ex : A\ = 0}
» (—=C)* = CF. Both, C, —C contained in C
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set £ = {ey, ...

Signed Circuits C
m Circuits

» C={C CE:C min. lin. dep. }

Min. lin. dep. 0 = 09 Arex
(eK eC, Xk € ]R)

m Signed Subsets, S C E

» C= {C”r C~} where CF = {ex : A\ = 0}
» (—=C)* = CF. Both, C, —C contained in C

. in our example C = {£C4, £C5, £C3} is given by

| & |
C*|{e1, ez, e3} ‘
C|l Hed}
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set £ = {ey, ...

Signed Circuits C &
o e

m Circuits
» C={C CE:C min. lin. dep. }

Min. lin. dep. 0 = YN Arex
(eK e€eC, Mk € ]R)

m Signed Subsets, S C E

» C={C*,C~} where C* = {ex : A\ = 0}
» (—=C)* = CF. Both, C, —C contained in C

. in our example C = {£C4, £C5, £C3} is given by
| & | & | G
{61,82763} {61,82} {63,85}

ey {es} | {es}
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set F = {ey,

Signed Circuits C
m Circuits
» C={C CE:C min. lin. dep. }
Min. lin. dep. 0 =
(ex € C, Ak €R)
m Signed Subsets, S C E

iy Arcerc

» C={C*,C~} where C* = {ex : A\ = 0}

..765}.

fe3

» (—=C)* = CF. Both, C, —C contained in C

» Relative Sign

+1 e € C*
senc(eK) =\ g ex ¢ C
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Oriented Matroids

Motivation from Vectors Il

R3, M vector config with sorted ground set £ = {ey, ...

Signed Circuits C
m Circuits

» C={C CE:C min. lin. dep. }
Min. lin. dep. 0 = YN Arex
(eK e€eC, Mk € ]R)
m Signed Subsets, S C E

» C={C*,C~} where C* = {ex : A\ = 0}

fe3

» (—=C)* = CF. Both, C, —C contained in C

» Relative Sign

+1 e € C*
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Oriented Matroids

Motivation from Vectors IlI

Description of vector config M over ground set F in terms of B(M) and
C(M) equivalent.
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Oriented Matroids

Motivation from Vectors IlI

Description of vector config M over ground set F in terms of B(M) and
C(M) equivalent.
m for every B € B and for every e € E'\ B there is a unique £C € C
such that
Bu{e} CC.

m Given two bases By, By € B, By = (e,ba,b3), Ba = (f,ba,b3) we
have By U{f} = BoU {e} C C for one £C € C. It holds that

sgne(e) -sgne(f) = xs(B1) - x5(B2)
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Oriented Matroids

Motivation from Vectors IlI

Description of vector config M over ground set F in terms of B(M) and
C(M) equivalent.
m for every B € B and for every e € E'\ B there is a unique £C € C
such that
Bu{e} CC.

m Given two bases By, By € B, By = (e,ba,b3), Ba = (f,ba,b3) we
have By U{f} = BoU {e} C C for one £C € C. It holds that

sgne(e) -sgne(f) = xs(B1) - x5(B2)

Can convert between the two equivalent descriptions!
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Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:
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Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

Mvector Mgra ph

v
eq .

e
U1 3

e1 €2

(%]
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Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

M vector

Signed Circuits C

J. Brunnemann (HH / PB)
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Loops
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Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

Mvector Mgraph

!

€3

€2

‘eg””””””’;j: ‘ €1
e s

Signed Bases C

Spanning Trees
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Oriented Matroids
For Di-Graphs

The same combinatorics contained in a directed graph:

Mvector Mgra ph

v
eq .

e
U1 3

el €2

(%]

Only two realizations of the more general combinatorial concept of an
oriented matroid M of rank 3 over the ground set E in terms of its signed
bases M = (E, BB), respectively signed circuits M = (E,C).
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Oriented Matroids

Axiomatic Definition: Signed Circuits

A family C of signed subsets of a finite set F is called the set of signed
circuits of an oriented matroid M = (E,C) on E if

(C0) Non-emptiness: () ¢ C

(C1) Symmetry: C = —C , that is for every C € C also its
opposite —C' € C.

(C2) Incomparability: if C1 C C5 then either C; = Cy or Cy = —Cs
YCq,Cy € C.

(C3) Elimination: For all C1,C5 € C with C1#—C5, if e € Cfr N
Cy 3 C3€C such that CF C (CF UCF)\{e}.

Equivalent formulation also in terms of B(M). Can be extended to infinite
ground sets [Bruhn et al].

J. Brunnemann (HH / PB) V in LQG 3rd QG, Mar 3, 2011 12 /20



More Difficult: Higher Valence

Sign factor combinatorics for 4-7-valent non-coplanar vertices

Ny | # triples | #€(Ny) sprinkled | #€ perm. # & configs | # realizable reor.
equiv. classes equiv. classes
3 1 2 1 1 1
4 4 16 3 3 1
5 10 384 4 4 1
6 20 23 808 41 39 4
7 35 3 486 720 706 673 11
8 56 > 747 735 830 28 287 135
9 84 ? ? 4 381
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Numerical Results.
Histograms for each sigma configuration & at the (gauge invariant) 5-vertex

up to Jmax = 25/2. The blue is for ¢ = (0‘123,0‘124,0‘134,0‘234) =
(2,0,0,0), the green for & = (2,2,2,0), and the purple for & = (2,2,4,0).
Each histogram has 512 bins.
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Numerical Results

Histograms for the overall generic (gauge invariant) 5-vertex
Up to Jmax < 25/2. (By ‘generic’ we mean excluding co-planar edges.)

Each histogram has 512 bins.
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Numerical Results
Largest eigenvalues Amax of the (gauge invariant) 5-vertex
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