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Introduction

@ Motivation:

@ Two pillars: QT and relativity: Do they match?
o Improve QFT in 4 dimensions, add "gravity” effects

@ Renormalizable local Quantum Fields: triviality, not summmable?
@ Space-Time

@ Renormalizable Noncommutative Quantum Fields
formulation, IR/UV mixing

] GW |\/|0de| H G + R Wulkenhaar ...

@ Renormalizable ncQFTs: Scalar Higgs model

@ Taming the Landau Ghost

@ Borel summable almost solvable, nontrivial !
@ Fermions

o Gauge mOde|S + M Wohlgenannt
@ properties: Wedge locality + e Lechner
@ Outlook
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Introduction

@ 4 Fermi interaction is not renormalisable, needs cutoff around
300 GeV, unitarity! Solved by W+,Z% W —,...

@ Quantum field theory for standard model (electroweak+strong) is
renormalisable

@ Gravity is not renormalisable !?

@ Classical field theories for fundamental interactions (electroweak,
strong, gravitational) are of geometrical origin

Renormalisation group interpretation

@ space-time being smooth manifold = gravity scaled away

@ weakness of gravity determines Planck scale where geometry is
something different

promising approach: noncommutative geometry
unifies standard model with gravity as classical field theories
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Program

@ Wightman QFT — Euclidean QFT

@ UV, IR, convergence problem, Landau ghost, triviality
o NC QFT ideas, formulation, regularization
o Euclidean NC QFT IR/UV mixing

@ Euclidean NC QFT

@ Renormalization
@ taming Landau ghost, g function vanishes

Construction

o Ward identity
@ Schwinger-Dyson equation
o integral equation for renormalized N pt functions

(]

Fermions - Spectral triple

gauge Higgs model-matrix model: Spectral action principle
Wedge locality

Outlook
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Requirements

Quantum mechanical properties

@ states are vectors of a separable Hilbert space H
@ &(f) on D dense, ®(f) = [d*xd(x)f*(x),
Q is cyclic

@ Space-time translations are symmetries:
spectrum o(P,,) in closed forward light cone
Ground state Q € H invariant under e'-P"

Relativistic properties

@ U, ) unitary rep. of Poincaré group on H, Covariance
@ Locality
[¢(f),(9)]sW =0  for  suppf C (suppg)’

Define Wighman functions Wy (f; @ ... @ fy) :=< Q¢(f1) - - - (fn )2 >
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Euclidean

Schwinger distributions: Sy (X1, ...,Xn) = [ ¢(X1)...¢(Xn)d ()

Sn(X1...Xn) = %/[dqﬁ]e*fdxa(o)nqs(x)

extract free part du(¢) o [dd] e % [ #*—4 [(0,6)(0"¢)
Two point correlation: (¢(x1)o(x2)) = C(X1,X2)

C(p1,p2) = d(p1 — pz)prlmz

/ du(0)oxa) - o) = 3 T — %)

pairings | €~y

add ; ®* interaction, expand
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o4 Interaction

N N 4 n
SN(Xl...XN):Z( n)l\) /dﬂ(¢)H¢(XI)< dx ¢4F|X)>

j
- /HC X — yy) ~ A<0(®)
ymrN v

graph rN lely

put cutoffs, e.g.: C «(P) = [K " doe—a@’+m?)
degree of divergence given by wp(G)=(D —-4)n+D — %N
wg(G):Z—Zn, w4(G):4—N

n order # of vertices, N # of external lines, (n + ny s nr of Feynman grapns

use Stirling and % from exponential large order behavior K ™n! ... no Taylor (Borel) convergence

Renormalization of NC Quantum Fields:, The GW Model, Zakopane 11.3.2011



QFT
[

Renormalization

For QED: polarization + higher order terms....

-0

Leads to Vacuum fluctuations, Casimir effect, Lambshift,
pair production, virtual particles...

= 1 1 1 1
Gz(p): p2+m2+p2+mzzp2+m2+"':7p2+m2_):

Impose renormalization conditions need 3

2
Ga(p? = 0) = 57—, 5z G2(p® = 0) = — 15—, Ga(P” = 0) = Apnys
phys

a = Z,m, \ depend on scale ! Renormalize
if NO NEW interactions are generated.... model is renormalizable
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RG FLOW

Wilson RG-Flow
divide covariance for free Euclidean scalar field into slices

m M—2-1 efmzafxz/4a
¢m:z¢j’ Cj:/ da aDb/2
j=0

M-2

integrate out degrees of freedom

Zin-1(Pm-1) = /d,um(gbm)efsm(om+¢m,l)

Zn-1(Pm-1) = g~ Sm-1(®m-1)

to evaluate: use loop expansion
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RG Flow
°

Landau Ghost

QFT on undeformed R*

@ superficial degree of divergence for Graph ' w(l') =4 —N
@ BPHZ Theorem: renormalizability generate no new terms
@ but: certain chain of finite subgraphs with m bubbles grows like

OO0 -~ OOOK

d4
/m (log[g[)™ ~ C™m!

@ not Borel summable

~ N

15X

@ sign of g positive: Landau ghost, triviality QED, Higgs model,...
@ sign of 8 negative: Asymptotic freedom, QCD

Aj
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Space-Time, History

@ Interacting models in D = 2, 3 are constructed
@ D = 4 use renormalized pertubation theory RG FLOW
@ add "Gravity” or quantize Space-Time

merge general relativity with quantum physics through
noncommutative geometry

Limited localisation in space-time D > Rss = G/c*hc/)\ > G/c*hc/D
D>, 10~%m

@ Riemann, Schrodinger, Heisenberg,...

@ 1947 Snyder,...

@ 1986 Connes NCG,...

@ 1992 H G and J Madore,...

@ 1995 Filk Feynman rules,...

@ 1999 Schomerus: obtained nc models from strings,...
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Algebra, fields, diff. calculus,...

@ Space-Time, Gelfand - Naimark theorem,
@ Deform Algebra, gives associative nonlocal star product

Moyal space

algebra of decaying funct over D-dim Eucl. space, x-product

(a*b)(x):/dDydea(x+%e-k)b(x+y)e“‘y
where ©=-0TeMp(R)

@ Fields, sections of bundles,...proj. modules over A
@ Differential Calculus

Can we make sense of renormalisation in NCG?

First step: construct QFT on simple nc geometries, e.g. the Moyal
space

@ construction of field theories with non-local interaction
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Model - Feynman rules

@ naive ¢4-action (¢-real, Euclidean space) on Moyal plane

S = /d4 u¢*0“¢+—¢*¢+ ¢*¢*¢*¢)()

o FeynEnan rules:

T pZim?
> < _exp A Z p| pJ /u/)
i<j

@ cyclic order of vertex momenta is essential
= ribbon graphs
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@ one-loop two-point function, planar contribution:

K Ko\ d%k 1 to bg trgated by usual reg-

== ——— ularisation methods, can
6/ (2r)tk?+m? be put to 0
¥\ "
@ planar nonregular contribution:

7P .

k A [d% ke >

@ 5/ @ kerme ~ (OP)

4
k
@ non-planar graphs finite (honcommutativity as a regulator) but

~ p~2 for small momenta (renormalisation not possible)

= leads to non-integrable integrals when inserted as subgraph into
bigger graphs: UV/IR-mixing
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The UV/IR-mixing problem and its solution

@ observation: euclidean quantum field theories on Moyal space
suffer from UV/IR mixing problem which destroys
renormalisability if quadratic divergences are present

Theorem

The quantum field theory defined by the action

S:/d4x<%¢)*(A+QZ)~(2+u2)¢)+%d)*d)*d)*qﬁ)(x)

with X = 2071 . x, ¢ — real, Euclidean metric
is perturbatively renormalisable to all orders in A.

The additional oscillator potential 22%?

@ implements mixing between large and small distance scales
@ results from the renormalisation proof
@ add. term connected to curvature M Buric + M Wohlgenannt
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Renormalize
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The matrix base of the Moyal plane

@ central observation (in 2D):
foo := 287%(X12+X22) = foo * foo = foo

@ left and right creation operators:

(X0, xo)= 2] (2875(@“5)) | fa—ixe)”
mi(20)m AT20)

fonp. )= 21" /B0 (f3)" e 7 L (302)

@ satisfies:  (fmn * i )(X) = Ok fmi (X)
/dzx fon (X) = Omn

@ Fourier transformation has the same structure
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Extension to four dimensions

non-vanishing components: =01,=—0,;=03,=—043
double indices

non-local x-product becomes simple matrix product

S[Qs]: Z (%fbmnAmn;kl on + %¢mn¢nk¢kl ¢Im)

m,n,k,leN2

important: Apn.k = 0 unless m—I = n—k
SO(2) x SO(2) angular momentum conservation
@ diagonalisation of A yields recursion relation for Meixner
polynomials

@ closed formula for propagator G = (A)~!
9/8
VA (m+1)+02(m+1)?2

0 (liﬂ)mrl*mz

o Gmm_mm ~
00'00

0 Gml my.0

0
my my’00
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Ribbon graphs

Feynman graphs are ribbon graphs with V vertices

m

3

edges == = G and N external legs

@ leads to F faces, B of them with external legs

@ ribbon graph can be drawn on Riemann surface of genus
g=1-%(F —1+ V) with B holes

@

([T
wwN
Z Wa
(I
o N o

<_-r
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Exact renormalisation group equations

QFT defined via partition function Z[J] = /D[qﬁ] g~ Slel-t(43)

@ Wilson'’s strategy: integration of field xm(A)
modes ¢mn With indices > 9A? yields 1
effective action L[¢, A]

@ variation of cut-off function x(A) with
A modifies effective action: 0

ON? 20N?

exact renormalisation group equation [Polchinski equation]

6L[<z>, A L[, Nl OL[p, A]  &PL[g, N
Z an a(A) ( dbmn  Opu  Opmn 8¢k|)

mnkl

with Qumnikd (/\) _ /\a(Gmn;kla);\mn;kl(A))

@ renormalisation = proof that there exists a regular solution which
depends on only a finite number of initial data
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Renormalize

Renormalisation

power-counting degree of divergence of graphs I
w(l[)=4—-N-4(2g+B —1)

All non-planar graphs and all planar graphs with > 6 external legs are
convergent

Problem: infinitely many planar 2- and 4-leg graphs diverge
Solution: discrete Taylor expansion about reference graphs
difference expressed in terms of

|Gpipn — Gopipo| < KaM 1 Lile=calll

P planar planar planar
@ similar for all Ay fym Amnnm @and AT

m2 2 n2 m2

Renormalisation of noncommutative ¢3-model to all orders

by normalisation conditions for mass, field amplitude, coupling
constant and oscillator frequency
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History of the renormalisation proof

@ exact renormalisation group equation in matrix base
H. G., R.Wulkenhaar
@ simple interaction, complicated propagator
@ power-counting from decay rate and ribbon graph topology

@ multi-scale analysis in matrix base
V. Rivasseau, F. Vignes-Tourneret, R.Wulkenhaar

@ rigorous bounds for the propagator (requires large Q)

@ multi-scale analysis in position space
R. Gurau, J. Magnen, V. Rivasseau, F. Vignes-Tourneret
o simple propagator (Mehler kernel), oscillating vertex
@ distinction between sum and difference of propagator ends

@ Schwinger parametric representation
R. Gurau, V. Rivasseau, T. Krajewski,...

@ New topological Graph Polynomials and ncQFT

T. Krajewski, V. Rivasseau, A. Tanasa, Zhituo Wang
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Summary

Renormalisation is compatible with noncommutative geometry

@ We can renormalise models with new types of degrees of
freedom, such as dynamical matrix models

Equivalence of renormalisation schemes is confirmed

Construction of NCQF theories is promising

)
@ Tools (multi-scale analysis) are worked out
)
)

Other models

o
o

©

GrOSS'NeVeU mOdel D = 2 F. Vignes-Tourneret

Degenerate © matrix model . c. . vignes-Tourneret

needs five relevant/marginal operators !

1/p2 mOdel R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa

Fermions

induced Yang'Mi”S theory ’) A. de Goursac, J.-C. Wallet, R.Wulkenhaar; H. G, M. Wohlgenannt
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Renormalize

Taming Landau ghost, calculate 5 function

evaluate $ function, H. G. and R. Wulkenhaar,

dA (1—92)
A2 =By = N2 20 ) L ()8
an ~ =N TON)
flow bounded, L. ghost killed!
Due to wave fct. renormalization "
Q = 1 betafunction vanishes o A[ :
tO a” OrdeI’S M. Disertori, R. Gurau, J. Magnen, V. Rivasseau . T
0.6 IL
|
QZ[/\] S 1 0.4 4|r
(\[A] diverges in comm. case) 02 IL
o 30 P 9"0 120

6x
255

construction possible! Almost SOLVABLE !
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Matrix model

@ Action in matrix baseat 2 =1

@ Action functionals for bare mass ppare

@ Wave function renormalisation ¢ — Z 26,
Fix 0 = 4, ¢mn = énm real:

1
S = Z E(bmnHmn(f)nm +V(¢) ;
m,neNZ
2 Z2\
Hn = Z (are + 1M +10)) . V() =55 3" bmnonkcdndim
m,n.k,|€NZ
@ Ais cut-off. ppare, Z divergent
@ No infinite renormalisation of coupling constant

2 .
m,n,... belong to N°, |m| := m; + m;.
Renormalization of NC Quantum Fields:, The GW Model, Zakopane 11.3.2011



Ward identity

@ inner automorphism ¢ — UgUT of M, infinitesimally
Omn — dmn + i ZKGN%(Bmk(bkn — Gmk Bkn)

@ not a symmetry of the action, but invariance of measure
Do = Hmmele\ d ¢mn gives

- - /D¢ (tr(w)))e—Sﬂr(qu)
"SBab i8Bgp "SBab

=3 /'D¢ > ((Hnb — Han)®pp ¢na + (éppdna — Jb,-,dbna))eisﬂr(w)
n

where W[J] = In Z[J] generates connected functions

= { S0 ((Hu = Han) 555555 + (Inazls = Jons))
X exp ( —V(M))ezquJqupq Jqp}

C
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Interpretation

The insertion of a special vertex V° := > " (Han — Hop)éonna into an

n
external face of a ribbon graph is the same as the difference between
the exchanges of external sources J, +— Jna and Jan +— Jpn

Z(Ja| - [b) ?

The dots stand for the remaining face indices.

Z(Jal - b)GlF, = Gb. — Ga.

Renormalization of NC Quantum Fields:, The GW Model, Zakopane 11.3.2011



SD equation 2

T 25
@ vertex is Z2 ), connected two-point function is Gap:
first graph equals Z?) 3", Gaq

@ open p-face in ¥R and compare with insertion into connected
two-point function; insert either into 1P reducible line or into 1PI
function:

—< —%
e
b
ins
laplb —
b
—
i

P
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Amputate upper G, two-point function, sum over p, multiply by

vertex Z2), obtain: £ :

1 Gbp - Gba

5 =220 (Gan) 'Giip = ~ZA ) (Gab) Ip[ - 2]
b p

casea=b =0and Z = 1 treated.
Use G;' = Hap — Map and T, = Z2A )", Gag
gives for 2 point function:

Gpp — G -
Z2)Y " Gaq —ZAD (Gap) PR = H, — Gyt
q p

Symmetry Iap = Ny is not manifest!
express SD equation in terms of the 1PI function Iy
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Renorm
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Renormalize

perform renormalisation for the 1PI part

1 1 1 [—
Fab :ZZAZ( + - (Top ab)) .
P

Hpp —Tbp  Hap —Tap  Hpp — Tpp Z(IpPl — [al)

Taylor expand: Fap = Z jifye — Hon + (Z — 1)(Ja] + |b]) + T2,
Men=0 (A" =0, Or'" is derivative in ay, ap, by, b,. Implies

ab = |a| + |b| +Uren rren .

. change variables

B P pdp
lal = u? bl = u? Ipl = 2 Il dlp| = u*
1-«a 1-8 1-»p (1-p)p3
r 3
Ty = p2——9B a2
- a) -8 1-¢

...get expression for ren.constant,
!/

13 13 G
Zl=142) 2| dp(Go, — 22
+ /0 /0 p( o 1—p)
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....Since the model is renormalisable, the limit £ — 1 can be taken...:

Theorem

The renormalised planar two-point function G,z of self-dual
noncommutative ¢3-theory (with continuous indices) satisfies the
integral equation

1-a 1-8
Gag =1+ *( (Mg — Lg = BY) + — (Ma — La — V)
1— ap 1— B
1-8 ,Gup ) ol — B) )
(=2 = 1)(.\4W — La+aNyg) — ————(Lg +Nag — Nag)
1— aB Gy, 1—ap
(1 — o)1 — B)
PG 71)3;).
1-ap 2
Gap — G G -G,
B = d =P U Moy = d ap = d o6 = Cap
Nag :
1—p 1— ap p—

v —im,_, Ma=La at the self-duality point.
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expansion

@ Integral equation for Iy, is non-perturbatively defined.
Resisted an exact treatment.
(n)

@ We look for an iterative solution G,p = 3,75 A"G,, 5.
@ This involves iterated integrals labelled by rooted trees.
Up to O(A\%) we need

1 @
lo ::/ dx =—Ih(1 - «a),
J0 1— ax

- 1 aly o } _ 2
I(: .7/0 dx P = Lip(a) + 2(Iﬂ(l @)

1 alx - | o
I a :/ d X = —2Lig( — )
oo 0 1— ax 1—«
aly
la :/1dx . :—2Li3<—L)—ZLi3(a)—ln(l—a)§(2)
¢ T Jo U 1T ax 1-a
L]

. 1 3
+In(1 — a)Lip(a) + g(ln(l — a))
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Observations

Polylogarithms and multiple zeta values appear in singular part of
individual graphs of e.g. ¢*-theory (Broadhurst-Kreimer)
We encounter them for regular part of all graphs together

@ G,z takes values in a polynom ring with generators
A, B, «, 5, {l}, where t is a rooted tree with root label « or

@ at order n the degree of A/B is <n,

the degree of o, 8 is < n,
the number of vertices in the forest is < n.

If true:

@ There are n! forests of rooted trees with n vertices at order n

! n
@ estimate: \GS)“)@\ < n!(Caﬂ)”

may lead to Borel summability?.
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Schwinger-Dyson equ 4 pt fct

Follow a-face, there is a vertex at which ab-line starts:

© First graph: Index ¢ and a are opposite
It equals Z?A\Gap Gpe Gl g

© Second graph: Summation index p and a are opposite. We open
the p-face to get an insertion.

This is not into full connected four-point function, which would
contain an ab-line not present in the graph.
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2 <£ <
= O A3
P

second graph equals
- ZZ)\(ZGabGi[ETJ]de - [ap]bGabcd)
p

1PI four-point function

G -G G G
M = 20 20t 3 o (e s ook ) |
p

lal—lc| | =Pl
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Theorem

The renormalised planar 1PI four-point function I, g5 Of self-dual
noncommutative ¢3-theory satisfies

(1 _ (1=)A—78)(Cas —Cys) +/1pdp(176)(17a5)5gp(35p "pﬁ»ys*"uﬁw)
0

. N Gys(1=3)(a—2) (1—Bp)(1—35p) p—a
aBys = A 1 GosGp,0l—B) 1 (-B)1-ad)Gg, (G,5—=Cas)
G"““((MVLB*”G“‘”/OUP<1—6p)(1—ﬂp) Jor e s (o) )

| \

Corollary

lop~s = 0 is not a solution!
We have a non-trivial (interacting) QFT in four dimensions!

A\
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Conclusions

o
o
o
o
o

Studied model at Q2 =1

RG flows save

Used Ward identity and Schwinger-Dyson equation
ren. 2 point fct fulfills nonlinear integral equ

ren. 4 pt fct linear inhom. integral equ
perturbative solution:

raB'y(S o XZ((I — Mo — aa) : fyl - a)('w - 7)
N (1-98)g —=8)—@1-8)s —9)

B =96

)+ o(\3)

@ is nontrivial and cyclic in the four indices
@ nontrivial $* model ?

Renormalization of NC Quantum Fields:, The GW Model, Zakopane 11.3.2011
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Spectral triples

Connes "On the spectral characterization of manifolds”

Definition (commutative spectral triple (A, 7, D) of dimension p € N)

...given by a Hilbert space 7, a commutative involutive unital algebra A
represented in 7, and a selfadjoint operator D in H with compact resolvent,
with )

@ Dimension: k™" characteristic value of resolvent of D is O(k " ?)

@ Orderone: [[D,f],g] =0 Vi,ge A

© Regularity: f and [D, f] belong to domain of 6%, where 6T := [|D|, T]

@ Orientability: 3 Hochschild p-cycle ¢ s.t.rp(c) = 1 for p odd, 7p(c) =

forp evenwithy = 4", 7> =1, yD = —D~

@ Finiteness and absolute continuity: . := Nkdom(D¥) C H is finitely
generated projective A-module, H., = eA".
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Spectral triples are interesting for physics!

@ equivalence classes of spectral triples describe Yang-Mills theory
(inner automorphisms; exist always in nc case) and possibly
gravity (outer automorphisms)

@ inner fluctuations: D — Da =D+ A, A=> f[D,q]
for almost-commutative manifolds: A=Yang-Mills+Higgs

Spectral action principle [Chamseddine+Connes, 1996]

As an automorphism-invariant object, the (bosonic) action functional
of physics has to be a function of the spectrum of D, i.e.
S(Da) = Tr(x(Da))-

for almost-commutative 4-dim compact manifolds:

° S(Dp) = / d Vol (La + Leraw + Lom + Lriggekin + Lriggspor)
X

for any function of the spectrum (universality of RG)
@ structure of the standard model more or less unique
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Harmonic oscillator spectral triple (A, H, D)

Morse function h = £ ||x||2

implies constant [a,,,af] = 2wé,,,,

Hilbert space H = ?(N%) @ A(CY): declare ONB
{(@h)™ ... (@) @ (bl)*...(b])*[0) : n, eN,s, € {0,1}}

TWO Dirac operators Dy = Q + QF | D, =i —iQf

D?=Di=H=3"_, (ala, ®1+2w®bjb,)
=2w(Np+Nf) =H®1+w®X
where

H= 520 + w?x,x* — harmonic oscillator hamiltonian
T OXxOxH H
L= Zi:l[bl, b,] - spin matrix

algebra A = S(RY) uniquely determined by smoothness
All axioms of spectral triples satisfied, with minor adaptation
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Higgs
°

U(1)-Higgs model for commutative algebra

tensor (A, H, D1) with (C @ C,C?, Moy, 03) [Connes+Lott]
) D M f O
0D:D1®O’3+1®01M:( Ml 7D1> (0 g)eAtot

@ selfadjoint fluctuated Dirac operators Da:=D1+ >, &[D1, bi],
aj, b € At = ADA, are of the form
Da = <Dl+iA” ® (b, by, 601 )
AT 1 —(D1+iB* @ (bf, — b,.))
for Ay=A,, B,=B,, ¢ € A
o Fa=(—{0" A} —iA"A,) @1+ FL” ® [b], —b,,b} —b,]
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Higgs
°

Spectral action principle

most general form of bosonic action is S(Da) = Tr (x(D3))

@ Laplace transf. + asympt exp'n Tr(e 'PA) NZan D"

n=—dim/2
leads to S(Da) = Z Xn Tr(an(DX))
n=—dim/2
with  x, = ﬁ Jo dssT271x(s) forz ¢ N
Yk = (71)";((")(0) fork e N

@ a, — Seeley coefficients, must be computed from scratch

Duhamel expansion: D% = Hg — V

e—t(Ho—V) :e’tHOJr/dt ( (t=t1)(Ho )VeftlHO) ...iteration
0
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Higgs
°

Vacuum trace

Mehler kernel (in 4D)
—t(H4wE) _ w?(1— tanh?(wt))? —thlz—%%—ﬁtanh(wt)\\ersz
. (X’y) ~  16n2tanh?(wt) . ey

tr(e~“*) = (2 cosh(wt))¢

Tr(e tH+e)8lz) 2tr /d x ( "(HWZ))(X,X))

- tanh“(wt) = Z(Wt)izl T3 (Wt) + % + O(tz)

@ Spectral action is finite, in contrast to standard R*!
(This is meant by “finite volume”)

@ expansion starts with t=* = corresponds to 8-dim. space
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Higgs
°

The spectral action

S(Da) =const
+3¢ [d'x {0roD,0 + HEAFL + FEFL)
+((1912)2 = B9 + 262 x |92 } + Olxa)

@ spectral action is finite

@ only difference in field equations to infinite volume is additional
harmonic oscillator potential for the Higgs

@ Yang-Mills is unchanged (in contrast to Moyal)

@ vacuum is at A, = B,, = 0 and (after gauge transformation)
¢ € R, rotationally invariant
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Higgs
(5

The spectral action: noncommutative case

S(Da) = const + m/d‘& {2D,6+D,é

1-0?)? 1-0?)* A W B v
+(( 2 E - 35(1+QZ))2) (FW * F/l\ 2+ FW * Fg )
, - 2
(0 8+ £ X = 32

cooo
|l coo

0

—o
=10
0

— 2
+(¢*¢+ 29X % Xayy — u)

2 2
~2(( Xk x Xou = X22) 7 Hx) + O(xa) o

deeper entanglement of gauge and Higgs fields

covariant coordinates Xa,(x) = (©°1),,x” + A,(x) appear with
Higgs field ¢ in unified potential; vacuum is non-trivial!

potential cannot be restricted to Higgs part if distinction into discrete
and continuous geometries no longer possible
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gauge
]

Gauge model

H G + M. Wohlgenannt + Blaschke + Schweda,...Steinacker,...
Couple scalar field to "external” gauge field

A
SiAl=Tr (mw‘, Koo 1+ Q2B {XH, {Xp, 63} + u6 + Z¢’4)

where X# = X* 4+ A* are covariant coordinates.
Gauge transformation
XH - UTX U, A* — —iUT[R*, U] + UTA*U.
One-loop regularized effective action
Fe[A] = 7% ‘/:Q ?Tr (eftH — e’tHO) .
Use Duhamel expansion

— — t — —(t—
e —emMo — [Taye~tHovye (-0
0

2
Identify: 3%5% = Hp + Vp expansion up to order v4 gives

SIAl = 3 [F2ea [((R# Xy = (@22) 45 [((Rux %) - (7))

Frv = [XH#, X¥] —i(© 1) yields matrix models IKKT

Generalize BRST complex to nc gauge models with oscillator:

BRST invariant renormalization? tadpole ?
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Minkowski
°

QFT on noncommutative Minkowski space

Definition of quantum fields on NC Minkowski space

do(x) == / dp eP* @ P 3(p)

9 ¢gp(f)actson Ve H,
@ Vacuum wy = v ® (Q, . Q) independent of v
@ We relate the antisymmetric matrices to Wedges:

Wy = {x € RP|x; > xo} act by Lorentz transformations.

@ Stabilizer group is SO(1,1)xSO(2)
@ Get isomorphism (W, ip) = (A, ya = AOAT)

Renormalization of NC Quantum Fields:, The GW Model, Zakopane 11.3.2011



Minkowski
L]

Wedge locality

With this isomorphism define @y (x) := ®gw)(X). Transformation
properties

Uy a®w (X)UJ,A =&, ew)(AX +Y)

Let ke > 0 the family ¢ (x) is a wedge local quantum field on
Fockspace:

[¢W1(f)7 ¢—W1 (9)](7/1) = 07
for supp(f) € Wi, supp(g) € —W;s.

Show that
[aw, (F7).a’y, (@) + [afy, (F"). a_w,(g7)] = 0

inh—1 2 2 2\1/2
¥ =sinh™ (p1/(m? + pj + p3)*/?) o
Use analytic continuation from R to R + iw in ¥ .



Minkowski
L]

@ Need well localized states for asymptotics t — +oo (“infout”)
@ Wedge-locality is good enough for two particle scattering
@ Find for two-particle scattering with p1 > p3, g > qi:

0
o (P12 |01, G2) = e2P10P2e2%9% (D P, |qi1, 2 )in NON-trivial
S-matrix, deforma‘uon induces interaction!

@ measurable effects of the noncommutativity (time delay)
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Outlook
°

Obtained renormalized ||
summable nc QFT. Il
locality weakened to
Wedge locality

Learn Principles

Learn to obtain

ren. sum. nc Standard Model?
ren. sum. Quantum Gravity? —

Intiation,_

151 Stars.

@ implications for cosmology? o 30 iton .
cosmological constant problem ?
dark matter, dark energy?

information paradox,....? Inflation?

13.7 il

@ implications for experiments???
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