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Black hole thermodynamics:

• Mass is energy
• Hawking temperature is temperature
• Area is entropy ?

Entropy of what? What are the microstates?

In loop quantum gravity (LQG):

• Area is entropy of quantum isolated horizon
• microstates = states of SU(2) Chern-Simons theory with punctures

≈ quantum shapes of horizon

But: Treatment not entirely from first principles. 

1. Introduction
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• Polymeric excitations endow horizon with area

• Bulk theory and CS theory coupled at punctures

• number of surface & CS states for fixed area  ~ exp A1/2
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Long story:      Rovelli , Krasnov (‘96)
Ashtekar + Baez + Corichi + Krasnov (‘98)
Domagala + Lewandowski, Meissner (’04)
Engle + Noui + Perez (‘10)

and many more. 

The picture in LQG:



03.03.2011 5The LQG black hole

2. Isolated horizons

Local notion of black hole horizon? Isolated horizon (Ashtekar Beetle 
Fairhurst (‘98), specialization of trapping horizon (Hayward (‘94)) 

Something like a local Killing horizon:

• Null surface 
• Foliation of H with corresponding null normal non-expanding.
• Pull-back of connection time independent on H.

⇒ Quasi-local expression for horizon mass (angular momentum, charge...)
⇒ Laws of BH mechanics

For rest of talk: spherically symmetric IH (“Type I”)

H = S2 £R

KH is IH,
IH inside/coincides with EH,
IH + assumptions ⇒ ∃ EH.



Ashtekar-Barbero variables (Engle, Noui, Perez (‘10)) 

IH boundary condition:

with

Presymplectic structure:

Appearance of Chern-Simons term on boundary suggests separate 
quantization of boundary DOF. More later. 
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3. Quantum theory

Bulk theory as before, but now spin-net edges can end on the horizon.
Fix graph. Standard LQG-results give 

1/2

1/2
5/2

3/2

2

1/2

1/2 1
bE
(

I
(p) = 16¼G¯

X

pi

±(p; pi) bJI(p)

[ bJI(p); bJJ(p)] = ²IJ
K

bJK(p)

H = (Ðijpi
)ÐHbulk 3 Ã = jfjpi

;mpi
g; : : :i

baH = 8¼¯l2P j
bJ(p)j



03.03.2011 The LQG black hole 8

Boundary theory must satisfy:

Again, follow ENP: Take SU(2) CS theory with particles,  

Canonical analysis: 

plus three constraints per particle. Further constraint: 
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This suggests:

Note furthermore: Because        is simply connected

In fact, for k large, it can be shown that 

for large level k (large BH).

Finally: Constraints don’t change the picture. 

k =
aH
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bSi = bJ(pi)

H = HCS(j1; j2 : : :)ÐHbulk
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HCS(j1; j2; : : :)=Inv(j1; j2; : : :)
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4. State counting

Count: All sequences                    such that

with multiplicity

Agullo, Barbero, Borja, Diaz-Polo, Villasenor (‘10) find: 
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Analysis of the pole structure of the integrand gives:

with      determined by 

This leads to the choice

which reproduces the Bekenstein-Hawking entropy law. 
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5. Remarks

1. History:

 Rovelli , Krasnov (‘96): Counting punctures 

 Ashtekar + Baez + Corichi + Krasnov (‘98): 
• Use of isolated horizon condition
• Chern-Simons on boundary
• gauge fixing to U(1) on boundary
• state counting only approximate

• Domagala + Lewandowski, Meissner (‘04): correct combinatorial 
formulation, counting, statistics.  

• Engle + Noui + Perez (‘10): Treatment without extraneous gauge fixing 



03.03.2011 The LQG black hole 13

2. Relation to quasinormal modes (QNM):

QNM in this context: ringing modes of fields (metric perturbations) on BH spacetimes

Complex frequencies. For scalar modes on Schwarzschild:

In fact, limit of real part 

(image from: Dreyer ‘02)

lim
n!1

Re(M!n) ¼ 0:04371235



Hod’s prediction (‘98): 

Proven by Motl (‘03). Why is this interesting? 

Bekenstein (‘73): Area quantum

Hod’s reasoning: With k=3:
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¢A = 4 ln(k) l2P

¢A= 32¼M¢M = 32¼~!QNM

limn!1Re(M!n) =
ln 3

8¼

QNM spectrum = emission spectrum of quantum BH??



03.03.2011 The LQG black hole 15

Situation in LQG:
Area spec much more complicated, but there is minimal nonzero eigenvalue. 

Dreyer (‘03): Can get                                 for gauge group SO(3) in LQG

Uses (incorrect)  

Domagala, Meissner, Lewandowski: Does not work for correct counting.

Possible way out: Different ordering in area operator gives equidistant area 
spectrum in LQG. Dreyer’s argument then seems to work again. 

But: Extension to charged, rotating case unclear (Perez, Sahlmann, Sudarsky (‘04))

¢A = 4 ln(3) l2P

¯ABCK =
ln 3

2¼
p
2
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3. Entropy quantization

Area spectrum in LQG not equidistant. But…

A. Corichi, J. Diaz-Polo and E. Fernandez-Borja (‘07):

With 

¢a = ¯Âl2P ; with Â ¼ 8:80
?
= 8 ln 3
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Fully analytic investigation using tools from number theory in progress:
Agullo, Barbero, Borja, Diaz-Polo, Villasenor (‘10). 

Structure seems to go away for large black holes. 
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4. Connection to convex polyhedra, polymers

Beautiful recent work by Bianchi, Dona, Speziale (‘10):

• derivation of area-entropy relation from polymer physics
• Horizon DOF as DOF of quantum convex polyhedron?

Convex 
Polyhedra

Closed 
polymers

Space of 
intertwiners

Quantization of symplectic space

Given uniquely by set of N normalized vectors      and 
N numbers     , with closure relation

~ni

Ai

X

i

~niAi = 0
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6. Summary / Outlook

In LQG:

• BH area is entropy of quantum isolated horizon
• microstates = states of SU(2) Chern-Simons theory with punctures

≈ quantum shapes of horizon

Things fit very nicely together. Seems the LQG picture captures at least part of 
the truth. 
But much more to understand:

• Charged, rotating black holes 
•Dynamical situation
• Holography? 
• How does the thermodynamics come in? 
• …
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2. LQG basics

Variables: (Ashtekar, Barbero)
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