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Solitons
definition

Self reinforcing solitary wave packet, that maintains its 
shape while it propagates at a constant velocity.
Come as a solution of a nonlinear equations in dispersive media (where the 
speed of the wave vary with frequency).

solitary solution - there exists a single solution to the propagation 
equation

Main properties:
permanent in form
localized within a region
can interact with other solitons and emerge from the 
collisions unchanged (phase shift allowed)

Dispersion and non-linearity are necessary to produce permanent and 
localized wave forms.

Shallow water wave generation

 University of Tasmania - solitons

https://www.youtube.com/watch?v=w-oDnvbV8mY
https://www.youtube.com/watch?v=D14QuUL8x60
https://www.youtube.com/watch?v=D14QuUL8x60


Solitons
history

Scott Russell in 1834 observed a heap of water in a canal that propagated undistorted 
over several kilometer

„a rounded, smooth and well-defined heap of water, which continued its curse along the 
channel apparently without change of form or diminution of speed. I followed it on a 
horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, 
preserving its original figure some thirty feet long and a foot to a foot and a half in height.”

after „Nonlinear Fiber Optics” G. P. Agraval

Quantum physics: Single electrons pop out of the Fermi sea 
Ch. Flindt, Nature 502, 630–632 (31 October 2013)

http://www.nature.com/nature/journal/v502/n7473/full/nature12699.html


Fascinated by what he had observed, Russell constructed a 30-foot wave 
tank in his back yard and carried out experiments. He made the following 
observations:
• These "solitary" waves are stable, and can travel over very large distances 

without changing their shape, neither decreasing in amplitude nor breaking as 
waves in water often do.

• The speed of the wave depends on the height of the wave.
• These waves don't obey superposition. When a taller (faster) wave overtakes a 

shorter (slower) wave, they don't combine and add together. Instead they 
appear to swap places with the faster wave appearing to jump through the 
slower one.

after „Nonlinear Fiber Optics” G. P. Agraval
http://www.acs.psu.edu/drussell/Demos/Solitons/solitons.html
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Solitons
two water solitons
Two solitons traveling in the same direction

Collision between two solitons traveling in the same direction

linear waves interfere with each other by 
adding their amplitudes (superposition) - grey
solitary waves instead of interacting through 
interference and simple addition, collide in a 
nonlinear and complicated manner - black
the double soliton solution is not the simple 
sum of the two individual solitons

the speed depends on the height of the wave 
the taller wave is faster than the shorter wave
the taller wave overtakes and passes the 
smaller wave

http://www.acs.psu.edu/drussell/Demos/Solitons/solitons.html



  

Solitons

Korteweg–de Vries equation
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What is NOT a soliton?

● Defect or bound state

 

● Dispersionless linear wave

Solitons are self-localized, i.e. their existence is the reason why 
they do not decay. In particular, they cannot exist in the low-
amplitude (linear) limit.
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Solitons
two water solitons

Collision between two solitons traveling in the same direction

http://www.acs.psu.edu/drussell/Demos/Solitons/solitons.html

After they "collide" they keep moving each with their own speeds but they are not in 
the relative locations as expected, if they simply passed through each other.  The 
contour plot shows the traces of the two pulses as they collide. The paths of the two 
pulses appear to jump and change places rather than just pass through each other.

  

Integrability

Some equations (eg. 1D NLS, KdV) can be solved exactly!

Inverse scattering method (IST) is a “Nonlinear Fourier Transform”

● Solutions are decomposed into nonlinear waves (solitons) and 
linear “radiation”, all of which evolve (almost) independently

● In result, solitons are immune to collisions, except for a phase and 
trajectory shifts



Solitons
classical examples

Atmospheric solitons

Tidal wave

Morning 
Glory cloud

This soliton packet is triggered by inflowing 
Atlantic water accelerated by its passage 
through the narrow Strait and across the 
sill at the entrance to the Strait. At the 
interface between the fresher, lighter 
Atlantic water and more saline, denser 
Mediterranean water, internal wave sets are 
generated, usually at a depth of about 60 
to 80 meters. 

http://www.lpi.usra.edu/publications/slidesets/
oceans/oceanviews/oceanviews_index.shtml

1 000 km long
1 - 2 km height

10 - 20 m/s
http://www.scisnack.com/2016/10/13/surfing-atmospheric-
waves-the-morning-glory-phenomenon/



Solitons
vortex ring as a particular example of a soliton

The Vortex Ring, Close Up, in Slow Motion: 
https://www.youtube.com/watch?v=Sj9irzI-Pzw

https://www.youtube.com/watch?v=NU6j_w5r-TY
https://www.youtube.com/watch?v=ijsytrR9WiEDIY: Box

Plastic bottle

https://www.youtube.com/watch?v=Sj9irzI-Pzw


Solitons
vortex half ring as a particular example of a soliton



Solitons
other examples

Pulse of light traveling in glass

pulse consist of several different frequencies.
glass is dispersive (Group Velocity Dispersion) different 
frequencies will travel at different speeds and the shape of 
the pulse will change over time
non-linear Kerr effect - the refractive index of a material at 
given frequency depends on the light’s amplitude or strength
in special cases the Kerr effect can exactly cancel the 
dispersion effect and the shape will not change over a time

In optical fibers: balance between GVD and Kerr nonlinearity:
1974 Bell Labs - solitons could be generated in optical fibers
1980’ - soliton pulses transmitted over 4 000 km (Raman effect phenomenon)
1990’ Bell Labs : 2.5 gigabits per second over more than 14 000 km (erbium optical 
fiber amplifiers
1998- data transmission of 1 terabit per second
since 2001 - practical use of solitons in optical fibers



Solitons
solution of the equation

An equation and its solutions developed by Koreweg and de Vries in 1895 (KdV) that 
is most commonly used to describe the waves that have become known as solitons.
 The equation of motion for these waves can be written in dimensionless form as

The most general solution of:

similar to non-linear Schrodinger equation.

• if N ≪ 1 then we can neglect the nonlinear part of the equation. It will just 
diffract without any nonlinear behavior.

• if N ≫ 1 then the nonlinear effect will be more evident than diffraction
• if N ≈ 1 then the two effects balance each other 
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Both are present in the Gross-Pitaevskii equation:

dependence of the velocity of an excitation on the local density and on 
the wavenumber

non-linear interactions           

Solitons
details

Dispersion and non-linearity are necessary to produce permanent and localized 
wave forms.

162 Theory of the condensed state

to the condition that the total number of particles

N =
∫

dr|ψ(r)|2 (6.10)

be constant. The constraint is conveniently taken care of by the method
of Lagrange multipliers. One writes δE − µδN = 0, where the chemical
potential µ is the Lagrange multiplier that ensures constancy of the particle
number and the variations of ψ and ψ∗ may thus be taken to be arbitrary.
This procedure is equivalent to minimizing the quantity E − µN at fixed µ.
Equating to zero the variation of E − µN with respect to ψ∗(r) gives

− !2

2m
∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) = µψ(r), (6.11)

To obtain this result, the variation of the kinetic energy term was carried
out by performing an integration by parts. The surface terms that arise in
this process vanish for systems of finite extent or when periodic boundary
conditions are imposed. Equation (6.11) is the time-independent Gross–
Pitaevskii equation. It has the form of a Schrödinger equation in which the
potential acting on particles is the sum of the external potential V and a
non-linear term U0|ψ(r)|2 that takes into account the mean field produced
by the other bosons.4 Note that the eigenvalue is the chemical potential, not
the energy per particle as it is for the usual (linear) Schrödinger equation.
For non-interacting particles all in the same state the chemical potential is
equal to the energy per particle, but for interacting particles it is not.

For a uniform Bose gas, the Gross–Pitaevskii equation (6.11) is

µ = U0|ψ(r)|2 = U0n, (6.12)

which agrees with the result of using the thermodynamic relation µ =
∂E/∂N to calculate the chemical potential from the energy of the uniform
state, Eq. (6.6).

6.2 The ground state for trapped bosons
We now examine the solution of the Gross–Pitaevskii equation for bosons
in a trap [2]. For definiteness, and because of their experimental relevance,
4 In the Gross–Pitaevskii approximation, the interaction energy of an atom at position r is given

by the density of other atoms at that point times the effective interaction. This approach is
therefore closely related to Landau’s theory of normal Fermi liquids. It must be contrasted
with the Hartree approximation used for atoms, and with mean-field theory as applied to high-
density degenerate plasmas or lattice magnetic systems with high coordination number, where
correlations are unimportant and the potential energy is given directly in terms of the bare
interaction. Correlations are important in dilute Bose gases, and their effects are taken into
account by using the effective interaction, rather than the bare one.

Bogoliubov dispersion relation for 
exciton polaritons:

"B(k) =
p

"(k)("(k) + 2U0n) + U0n

U0



localized disturbance with amplitude �n
extends over a distance L
velocity of sound within the disturbance is different from the bulk medium due to non-
linear effects by the amount of

healing length - describes the distance over which the wave function 
tends to its bulk value when subjected to a localized perturbation

Qualitatively:

�n

n
⇠ � ⇠2

L2

⇠

Solitons
details

kinetic energy 
equals interaction 
strength

a rigid body. This implies that the kinetic energy of the system would diverge in presence of
a vortex. The way out is to force the density |f |2 of the condensate to go to zero for ⇢ ! 0.
This now already gives us an intuitive picture of a vortex, which has a core with zero density.
Accordingly, in a 3D system a vortex line will form.
The total angular momentum L carried by the whole condensate with N particles in presence
of a vortex at the symmetry axis with winding number l is Nl~, i.e. each particle carries l~
angular momentum.

4.4 The structure of a single vortex

We now want to get a better understanding of the density structure of a vortex. Until now we
only know that the density has to vanish when approaching the vortex line. We use cylindrical
coordinates and put the Ansatz

 (r) = f(⇢, z)eil' (4.12)

into the time-independent Gross-Pitaevskii equation (again in cylindrical coordinates), which
results in
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Here we used the Laplacian in cylindrical coordinates and already carried out the second deriva-
tive with respect to '. The resulting term ~2l2

2m⇢2
is giving the kinetic energy due to the azimuthal

velocity field of a vortex. This term is sometimes also called the centrifugal barrier of the prob-
lem. For a superfluid with l = 0, this term vanishes and the above equation is the standard
GPE.
As a first step we try to estimate the typical size of a vortex. We consider a uniform system
(i.e. V = 0, derivative with respect to z vanishes) with a rotating condensate with l = 1,
which will form a vortex line. We know that far away from the vortex line, the system behaves
as a non-rotating superfluid, such that for large ⇢ the centrifugal barrier term / 1/⇢2 and the
derivative with respect to ⇢ becomes unimportant. Neglecting also these terms in equation (4.13)
we see that the wave function f approaches the wave function f

0

=
p
µ/U

0

of a non-rotating
condensate.
In contrast, for small distance ⇢ from the vortex line, the terms proportional to 1/⇢ will dominate.
We make the ansatz f / ⇢l = ⇢ as known from free particles with angular momentum. This
ansatz also ensures that the superfluid density goes to zero when approaching ⇢ = 0. Then the
terms dominating the small ⇢ behavior will cancel. To find the cross over between this and the
large ⇢ behavior, and thus the typical size of a vortex, we make the simple argument that kinetic
energy should equal interaction energy. For a typical size ⇠ of the vortex we then get
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which leads to to the typical size
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This length scale is also called the healing length of the condensate. It describes the typical
distance over which the condensate wave function tends to its bulk value if there is a localized
perturbation present, and is called healing length.
Instead of estimating the typical size and doing approximations, we can also make use of the
Gross-Pitaevskii equation and directly try to solve for the density profile of a vortex. It is

27



Solitons
in atomic condensates

S. Burger, K. Bongs, 
S. Dettmer, W. Ertmer, 
K. Sengstock, Dark 
solitons in BEC, Phys. 
Rev. Lett. 83, 5198 
(1999)

VOLUME 83, NUMBER 25 P HY S I CA L R EV I EW LE T T ER S 20 DECEMBER 1999

FIG. 1. Density distribution (a) and phase distribution (b) of a
dark soliton state with Df ! p. The density minimum has a
width !l0. The scheme for the generation of dark solitons by
phase imprinting is shown in (c), where le is the width of the
potential edge.

(axial) soliton energy to the radial degrees of freedom and
leads to the undulation of the DS plane, and ultimately
to the destruction of the soliton. This instability is
essentially suppressed for solitons in cigar-shaped traps
with a strong radial confinement [9], such as in our
experiment [15].
As can be seen from Eq. (1), the local phase of the dark

soliton wave function varies only in the vicinity of the DS
plane, x " xk , and is constant in the outer regions, with
a phase difference Df between the parts left and right to
the DS plane (see, e.g., Fig. 1b).
To generate dark solitons we apply the method of phase

imprinting [13], which allows one also to create vortices
and other textures in BEC’s. We apply a homogeneous
potential Uint, generated by the dipole potential of a
far detuned laser beam, to one-half of the condensate
wave function (Fig. 1c). The potential is pulsed on for
a time tp , such that the wave function locally acquires
an additional phase factor e2iDf, with Df ! Uinttp#h̄ !
p . The pulse duration is chosen to be short compared to
the correlation time of the condensate, tc ! h̄#m, where
m is the chemical potential. This ensures that the effect
of the light pulse is mainly a change of the phase of the
BEC, whereas changes of the density during this time can
be neglected. Note, however, that due to the imprinted
phase, at larger times one expects an adjustment of the
phase and density distribution in the condensate. This
will lead to the formation of a dark soliton and also to
additional structures as discussed below.
In our experimental setup (see [16]), condensates con-

taining typically 1.5 3 105 atoms in the (F ! 2, mF !
12) state, with less than 10% of the atoms being in the
thermal cloud, are produced every 20 s. The fundamen-
tal frequencies of our static magnetic trap are vx ! 2p 3
14 Hz and v! ! 2p 3 425 Hz along the axial and radial
directions, respectively. The condensates are cigar-shaped
with the long axis (x axis) oriented horizontally.
For the phase imprinting potential Uint, a blue detuned,

far off resonant laser field (l ! 532 nm) of intensity
I " 20 W#mm2 pulsed for a time tp ! 20 ms results in

a phase shift Df of the order of p [17]. Spontaneous
processes can be totally neglected. A high quality optical
system is used to image an intensity profile to the
BEC, nearly corresponding to a step function with a
width of the edge, le, smaller than 3 mm (see Fig. 1c).
The corresponding potential gradient leads to a force
transferring momentum locally to the wave function and
supporting the creation of a density minimum at the
position of the DS plane for the dark soliton. Note that
also the velocity of the soliton depends on le (see Fig. 3c).
After applying the dipole potential we let the atoms

evolve within the magnetic trap for a variable time tev .
We then release the BEC from the trap (switched off
within 200 ms) and take an absorption image of the
density distribution after a time of flight tTOF ! 4 ms
(reducing the density in order to get a good signal-to-noise
ratio in the images).
In a series of measurements we have studied the

creation and successive dynamics of dark solitons as a
function of the evolution time and the imprinted phase.
Figure 2 shows density profiles of the atomic clouds for
different evolution times in the magnetic trap, tev . The
potential Uint has been applied to the part of the BEC
with x , 0. For this measurement the potential strength
was estimated to correspond to a phase shift of !p .
For short evolution times the density profile of the

BEC shows a pronounced minimum (contrast about 40%).
After a time of typically tev " 1.5 ms a second minimum
appears. Both minima (contrast about 20% each) travel
in opposite directions and in general with different veloci-
ties. Figure 3a shows the evolution of these two minima
in comparison to theoretical results obtained numerically
from the 3D Gross-Pitaevskii equation.
One of the most important results of this work is

that both structures move with velocities which are
smaller than the speed of sound (cs " 3.7 mm#s for
our parameters) and depend on the applied phase shift.
Therefore, the observed structures are different from
sound waves in a condensate as first observed at MIT [18].
We identify the minimum moving slowly in the negative
x direction to be the DS plane of a dark soliton.
We have performed a series of measurements with

different parameter sets for le and the product of laser

FIG. 2. Absorption images of BEC’s with kink-wise struc-
tures propagating in the direction of the long condensate
axis, for different evolution times in the magnetic trap, tev .
(Df ! p, N " 1.5 3 105, and tTOF ! 4 ms).
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J. Denschlag et al.,Generating Solitons by 
Phase Engineering of a Bose-Einstein 
Condensate, Science 287, 97 (2000).

Solitons
in atomic condensates

optic communications (13). Solitons may be
either bright or dark, depending on the details
of the governing nonlinear wave equation. A
bright soliton is a peak in the amplitude; a
dark soliton is a notch with a characteristic
phase step across it.

A weakly interacting BEC obeys a non-
linear wave equation that supports solitons,
as shown by recent theoretical studies (14–
17). At zero temperature, this wave equation
is known as the Gross-Pitaevskii equation
(18),

i!("/"t)# $ [%(!2/2M )&2 ' V ' g!#!2]#
(1)

where # is the condensate wave function
normalized to the number of atoms, V is the
trapping potential, M is the atomic mass, ! is
the Planck constant divided by 2( and g
describes the strength of the atom-atom inter-
action (19). Solitons propagate without
spreading (dispersing) because the nonlinear-
ity balances the dispersion; for Eq. 1, the
corresponding terms are the nonlinear inter-
action g!#!2 and the kinetic energy – (!2/
2M)&2, respectively. Our sodium condensate
only supports dark solitons because the atom-
atom interactions are repulsive (g ) 0).

A distinguishing characteristic of a dark
soliton is that its speed is less than the Bogo-
liubov speed of sound, *0 $ (gn/M)1/2 (18,
20), where n $ !#0!

2 is the unperturbed
condensate density. The soliton speed *s can
be expressed in terms of either the phase step
+ (0 , + ! () or the soliton “depth” nd,
which is the difference between n and the
density at the bottom of the notch (14, 15):

*s/*0 $ cos(+/2) $ [1 % (nd/n)]1/2 (2)

For + $ (, the soliton has zero velocity, zero

density at its center, a width on the order of
the healing length - $ (2nMg/!2)–1/2 (15),
and a discontinuous phase step. As + decreas-
es, the speed increases and approaches the
speed of sound. The solitons become shal-
lower and wider and have a more gradual
phase step (15). They travel opposite to the
direction of the phase gradient. Because a
soliton has a characteristic phase step, opti-
cally imprinting a phase step on the BEC
wave function should be a way to create a
soliton.

Phase imprinting. We performed our ex-
periments with a condensate having .2 /
106 sodium atoms in the 3S1/2, F $ 1, mF $
%1 state, with no discernible thermal fraction
(7). The condensate was held in a magnetic
trap with trapping frequencies 0x $ 120y $
20z $ 2( / 28 Hz. The Thomas-Fermi
diameters (18) were 45, 64, and 90 2m,
respectively. Initially the BEC, described by
the ground-state solution of Eq. 1, had a
uniform phase (21, 22).

We modified the phase distribution of the
BEC by exposing it to pulsed, off-resonant laser
light with an intensity pattern I(x, y) (Fig. 1). In
this process, the atoms experience a spatially
varying light-shift potential U(x, y) $ (!32/
84)[I(x, y)/I0] and acquire a corresponding
phase 5(x, y) $ –U(x, y)T/!. Here 3 is the
transition line width, I0 is the saturation inten-
sity, 4 is the detuning of the laser from the
atomic resonance, and T is the laser pulse du-
ration (23). We chose T to be short enough so
that the atomic motion was negligible during
the pulse (Raman-Nath regime). In this limit,
the effect of the pulse can be expressed as a
sudden phase imprint, which modifies the ini-
tial wave function: #3 # exp[i5(x, y)] (24).

Interferometry. We measured the imprint-

ed phase distribution of the condensate wave
function with a Mach-Zehnder matter-wave in-
terferometer that makes use of optically in-
duced Bragg diffraction (25, 26). Our Bragg
interferometer differs from previous ones in
that we can independently manipulate atoms in
the two arms (because of their large separation)
and can resolve the output ports to reveal the
spatial distribution of the condensate phase. In
our interferometer, a Bragg pulse splits the
initial condensate into two states, !A6 and !B6,
differing only in their momenta (Fig. 2). After
they spatially separate, the phase step (Fig. 1A)
is imprinted on !A6, while !B6 is unaffected and
serves as a phase reference. When recombined,
they interfere according to their local phase
difference. Where this phase difference is 0,
atoms appear in port 1, and where it is ( atoms
appear in port 2. Imaging the density distribu-
tions of ports 1 and 2 displays the spatially
varying phase (27). The image in Fig. 2 shows
the output of the interferometer when a phase of
( was imprinted on the upper half of !A6 (28).
The high-contrast “half moons” are direct evi-
dence that we can control the condensate spatial
phase distribution and, in particular, imprint the
phase step appropriate for a soliton (29).

Soliton propagation. To observe soliton
propagation, we did not use interferometry
(30) but instead measured BEC density dis-
tributions with absorption imaging (1, 27)
after imprinting a phase step (31). Figure 3, A
to E, shows the evolution of the condensate
after the top half was phase-imprinted with
50 7 1.5(, a phase for which we observed a
single deep soliton (the reason for imprinting
a phase step larger than ( is discussed be-
low). Immediately after the phase imprint,
there is a steep phase gradient across the
middle of the condensate such that this por-

x

y
z

A

B C

Fig. 1. (A) Writing a phase step onto the con-
densate. A far-detuned uniform light pulse
projects a mask (a razor blade) onto the con-
densate. Because of the light shift, this imprints
a phase distribution that is proportional to the
light intensity distribution. A lens (not shown)
is used to image the razor blade onto the
condensate. The mask in (B) writes a phase
stripe onto the condensate. The mask in (C)
imprints an azimuthally varying phase pattern
that can be used to create vortices.

Fig. 2. Space-time diagram of the matter-wave interferometer used to measure the spatial phase
distribution imprinted on the BEC. Three optically induced Bragg diffraction pulses (7 ) formed the
interferometer. Each pulse consisted of two counterpropagating laser beams detuned by %2 GHz
from atomic resonance (so that spontaneous emission is negligible), with their frequencies differing
by 100 kHz. The first Bragg pulse had a duration of 8 2s and coherently split the condensate into
two components !A6 and !B6 with equal numbers of atoms; !A6 remained at rest and !B6 received two
photon recoils of momentum. When they were completely separated, we applied the 500-ns phase
imprint pulse to the top half of !A6, which changed the phase distribution of !A6 while !B6 served as
a phase reference. A second Bragg pulse (duration 16 2s), 1 ms after the first pulse, brought !B6 to
rest and imparted two photon momenta to !A6. When they overlapped again, 1 ms later, a third
pulse (duration 8 2s) converted their phase differences into density distributions at ports 1 and 2.
The image shows the output ports 1 and 2 as seen when we imprinted a phase step of ( (29).
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tion has a large velocity in the !x direction.
This velocity, which can be understood as
arising from the impulse imparted by the
optical dipole force, results in a positive den-
sity disturbance that travels at or above the
speed of sound. A dark notch is left behind;
this is a soliton moving slowly in the –x
direction (opposite to the direction of the
applied force).

We have numerically solved Eq. 1 in three
dimensions through the application of real-
space product formulas (32) and by using a
discrete variable representation of the wave
function (33) based on Gauss-Chebyshev
quadrature with 50 to 400 spatial grid points
in each dimension; in the latter approach, the
time dependence of the solution was obtained
by Runge-Kutta integration. Figure 3, F to J,
shows the results of the simulations where the
experimental phase imprint is approximated
as "(x, y) # ("0/2)[1 ! tanh(x/l )], where
"0 # 1.5$, and l # 2 %m corresponds to an
imprinting resolution of &4.4 %m (27, 34).
The calculated and experimental images are
in very good agreement.

A striking feature of the images is the
curvature of the soliton. This curvature arises
from the 3D geometry of the trapped conden-
sate and occurs for two reasons. First, the
speed of sound '0 is largest at the trap center,
where the density is greatest, and decreases
toward the condensate edge. Second, as the
soliton moves into regions of lower conden-
sate density, we find numerically that the
density at its center (n ( nd) approaches zero,
) approaches $, and 's decreases to zero
before reaching the edge. The soliton stops
because its depth nd, rather than its phase
offset ), appears to be a conserved quantity in
a nonuniform medium.

Soliton speed. The subsonic propagation
speed of the notches seen in Fig. 3 shows that
they are solitons and not simply sound waves.
To determine this speed, we measured the
distance after propagation between the notch
and the position of the imprinted phase step
along the direction indicated in Fig. 3H. Be-
cause the position of our condensate varied
randomly from one shot to the next (presum-
ably because of stray, time-varying fields),
we could not always apply the phase step at
the center. A marker for the location of the
initial phase step is the intersection of the
soliton with the condensate edge, because at
this point the soliton has zero velocity. By
using images taken 5 ms after the imprint, at
which time the soliton had not traveled far
from the BEC center, we obtained a mean
soliton speed of 1.8 * 0.4 mm/s (35). This
value is significantly less than the mean
Bogoliubov speed of sound, '0 # 2.8 * 0.1
mm/s. From the propagation of the notch in
the numerical simulations (Fig. 3, F to J), we
obtained a mean soliton speed, 's # 1.6
mm/s, in agreement with the experimental

value. The experimental uncertainty is main-
ly due to the difficulty in determining the
position of the initial phase step.

We can also compare the results of the
numerical 3D solutions of Eq. 1 to the ana-
lytical predictions of Eq. 2, which describes a
traditional dark soliton in a homogeneous, 1D
geometry. We calculated the soliton speed
using a local density approximation in Eq. 2
[n # ! $0(r)!2, where $0(r) is the ground-
state solution of Eq. 1] from either the phase
or depth of the solitons obtained in the 3D
simulations. In every case examined, this
speed is in excellent agreement with the re-
sults of 3D numerical simulations.

Figure 4 shows the theoretical density and
phase profile along the x axis through the center
of the condensate 5 ms after the "0 # 1.5$
phase imprint (Fig. 3H). The dark soliton notch
and its phase step are centered at x # (8 %m.
This phase step, ) # 0.58$ is less than the
imprinted phase of 1.5$. The difference is
caused by the mismatch between the phase
imprint and the phase and depth of the soliton
solution of Eq. 1: Our imprinting resolution
(27) is larger than the soliton width, which is on
the order of the healing length ( + , 0.7 %m),
and we do not control the amplitude of the
wave function. The mismatch produces features
in addition to the deep soliton, such as a shallow
dark soliton at x # (14 %m moving to the left

and other excitations near x # 20 %m moving
rapidly to the right. Most of these features are
not well resolved in the experimental images
(Fig. 3, A to E). We observed both experimen-
tally and theoretically that when the imprinted
phase step is increased, the weak soliton on the
left becomes deeper; when the phase step is
lowered, both solitons become shallower and
propagate faster.

We could avoid the uncertainty in the
position of the initial phase step and improve
our measurement of the soliton speed by
replacing the step mask (Fig. 1A) with a thin
slit (Fig. 1B). The thin slit produced a stripe
of light with a Gaussian profile (1/e2 full
width , 15 %m). With this stripe in the center
of the condensate, numerical simulations pre-
dict the generation of solitons that propagate
symmetrically outward. We selected experi-
mental images with solitons symmetrically
located about the middle of the condensate
and measured the distance between them.
Figure 5A shows the separation of the pair of
solitons as a function of time. For a small
phase imprint of "0 , 0.5$ at Gaussian
maximum, we observed solitons moving at
the Bogoliubov speed of sound within exper-
imental uncertainty. For a larger phase im-
print of "0 , 1.5$, we observed a much slower
soliton propagation, in agreement with numer-
ical simulations. An even larger phase imprint

1 ms 10 ms7 ms5 ms2 ms 
x

F G H I J

A B C D E

Fig. 3. Experimental (A to E) and theoretical (F to J) images of the integrated BEC density for
various times after we imprinted a phase step of &1.5$ on the top half of the condensate with a
1-%s pulse. The measured number of atoms in the condensate was 1.7 (*0.3) - 106, and this value
was used in the calculations. A positive density disturbance moved rapidly in the !x direction, and
a dark soliton moved oppositely at significantly less than the speed of sound. Because the imaging
pulse (27 ) is destructive, each image shows a different BEC. The width of each frame is 70 %m.

Fig. 4. Calculated density and phase
along the x axis (dashed line in Fig. 3H) at
0 ms (thin lines) and at 5 ms (thick lines)
after applying a phase step imprint of
1.5$. The soliton located at x # (8 %m
has a phase step of 0.58$ and a speed of
1.61 mm/s, which is much less than that
of sound.
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The processes of merging and splitting dilute-gas Bose-Einstein condensates are studied in the

nonadiabatic, high-density regime. Rich dynamics are found. Depending on the experimental parameters,

uniform soliton trains containing more than ten solitons or the formation of a high-density bulge as well as

dispersive shock waves are observed experimentally within merged BECs. Our numerical simulations

indicate the formation of many vortex rings. In the case of splitting a BEC, the transition from sound-wave

formation to dispersive shock-wave formation is studied by use of increasingly stronger splitting barriers.

These experiments realize prototypical dispersive shock situations.

DOI: 10.1103/PhysRevLett.101.170404 PACS numbers: 03.75.Kk, 05.45.!a, 47.40.!x, 67.85.De

Dilute-gas Bose-Einstein condensates (BECs) are a
powerful environment for the study of nonlinear dynamics.
Dispersive shock waves (DSWs) are an example of non-
linear behavior which has generated interest among diverse
areas of physics. First studied in water and plasma wave
dynamics [1], DSWs have also been investigated in other
areas where dispersive hydrodynamic behavior is possible
including nonlinear optics [2], electronic liquids [3], and
ultracold quantum gases [4–9]. The theoretical foundation
for the study of DSWs in BECs is the small dispersion limit
of the one-dimensional nonlinear Schrödinger equation
(NLS) that was first studied in [10] and later in many works
including [4–8]. More generally, the three-dimensional
NLS equation with a linear potential and small dispersion
(also known as the Gross-Pitaevskii equation) describes an
interacting BEC that can give rise to shock dynamics [8].
In this Letter, we investigate dispersive hydrodynamics in
BECs via the merging and splitting of condensates in the
nonadiabatic, high-density regime. We realize several im-
portant prototypical situations which have been discussed
in previous theoretical studies [4–8]. After merging two
BECs, we can observe many solitons (a soliton train). For
low enough atom numbers, the soliton train is uniform, as
predicted for a one-dimensional situation [4,11,12]. For
higher atom numbers, a high-density bulge emerges, and
our numerical simulations suggest that this bulge consists
of many vortex rings due to a transverse instability of the
soliton train. A precise understanding of the merging dy-
namics is also essential from a technological point of view.
For example, merging processes are fundamental opera-
tions in atom interferometers [13,14] and in the creation of
a ‘‘continuous BEC’’ [15] where a condensate is continu-
ously replenished by newly condensed atoms. Further-
more, vortex formation during the merging of multiple
BECs has been used as a tool to investigate the relative
phases between BECs [16]. Splitting a BEC with a repul-

sive barrier can also lead to DSWs, and we observe a
transition from propagating sound waves to DSWs when
a sufficiently strong barrier is used. Finally, we find shock
dynamics in yet a different setting, namely, when a high-
density region in a BEC is suddenly released and allowed
to spread into a surrounding background of condensed
atoms. Our results complement previous experiments that
considered either very narrow initial gaps in a BEC, pro-
duced by a stopped-light technique [9,17], or blast pulses
in rotating [18] and nonrotating [8] cylindrical geometries.
All our experiments begin with ultracold clouds of 87Rb

atoms in the jF;mFi ¼ j1;!1i hyperfine state. The atoms
are magnetically contained in an elongated Ioffe-Pritchard
type trap with frequencies f!x=ð2!Þ; !yz=ð2!Þg ¼
f7; 402g Hz (the x-axis is oriented horizontally). Repul-
sive and attractive barriers for the atoms are created with
dipole lasers that are far detuned from the Rb D-lines at
780 and 795 nm. The dipole laser beams are sent horizon-
tally through the center of the magnetic trap, along the
radial (tightly confining) y-direction. In the vertical direc-
tion (z-axis), the laser waist is much larger than the radial
extent of the BECs. Dynamics are induced in the BEC by
rapidly turning a dipole beam on or off. To enlarge the re-
sulting features, we employ a 2 ms long antitrapped ex-
pansion before imaging [19]. During this expansion, the
aspect ratio of a BEC formed without the presence of a
dipole barrier changes from 57 for the trapped BEC to
about 3.
In a first set of experiments, the dynamics of merging

two BECs in the nonadiabatic, high-density regime are
studied. For this, a dipole beam with a wavelength of " ¼
660 nm, a power of 3.48 mW, and waists ofwx ¼ 27:3 #m
and wz ¼ 32:1 #m is used, creating a repulsive barrier
with a height of 490 nK for the atoms. The total atom num-
ber for the experiments shown in Figs. 1(a)–1(e) and 1(n) is
about 1% 106 atoms. For a single BEC confined in the
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magnetic trap, this would imply a chemical potential of
! ¼ 224 nK. Therefore, the presence of the dipole beam
leads to two clearly separated BECs [Fig. 1(a)]. The beam
is turned on before the atoms are evaporatively cooled to
form a BEC. After a BEC has formed on both sides of the
barrier and no surrounding thermal cloud is visible, the
dipole beam is rapidly turned off within less than 250 ns.
We let the dynamics evolve in the magnetic trap for a vari-
able evolution period before starting the expansion imag-
ing. Directly after turning the dipole barrier off, the con-
densates smoothly expand toward each other [Fig. 1(b)].
This behavior can be described by the well-known dam-
breaking problem whereby a sharp density gradient devel-
ops into a rarefaction wave (as opposed to a shock wave)
when the background density is zero (see, e.g., [8,10]).
Shortly after the BECs have collided at the center of the
trap, a pronounced bulge of higher atom density forms in
the collision plane [Fig. 1(c)]. Very pronounced dark
notches are observed to form within the high-density bulge
as shown in Fig. 1(d). Subsequently, this density bulge
spreads out from the center of the trap [Figs. 1(c)–1(e)
and 1(n)], and more notches are formed to fill the extent of
the density bulge with an average spacing of roughly 8 to
11 !m. After about 55 ms, the bulge and the notches have
spread over the entire extent of the condensate [Fig. 1(e)].
The long lifetime, discrete nature, and large amplitude of
the notches suggest that they are nonlinear coherent struc-
tures rather than simple sound waves. Our numerical simu-
lations show that a soliton train initially develops and a

bulge region is formed where the solitons decay into a large
number of vortex rings, see Figs. 1(f)–1(m) and [20].
Experimentally, vortex rings in BECs have been observed
in [17,21]. They are difficult to detect unambiguously in
our experimental images that are integrated along the line
of sight. Fine fringes appear adjacent to the bulge region as
can be seen, e.g., in Figs. 1(d) and 1(i). The fine fringes,
together with the steepness of the wave fronts delimiting
the density bulge region, are indicative of DSWs. The
merging process finally results in an axial breathing-
mode excitation of the BEC.
The qualitative features of the evolution are fairly inde-

pendent of most experimental parameters. For example,
use of two BECs with an initial total atom number of 2:2"
106 atoms and a dipole beam with waists of wx ¼ 8:5 !m
and wz ¼ 32:1 !m gives qualitatively the same results
[see Fig. 2(b)]. However, when the atom number is
strongly reduced, we observe a transition in the merging
dynamics, both experimentally and numerically, from the
generation of a high-density bulge to the generation of a
uniform soliton train with no bulge. A typical image of
such a soliton train is shown in Fig. 1(o) for 22 000 atoms, a
dipole beam power of 150 !W, an evolution time of
27 ms, and an expansion time of 1 ms (see also [20]).
The transition can be understood in the following way. A
BEC dark soliton is unstable to long transverse wavelength
perturbations leading to vortex formation (see, e.g., [9]).
As numerical simulations show {Figs. 1(k)–1(m) and
[20]}, the pronounced bulge in Figs. 1(c)–1(e) coincides
with the existence of vortices. By reducing the nonlinearity
in the system, we have effectively lengthened the soliton
instability wavelength beyond the radial extent of the BEC;
thus, the soliton train remains effectively one-dimensional
and stable as in Fig. 1(o) and [20]. A one-dimensional
analysis reveals that the soliton train can be interpreted
as the result of the interaction of two rarefaction waves
generated by two dam-breaking problems [22]. A detailed
analysis of this transition is beyond the scope of this work.
In a second set of experiments, we investigate the dy-

namics of splitting a BEC with a repulsive barrier that is
suddenly turned on in the center of the BEC. For very weak
barriers that only slightly modify the BEC density, the
sudden turn-on leads to the propagation of sound waves
[23,24]. Strong barriers, in contrast, lead to DSWs. We first
create BECs with 2:2" 106 atoms in the magnetic trap
without the presence of the dipole barrier. Then, a dipole
beam with waists of wx ¼ 8:5 !m and wz ¼ 32:1 !m is
rapidly turned on and left on for a variable evolution time,
after which the antitrapped expansion procedure is started.
The rapid turn-on of the dipole beam produces two density
peaks that spread out to either side, as shown in Fig. 2(c).
The measured propagation speed of these peaks in the
central region of the BECs is plotted in Fig. 3 for various
powers of the dipole beam [25]. For the lowest powers, the
speed is in full agreement with the calculated longitudinal
speed of sound, 3:8 mm=s [26]. At these low powers, the
density peaks are barely visible in the cloud. For stronger

FIG. 1. Left column: experimental antitrapped expansion im-
ages of a BEC collision at t ¼ (a) 2 ms, (b) 7 ms, (c) 12 ms,
(d) 22 ms, and (e) 57 ms (including the 2 ms antitrapped
expansion time). Middle column: numerical simulations at t ¼
(f) 2 ms, (g) 7 ms, (h) 12 ms, (i) 22 ms, and (j) 57 ms. The
antitrapped expansion was not simulated; therefore, the vertical
scale of (f)–(j) is about 3

57 the vertical scale of (a)–(e), see also

[20]. Right column: (k)–(m) simulations showing zoomed-in
density slices of the BEC by the plane z ¼ 0 after (k) 5 ms,
(l) 6.25 ms, and (m) 7.5 ms. (n) Integrated cross section of (d).
(o) Typical uniform soliton train observed for lower atom
numbers (experimental image; parameters see text).
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magnetic trap, this would imply a chemical potential of
! ¼ 224 nK. Therefore, the presence of the dipole beam
leads to two clearly separated BECs [Fig. 1(a)]. The beam
is turned on before the atoms are evaporatively cooled to
form a BEC. After a BEC has formed on both sides of the
barrier and no surrounding thermal cloud is visible, the
dipole beam is rapidly turned off within less than 250 ns.
We let the dynamics evolve in the magnetic trap for a vari-
able evolution period before starting the expansion imag-
ing. Directly after turning the dipole barrier off, the con-
densates smoothly expand toward each other [Fig. 1(b)].
This behavior can be described by the well-known dam-
breaking problem whereby a sharp density gradient devel-
ops into a rarefaction wave (as opposed to a shock wave)
when the background density is zero (see, e.g., [8,10]).
Shortly after the BECs have collided at the center of the
trap, a pronounced bulge of higher atom density forms in
the collision plane [Fig. 1(c)]. Very pronounced dark
notches are observed to form within the high-density bulge
as shown in Fig. 1(d). Subsequently, this density bulge
spreads out from the center of the trap [Figs. 1(c)–1(e)
and 1(n)], and more notches are formed to fill the extent of
the density bulge with an average spacing of roughly 8 to
11 !m. After about 55 ms, the bulge and the notches have
spread over the entire extent of the condensate [Fig. 1(e)].
The long lifetime, discrete nature, and large amplitude of
the notches suggest that they are nonlinear coherent struc-
tures rather than simple sound waves. Our numerical simu-
lations show that a soliton train initially develops and a

bulge region is formed where the solitons decay into a large
number of vortex rings, see Figs. 1(f)–1(m) and [20].
Experimentally, vortex rings in BECs have been observed
in [17,21]. They are difficult to detect unambiguously in
our experimental images that are integrated along the line
of sight. Fine fringes appear adjacent to the bulge region as
can be seen, e.g., in Figs. 1(d) and 1(i). The fine fringes,
together with the steepness of the wave fronts delimiting
the density bulge region, are indicative of DSWs. The
merging process finally results in an axial breathing-
mode excitation of the BEC.
The qualitative features of the evolution are fairly inde-

pendent of most experimental parameters. For example,
use of two BECs with an initial total atom number of 2:2"
106 atoms and a dipole beam with waists of wx ¼ 8:5 !m
and wz ¼ 32:1 !m gives qualitatively the same results
[see Fig. 2(b)]. However, when the atom number is
strongly reduced, we observe a transition in the merging
dynamics, both experimentally and numerically, from the
generation of a high-density bulge to the generation of a
uniform soliton train with no bulge. A typical image of
such a soliton train is shown in Fig. 1(o) for 22 000 atoms, a
dipole beam power of 150 !W, an evolution time of
27 ms, and an expansion time of 1 ms (see also [20]).
The transition can be understood in the following way. A
BEC dark soliton is unstable to long transverse wavelength
perturbations leading to vortex formation (see, e.g., [9]).
As numerical simulations show {Figs. 1(k)–1(m) and
[20]}, the pronounced bulge in Figs. 1(c)–1(e) coincides
with the existence of vortices. By reducing the nonlinearity
in the system, we have effectively lengthened the soliton
instability wavelength beyond the radial extent of the BEC;
thus, the soliton train remains effectively one-dimensional
and stable as in Fig. 1(o) and [20]. A one-dimensional
analysis reveals that the soliton train can be interpreted
as the result of the interaction of two rarefaction waves
generated by two dam-breaking problems [22]. A detailed
analysis of this transition is beyond the scope of this work.
In a second set of experiments, we investigate the dy-

namics of splitting a BEC with a repulsive barrier that is
suddenly turned on in the center of the BEC. For very weak
barriers that only slightly modify the BEC density, the
sudden turn-on leads to the propagation of sound waves
[23,24]. Strong barriers, in contrast, lead to DSWs. We first
create BECs with 2:2" 106 atoms in the magnetic trap
without the presence of the dipole barrier. Then, a dipole
beam with waists of wx ¼ 8:5 !m and wz ¼ 32:1 !m is
rapidly turned on and left on for a variable evolution time,
after which the antitrapped expansion procedure is started.
The rapid turn-on of the dipole beam produces two density
peaks that spread out to either side, as shown in Fig. 2(c).
The measured propagation speed of these peaks in the
central region of the BECs is plotted in Fig. 3 for various
powers of the dipole beam [25]. For the lowest powers, the
speed is in full agreement with the calculated longitudinal
speed of sound, 3:8 mm=s [26]. At these low powers, the
density peaks are barely visible in the cloud. For stronger

FIG. 1. Left column: experimental antitrapped expansion im-
ages of a BEC collision at t ¼ (a) 2 ms, (b) 7 ms, (c) 12 ms,
(d) 22 ms, and (e) 57 ms (including the 2 ms antitrapped
expansion time). Middle column: numerical simulations at t ¼
(f) 2 ms, (g) 7 ms, (h) 12 ms, (i) 22 ms, and (j) 57 ms. The
antitrapped expansion was not simulated; therefore, the vertical
scale of (f)–(j) is about 3

57 the vertical scale of (a)–(e), see also

[20]. Right column: (k)–(m) simulations showing zoomed-in
density slices of the BEC by the plane z ¼ 0 after (k) 5 ms,
(l) 6.25 ms, and (m) 7.5 ms. (n) Integrated cross section of (d).
(o) Typical uniform soliton train observed for lower atom
numbers (experimental image; parameters see text).
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Solitons
dark and bright

dark solitons - depression in density 

black solitons - minimum density is zero
grey solitons - minimum density is non-zero

bright solitons with the density maximum

Classification from the point of view of particle density (or light intensity in 
the case of optical solitons):
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generalization of this Schrödinger equation, with the same non-linear inter-
action term. This equation is the time-dependent Gross–Pitaevskii equation,

i!∂ψ(r, t)
∂t

= − !2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + U0|ψ(r, t)|2ψ(r, t), (7.1)

which is the basis for our discussion of the dynamics of the condensate.
The time-independent Gross–Pitaevskii equation, Eq. (6.11), is a non-

linear Schrödinger equation with the chemical potential replacing the en-
ergy eigenvalue in the time-independent Schrödinger equation. To ensure
consistency between the time-dependent Gross–Pitaevskii equation and the
time-independent one, under stationary conditions ψ(r, t) must develop in
time as exp(−iµt/!). The phase factor reflects the fact that microscopically
ψ is equal to the matrix element of the annihilation operator ψ̂ between the
ground state with N particles and that with N − 1 particles,

ψ(r, t) = ⟨N − 1|ψ̂(r)|N⟩ ∝ exp[−i(EN − EN−1)t/!], (7.2)

since the states |N⟩ and |N − 1⟩ develop in time as exp(−iEN t/!) and
exp(−iEN−1t/!), respectively. For large N the difference in ground-state
energies EN−EN−1 is equal to ∂E/∂N , which is the chemical potential.
Therefore this result is basically the Josephson relation for the development
of the phase φ of the condensate wave function

dφ

dt
= −µ

! . (7.3)

Both for formal reasons as well as for applications a variational formu-
lation analogous to that for static problems is useful. The time-dependent
Gross–Pitaevskii equation (7.1) may be derived from the action principle

δ

∫ t2

t1

Ldt = 0, (7.4)

where the Lagrangian L is given by

L =
∫

dr
i!
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

=
∫

dr
[
i!
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

]
. (7.5)

Here E is the energy, Eq. (6.9), and the energy density E is given by

E =
!2

2m
|∇ψ|2 + V (r)|ψ|2 +

U0

2
|ψ|4. (7.6)

In the variational principle (7.4) the variations of ψ (or ψ∗) are arbitrary,

Solitons
dark Time dependent Gross-Pitaevskii equation:

has one dimensional dark soliton solution for repulsive interactions U0 > 0
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value n0 when x → ±∞. We insert into (7.1) a solution of the form

ψ(x, t) = f(x − ut)e−iµt/! (7.149)

and obtain the following differential equation for the function f ,

− !2

2m
f ′′ + U0|f |2f = −i!uf ′ + µf. (7.150)

Here f ′ denotes the derivative of f with respect to the variable x − ut.
The chemical potential µ = U0n0 is determined by the background density
n0 = f2

0 , where f0 denotes the amplitude of the condensate wave function
for x → ±∞.

We separate the solution to (7.150) into real and imaginary parts by writ-
ing

f = f0[α(x̃) + iβ(x̃)], (7.151)

where α and β are real functions of the dimensionless variable x̃ = (x−ut)/ξ.
When x̃ → ±∞ the functions α and β approach the values α(±∞) and
β(±∞), respectively, where

α(±∞)2 + β(±∞)2 = 1. (7.152)

Let us consider possible solutions for which the imaginary part is equal to
a constant everywhere, β = β0, and separate the equation (7.150) into real
and imaginary parts. This yields the two equations

α′′ + (1 − α2 − β2
0)α = 0 (7.153)

and

(1 − α2 − β2
0)β0 =

√
2u

s
α′, (7.154)

where s = (n0U0/m)1/2 is the sound velocity of the uniform condensate, and
the prime denotes differentiation with respect to x̃. First we ensure the con-
sistency of the two equations by multiplying (7.153) by α′ and integrating,
using the boundary condition α(±∞)2 = 1 − β2

0 . This results in

2(α′)2 = (1 − α2 − β2
0)2, (7.155)

which is consistent with (7.154) if

β2
0 =

u2

s2
. (7.156)

Taking the solution that depends on the spatial coordinate and time

and inserting into GP, we obtain
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f

0 =
�f

�(x� ut)
where

The soliton wave-function is thus:

218 Dynamics of the condensate

By comparing (7.153) with (6.64) and its solution (6.65) we conclude that the
equation (7.154) and the boundary conditions are satisfied by the function

α = α0 tanh
[
(x − ut)α0√

2ξ

]
(7.157)

with

α0 =
√

1 − β2
0 =

√
1 − u2

s2
. (7.158)

The soliton wave function is thus

ψ =
√

n0

[
i
u

s
+

√
(1 − u2

s2
) tanh

(
x − ut√

2ξu

)]
e−iµt/! (7.159)

with the associated density

n = n0(α2 + β2
0) = n0

[
u2

s2
+ (1 − u2

s2
) tanh2

(
x − ut√

2ξu

)]

= n0 − (n0 − nmin)
1

cosh2[(x − ut)/
√

2ξu]
. (7.160)

Here we have introduced the width ξu, which depends on velocity according
to the equation

ξu =
ξ

[1 − (u/s)2]1/2
(7.161)

and the minimum density,

nmin = n0
u2

s2
. (7.162)

Equation (7.162) shows that the soliton velocity u is given by (nminU0/m)1/2,
which is the bulk sound velocity evaluated at the density nmin. When u = 0
the minimum density in the soliton vanishes, and the density profile (7.160)
reduces to that associated with (7.147). These analytical results, which
were derived by Tsuzuki [10], confirm the qualitative estimates (7.145) and
(7.146) arrived at earlier.

The velocity field v associated with the moving soliton may be found
directly from the phase φ of the wave function (7.159) as v = (!/m)∂φ/∂x.
As an alternative derivation we shall use the continuity equation to express
v in terms of the density. Since ∂n/∂t = −u∂n/∂x, the continuity equation
assumes the form

∂

∂x
(un − vn) = 0, (7.163)
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sound velocity of the uniform condensate
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generalization of this Schrödinger equation, with the same non-linear inter-
action term. This equation is the time-dependent Gross–Pitaevskii equation,

i!∂ψ(r, t)
∂t

= − !2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + U0|ψ(r, t)|2ψ(r, t), (7.1)

which is the basis for our discussion of the dynamics of the condensate.
The time-independent Gross–Pitaevskii equation, Eq. (6.11), is a non-

linear Schrödinger equation with the chemical potential replacing the en-
ergy eigenvalue in the time-independent Schrödinger equation. To ensure
consistency between the time-dependent Gross–Pitaevskii equation and the
time-independent one, under stationary conditions ψ(r, t) must develop in
time as exp(−iµt/!). The phase factor reflects the fact that microscopically
ψ is equal to the matrix element of the annihilation operator ψ̂ between the
ground state with N particles and that with N − 1 particles,

ψ(r, t) = ⟨N − 1|ψ̂(r)|N⟩ ∝ exp[−i(EN − EN−1)t/!], (7.2)

since the states |N⟩ and |N − 1⟩ develop in time as exp(−iEN t/!) and
exp(−iEN−1t/!), respectively. For large N the difference in ground-state
energies EN−EN−1 is equal to ∂E/∂N , which is the chemical potential.
Therefore this result is basically the Josephson relation for the development
of the phase φ of the condensate wave function

dφ

dt
= −µ

! . (7.3)

Both for formal reasons as well as for applications a variational formu-
lation analogous to that for static problems is useful. The time-dependent
Gross–Pitaevskii equation (7.1) may be derived from the action principle

δ

∫ t2

t1

Ldt = 0, (7.4)

where the Lagrangian L is given by

L =
∫

dr
i!
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

=
∫

dr
[
i!
2

(
ψ∗∂ψ

∂t
− ψ

∂ψ∗

∂t

)
− E

]
. (7.5)

Here E is the energy, Eq. (6.9), and the energy density E is given by

E =
!2

2m
|∇ψ|2 + V (r)|ψ|2 +

U0

2
|ψ|4. (7.6)

In the variational principle (7.4) the variations of ψ (or ψ∗) are arbitrary,

Time dependent Gross-Pitaevskii equation:

has also one dimensional bright soliton solution for attractive interactions U0 < 0

The properties of bright solitons differ from those of dark solitons in 
that their height and width are unrelated to their propagation velocity.

The velocity of a dark soliton cannot exceed the sound velocity.

There is no corresponding restriction on the velocity of bright solitons.

For atoms in an optical lattice it is possible to observe bright solitons 
even in condensates with repulsive interactions. The effective mass of 
an atom in an optical lattice becomes negative near the Brillouin zone 
boundary. A change in sign of the mass will have the same effect as a 
change in sign of interactions in allowing for the existence of bright 
soliton solutions.

Few remarks:



Soliton trains in condensate with tuned 
interactions bright solitons in quasi 1D trap

Attraction in atomic condensate makes it unstable for collapse (it can be stabilized by 
confinement)

Dispersion and diffraction cause localized wave packets to spread
as they propagate. Solitons may be formed when a nonlinear
interaction produces a self-focusing of the wave packet that com-
pensates for dispersion. Such localized structures have been
observed in many physical systems including water waves, plasma
waves, sound waves in liquid helium, particle physics, and in optics6.
A Bose–Einstein condensate can be described by the nonlinear
Schrödinger equation, for which the interaction term is cubic in
the condensate wavefunction7. For attractive interactions, this
equation has the same form as the equation for an optical wave
propagating in a medium with a cubic, self-focusing (Kerr) non-
linearity and, in this sense, bright matter-wave solitons in one
dimension are similar to optical solitons in optical fibres. Dark
solitons have been recently studied in condensates with repulsive
atomic interactions8–10, but they are limited in that they can only
exist within the condensate itself. Bright solitons, on the other hand,
may propagate over much larger distances, and are themselves
condensates. A similar experiment to ours has recently been
performed by L. Khaykovich et al. (personal communication).

The degree of radial confinement necessary to achieve soliton
stability has been investigated theoretically11–14. Assuming cylindri-
cally symmetric harmonic confinement with axial and radial oscil-
lation frequencies of qz and qr, respectively, radial excitations are
suppressed in the so-called quasi-one-dimensional (quasi-1D)
regime, where !hqr exceeds the magnitude of the mean-field inter-
action energy. This requirement is equivalent to a limitation on the
condensate occupation number of N , lr=jaj, where lr ¼
ð!h=mqrÞ1=2 is the radial scale length, m is the atomic mass and a is
the s-wave scattering length characterizing the two-body inter-
actions. The interactions are effectively attractive for a , 0 and
repulsive for a . 0. Achievement of the quasi-1D regime has been
recently demonstrated in the case of 7Li (ref. 15) and 23Na (ref. 16)
condensates.

The apparatus for producing a quantum degenerate gas of 7Li
atoms was described previously17, although a new magnetic trap
with axial and radial frequencies of 70Hz and 800Hz, respectively,
has been incorporated. Atoms in the (F,mF) ¼ (2, 2) sublevel, where
F and mF are, respectively, the total electronic angular momentum
and its projection, are evaporatively cooled in the magnetic trap to a
temperature of ,1mK. Atoms in the (1, 1) state, which are not
magnetically trappable, are needed in the final stages of the
experiment, so the (2, 2) atoms are transferred to an optical trap.
The optical trap consists of a single, focused, red-detuned laser
beam propagating in the axial direction for radial confinement, and
a separated pair of cylindrically focused blue-detuned laser beams
(‘end caps’) propagating in the radial plane, for axial confinement.
The single beam is provided by an infrared Nd:YAG laser, with a

wavelength of 1,064 nm, focused to a 1/e2 intensity radius of 47 mm
and with a power of up to 750mW. The radial confinement
potential is approximately harmonic, and at the highest power,
matches well with the magnetic trap potential. This single axial
beam provides a very weak axial restoring potential, which is also
approximately harmonic, with a frequency of,4Hz for oscillation
amplitudes less than the Rayleigh length of 6.5mm. The end caps
are generated from the second harmonic of another Nd:YAG laser,
have 1/e2 radii of 22mm axially and 100 mm radially, a power of
350mW in each beam, and are separated by 230 mm. The end caps
create a box-like potential in the axial direction, which helps to
better match the magnetic trap potential. Once the optical trap
lasers are switched on, themagnetic trap is switched off. After 50ms,
a bias field of up to 1,000G is applied. A period of ,200ms is
allowed for the bias field to stabilize at the chosen value before the
atoms are transferred from the (2, 2) state to the (1, 1) state by an
adiabatic microwave sweep of 15ms in duration and 1MHz in
width. The purity of the (1, 1) state population is measured to be
greater than 98%.
Attractive interactions between atoms in the (2, 2) state limit the

number of possible condensate atoms to a very small fraction of the
total number. However, interactions between (1, 1) state atoms at
zero magnetic field are repulsive with a scattering length a ¼ 5ao,
where ao is the Bohr radius

18. Although this fact ensures the stability
of the condensate, the rate of its formation is limited by the rate of
thermalization, which scales as a2. In order to increase this rate, a
magnetically tuned Feshbach resonance19,20 is used to increase the
magnitude of a. Figure 1 shows the results of a calculation of a
versus the magnetic field B, which exhibits a collisional resonance
near 725G. The rate of loss of atoms is observed to increase rapidly
near the resonance (Fig. 2), in accordance with previous investi-
gations20,21. Atoms are evaporatively cooled in the optical trap by
halving the intensity of the infrared beam, and by tuning the bias
field to 710G, where the scattering length is large (,200ao) and
positive. Absorption imaging indicates that a condensate is formed
with up to ,3 £ 105 atoms. Our techniques are similar to those
used to make condensates of 85Rb, where a Feshbach resonance was
used to manipulate the sign and magnitude of a (ref. 21).
Following the formation of the condensate at large positive a, the

field is ramped down as e2t/t (where t is time and t ¼ 40ms), to a
selected field between 545G and 630G, where a is small and
negative or small and positive (Fig. 1). The condensate can be
created on the side of the optical potential by axially displacing the
focus of the infrared beam relative to the centres of the magnetic
trap and the box potential formed by the end caps. The end caps
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Figure 1 Feshbach resonance. Calculation of the scattering length versus magnetic field
for atoms in the (1, 1) state of 7Li using the coupled channels method18. The field axis has

been scaled here by a factor of 0.91, to agree with the measured resonance position of

725 G shown in Fig. 2. The scattering length is given in units of the Bohr radius, a o.
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Figure 2 Measured rate of inelastic collisional loss of atoms near the Feshbach
resonance. The temperature is,1mK, which is above the transition temperature for

Bose–Einstein condensation. The initial peak density is estimated to be,6 £ 1012 cm23.

The rate of loss is given by the time for the number of trapped atoms to fall to e21 of the

initial number. The magnetic field is determined spectroscopically by measuring the

frequency of the (2, 2) ! (1, 1) transition to within an uncertainty of 0.1 G.
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Solitons may be formed when a nonlinear 
interactions produces a self-focusing of 
the wave packet that compensates for 
dispersion.

prevent the condensate from moving under the influence of the
infrared potential until, at a certain instant, the end caps are switched
off and the condensate is set in motion. The condensate is allowed to
evolve for a set period of time before an image is taken. As shown in
Fig. 3, the condensate spreads for a . 0, while for a , 0, non-
spreading, localized structures (solitons) are formed. Solitons
have been observed for times exceeding 3 s, a limitation that we
believe is due to loss of atoms rather than wave-packet spreading.
Multiple solitons (‘soliton trains’) are usually observed, as is

evident in Figs 3 and 4. We find that typically four solitons are
created from an initially stationary condensate. Although multi-
soliton states with alternating phase are known to be stationary
states of the nonlinear Schrödinger equation14,22,23, mechanisms for
their formation are diverse. It was proposed that a soliton train
could be generated by a modulational instability24, where in the case
of a condensate, phase fluctuations would produce a maximum
rate of amplitude growth at a wavelength approximately equal to
the condensate healing length y ¼ (8pnjaj)21/2, where n is the
atomic density23. As a and y are dynamically changing in the
experiment, the expected number of solitons N s is not readily
estimated from a static model. Experimentally, we detect no

significant difference in N s when the time constant, t, for changing
the magnetic field is varied from 25ms to 200ms. We investigated
the dependence of N s on condensate velocity v by varying the
interval Dt between the time the end caps are switched off to the
time when a changes sign.We find thatN s increases linearly withDt,
from ,4 at Dt ¼ 0 to ,10 at Dt ¼ 35ms. As the axial oscillation
period is,310ms, v / Dt in the range of Dt investigated.

The alternating phase structure of the soliton train can be
inferred from the relative motion of the solitons. Non-interacting
solitons, simultaneously released from different points in a harmo-
nic potential, would be expected to pass through one another. But
this is not observed, as can be seen from Fig. 4, which shows that the
spacing between the solitons increases near the centre of oscillation
and bunches at the end points. This is evidence of a short-range
repulsive force between the solitons. Interaction forces between
solitons have been found to vary exponentially with the distance
between them, and to be attractive or repulsive depending on their
relative phase25. Because of the effect of wave interference on the
kinetic energy, solitons that differ in phase by p will repel, while
those that have the same phase will attract. An alternating phase
structure can be generated in the initial condensate by a phase
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Figure 3 Comparison of the propagation of repulsive condensates with atomic solitons.
The images are obtained using destructive absorption imaging, with a probe laser detuned

27MHz from resonance. The magnetic field is reduced to the desired value before

switching off the end caps (see text). The times given are the intervals between turning off

the end caps and probing (the end caps are on for the t ¼ 0 images). The axial dimension

of each image frame corresponds to 1.28mm at the plane of the atoms. The amplitude of

oscillation is,370mm and the period is 310ms. The a . 0 data correspond to 630 G,

for which a < 10a o, and the initial condensate number is,3 £ 105. The a , 0 data

correspond to 547 G, for which a < 23a o. The largest soliton signals correspond to

,5,000 atoms per soliton, although significant image distortion limits the precision of

number measurement. The spatial resolution of,10mm is significantly greater than the

expected transverse dimension l r < 1.5mm.

5 ms
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150 ms

Figure 4 Repulsive interactions between solitons. The three images show a soliton train

near the two turning points and near the centre of oscillation. The spacing between

solitons is compressed at the turning points, and spread out at the centre of the oscillation.

A simple model based on strong, short-range, repulsive forces between nearest-

neighbour solitons indicates that the separation between solitons oscillates at

approximately twice the trap frequency, in agreement with observations. The number of

solitons varies from image to image because of shot to shot experimental variations, and

because of a very slow loss of soliton signal with time. As the axial length of a soliton is

expected to vary as 1/N (ref. 11), solitons with small numbers of atoms produce

particularly weak absorption signals, scaling as N 2. Trains with missing solitons are

frequently observed, but it is not clear whether this is because of a slow loss of atoms, or

because of sudden loss of an individual soliton.
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prevent the condensate from moving under the influence of the
infrared potential until, at a certain instant, the end caps are switched
off and the condensate is set in motion. The condensate is allowed to
evolve for a set period of time before an image is taken. As shown in
Fig. 3, the condensate spreads for a . 0, while for a , 0, non-
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experiment, the expected number of solitons N s is not readily
estimated from a static model. Experimentally, we detect no

significant difference in N s when the time constant, t, for changing
the magnetic field is varied from 25ms to 200ms. We investigated
the dependence of N s on condensate velocity v by varying the
interval Dt between the time the end caps are switched off to the
time when a changes sign.We find thatN s increases linearly withDt,
from ,4 at Dt ¼ 0 to ,10 at Dt ¼ 35ms. As the axial oscillation
period is,310ms, v / Dt in the range of Dt investigated.
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this is not observed, as can be seen from Fig. 4, which shows that the
spacing between the solitons increases near the centre of oscillation
and bunches at the end points. This is evidence of a short-range
repulsive force between the solitons. Interaction forces between
solitons have been found to vary exponentially with the distance
between them, and to be attractive or repulsive depending on their
relative phase25. Because of the effect of wave interference on the
kinetic energy, solitons that differ in phase by p will repel, while
those that have the same phase will attract. An alternating phase
structure can be generated in the initial condensate by a phase
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neighbour solitons indicates that the separation between solitons oscillates at

approximately twice the trap frequency, in agreement with observations. The number of

solitons varies from image to image because of shot to shot experimental variations, and

because of a very slow loss of soliton signal with time. As the axial length of a soliton is

expected to vary as 1/N (ref. 11), solitons with small numbers of atoms produce

particularly weak absorption signals, scaling as N 2. Trains with missing solitons are

frequently observed, but it is not clear whether this is because of a slow loss of atoms, or

because of sudden loss of an individual soliton.
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Important characteristics of polariton superfluid

 DETERMINED FOR SUBSONIC SPEEDS 

 for              czerenkov waves - shock waves 

 A SOUND VELOCITY CAN BE ATTRIBUTED TO THE POLARITON FLUID
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Figure 1 | Experimental set-up and polariton dispersion. a, Overview of the experimental excitation and detection conditions. b, Lower-polariton-branch
dispersion in the linear regime as observed after non-resonant excitation. Points A and B denote the excitation energy and momentum corresponding to
the results shown in Figs 2 and 3, respectively. c, Analytically calculated spectrum of excitations under low-power resonant pumping at the point indicated
by the yellow dot for low pump momentum (point A in b). Injected polaritons can elastically scatter to the same energy states as those indicated by
the green arrow. Ep refers to the energy of the pump beam. d, Spectrum of excitations under strong resonant pumping under the conditions of
superfluidity—Fig. 2c-III, c-VI and d-III, d-VI—where the Landau criterion is fulfilled and injected polaritons cannot scatter owing to the absence of available
final states at the energy of the pump. The red section demonstrates the strongly modified linear shape due to polariton–polariton interaction.
e,f, Analytically calculated spectra for larger pump momentum (point B in b) at low and high density, respectively. At high density, corresponding to that of
Fig. 3b-II, b-V and c-II, c-V, the linear spectrum of excitations results in cs < vp and the Čerenkov regime is attained.

transmission configuration are simultaneously recorded on two
different high-resolution CCD (charge-coupled device) cameras.
With the use of a spectrometer and at low-power, off-resonance
excitation, the characteristic parabolic lower-polariton dispersion
can be observed, as shown in Fig. 1b.

To study the propagation properties of the injected polariton
fluid, the centre of the excitation spot is placed on top of a natural
point-like defect present in the sample. Defects of different sizes
and shapes appear naturally in the growth process of microcavity
samples (see Supplementary Information). At low excitation power
and quasiresonant excitation of the lower polariton branch,
polariton–polariton interactions are negligible: in the near-field
(real-space) images, the coherent polariton gas created by the laser
is scattered by the defect and generates a series of parabolic-like
wavefronts around the defect, propagating away from it, mostly in
the upstream direction (Figs 2c-I and 3b-I). They result from the
interference of an incident polariton plane wave with a cylindrical
wave produced by the scattering on the defect. Inmomentum space,
polariton scattering gives rise to the well-knownRayleigh ring23 that
is observed in the far-field images (Figs 2c-IV,3b-IV).

As the laser intensity is augmented, polariton–polariton in-
teractions increase, resulting in the single-polariton dispersion
curves being shifted towards higher energies (blue-shift due to the
repulsive interactions) and also becoming strongly distorted as a
consequence of collective many-body effects12,13. In a simplified
picture, for a specific density | c|2, from parabolic (Fig. 1c) the
dispersion is predicted to become linear in some k-vector rangewith
a discontinuity of its slope in the vicinity of the pump wavevector
kp (see Fig. 1d and refs. 12, 13). Under these conditions, a sound
velocity can be attributed to the polariton fluid, being given by

cs =
p

¯hg | c|2/m (1)

where g is the polariton–polariton coupling strength and m is the
effective mass of the lower polariton branch. If the flow velocity
vp of the polariton fluid (given by vp = ¯hkp/m) is chosen such that
the sound speed cs > vp, then the Landau criterion for superfluidity
is satisfied, as shown in ref. 13. In such a case, as no states are
any longer available for scattering at the frequency of the driving
polariton field (see Fig. 1d), the polariton scattering from the defect
is inhibited and the fluid is able to flow unperturbed.

This situation is observed in Fig. 2, where the real- (c-III)
and momentum- (c-VI) space images of the polariton fluid in
the presence of a ⇠4-µm-diameter defect are shown for a pump
angle of incidence of 2.6�, corresponding to a low in-plane
momentum of kk = �0.337 µm�1 (vp = 6.4⇥ 105 m s�1, point A
in Fig. 1b). The superfluid regime is first attained only in the
centre of the Gaussian excitation spot for the excitation density
corresponding to Fig. 2c-II. As the intensity of the excitation laser
is increased, the superfluid condition extends to the rest of the spot
(Fig. 2c-III), whereas the density in its central part hardly changes.
Simulations based on the solution of polariton non-equilibrium
Gross–Pitaevskii equations (see ref. 13 and the Methods section)
are shown in Fig. 2d. The calculations have been carried out by
fitting the size and depth of the defect and by adjusting the
values of g and | |2 around the experimentally estimated values
(| |2 is obtained from the experimental emitted intensity and g is
estimated from the aperture of the Éerenkov fringes as discussed
later on). Whereas at low excitation density (Fig. 2c-I,IV,d-I,IV)
the fluid presents parabolic density wavefronts in real space and
a scattering ring in momentum space as mentioned above, at
higher excitation density the scattering ring collapses (Fig. 2c-
V,VI,d-V,VI), showing that any scattering of the polariton fluid
by the defect is inhibited and that unperturbed flow is eventually
attained. In real space (Fig. 2c-III,d-III), a complete suppression
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Figure 1 | Experimental set-up and polariton dispersion. a, Overview of the experimental excitation and detection conditions. b, Lower-polariton-branch
dispersion in the linear regime as observed after non-resonant excitation. Points A and B denote the excitation energy and momentum corresponding to
the results shown in Figs 2 and 3, respectively. c, Analytically calculated spectrum of excitations under low-power resonant pumping at the point indicated
by the yellow dot for low pump momentum (point A in b). Injected polaritons can elastically scatter to the same energy states as those indicated by
the green arrow. Ep refers to the energy of the pump beam. d, Spectrum of excitations under strong resonant pumping under the conditions of
superfluidity—Fig. 2c-III, c-VI and d-III, d-VI—where the Landau criterion is fulfilled and injected polaritons cannot scatter owing to the absence of available
final states at the energy of the pump. The red section demonstrates the strongly modified linear shape due to polariton–polariton interaction.
e,f, Analytically calculated spectra for larger pump momentum (point B in b) at low and high density, respectively. At high density, corresponding to that of
Fig. 3b-II, b-V and c-II, c-V, the linear spectrum of excitations results in cs < vp and the Čerenkov regime is attained.

transmission configuration are simultaneously recorded on two
different high-resolution CCD (charge-coupled device) cameras.
With the use of a spectrometer and at low-power, off-resonance
excitation, the characteristic parabolic lower-polariton dispersion
can be observed, as shown in Fig. 1b.

To study the propagation properties of the injected polariton
fluid, the centre of the excitation spot is placed on top of a natural
point-like defect present in the sample. Defects of different sizes
and shapes appear naturally in the growth process of microcavity
samples (see Supplementary Information). At low excitation power
and quasiresonant excitation of the lower polariton branch,
polariton–polariton interactions are negligible: in the near-field
(real-space) images, the coherent polariton gas created by the laser
is scattered by the defect and generates a series of parabolic-like
wavefronts around the defect, propagating away from it, mostly in
the upstream direction (Figs 2c-I and 3b-I). They result from the
interference of an incident polariton plane wave with a cylindrical
wave produced by the scattering on the defect. Inmomentum space,
polariton scattering gives rise to the well-knownRayleigh ring23 that
is observed in the far-field images (Figs 2c-IV,3b-IV).

As the laser intensity is augmented, polariton–polariton in-
teractions increase, resulting in the single-polariton dispersion
curves being shifted towards higher energies (blue-shift due to the
repulsive interactions) and also becoming strongly distorted as a
consequence of collective many-body effects12,13. In a simplified
picture, for a specific density | c|2, from parabolic (Fig. 1c) the
dispersion is predicted to become linear in some k-vector rangewith
a discontinuity of its slope in the vicinity of the pump wavevector
kp (see Fig. 1d and refs. 12, 13). Under these conditions, a sound
velocity can be attributed to the polariton fluid, being given by

cs =
p

¯hg | c|2/m (1)

where g is the polariton–polariton coupling strength and m is the
effective mass of the lower polariton branch. If the flow velocity
vp of the polariton fluid (given by vp = ¯hkp/m) is chosen such that
the sound speed cs > vp, then the Landau criterion for superfluidity
is satisfied, as shown in ref. 13. In such a case, as no states are
any longer available for scattering at the frequency of the driving
polariton field (see Fig. 1d), the polariton scattering from the defect
is inhibited and the fluid is able to flow unperturbed.

This situation is observed in Fig. 2, where the real- (c-III)
and momentum- (c-VI) space images of the polariton fluid in
the presence of a ⇠4-µm-diameter defect are shown for a pump
angle of incidence of 2.6�, corresponding to a low in-plane
momentum of kk = �0.337 µm�1 (vp = 6.4⇥ 105 m s�1, point A
in Fig. 1b). The superfluid regime is first attained only in the
centre of the Gaussian excitation spot for the excitation density
corresponding to Fig. 2c-II. As the intensity of the excitation laser
is increased, the superfluid condition extends to the rest of the spot
(Fig. 2c-III), whereas the density in its central part hardly changes.
Simulations based on the solution of polariton non-equilibrium
Gross–Pitaevskii equations (see ref. 13 and the Methods section)
are shown in Fig. 2d. The calculations have been carried out by
fitting the size and depth of the defect and by adjusting the
values of g and | |2 around the experimentally estimated values
(| |2 is obtained from the experimental emitted intensity and g is
estimated from the aperture of the Éerenkov fringes as discussed
later on). Whereas at low excitation density (Fig. 2c-I,IV,d-I,IV)
the fluid presents parabolic density wavefronts in real space and
a scattering ring in momentum space as mentioned above, at
higher excitation density the scattering ring collapses (Fig. 2c-
V,VI,d-V,VI), showing that any scattering of the polariton fluid
by the defect is inhibited and that unperturbed flow is eventually
attained. In real space (Fig. 2c-III,d-III), a complete suppression
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Figure 1 | Experimental set-up and polariton dispersion. a, Overview of the experimental excitation and detection conditions. b, Lower-polariton-branch
dispersion in the linear regime as observed after non-resonant excitation. Points A and B denote the excitation energy and momentum corresponding to
the results shown in Figs 2 and 3, respectively. c, Analytically calculated spectrum of excitations under low-power resonant pumping at the point indicated
by the yellow dot for low pump momentum (point A in b). Injected polaritons can elastically scatter to the same energy states as those indicated by
the green arrow. Ep refers to the energy of the pump beam. d, Spectrum of excitations under strong resonant pumping under the conditions of
superfluidity—Fig. 2c-III, c-VI and d-III, d-VI—where the Landau criterion is fulfilled and injected polaritons cannot scatter owing to the absence of available
final states at the energy of the pump. The red section demonstrates the strongly modified linear shape due to polariton–polariton interaction.
e,f, Analytically calculated spectra for larger pump momentum (point B in b) at low and high density, respectively. At high density, corresponding to that of
Fig. 3b-II, b-V and c-II, c-V, the linear spectrum of excitations results in cs < vp and the Čerenkov regime is attained.

transmission configuration are simultaneously recorded on two
different high-resolution CCD (charge-coupled device) cameras.
With the use of a spectrometer and at low-power, off-resonance
excitation, the characteristic parabolic lower-polariton dispersion
can be observed, as shown in Fig. 1b.

To study the propagation properties of the injected polariton
fluid, the centre of the excitation spot is placed on top of a natural
point-like defect present in the sample. Defects of different sizes
and shapes appear naturally in the growth process of microcavity
samples (see Supplementary Information). At low excitation power
and quasiresonant excitation of the lower polariton branch,
polariton–polariton interactions are negligible: in the near-field
(real-space) images, the coherent polariton gas created by the laser
is scattered by the defect and generates a series of parabolic-like
wavefronts around the defect, propagating away from it, mostly in
the upstream direction (Figs 2c-I and 3b-I). They result from the
interference of an incident polariton plane wave with a cylindrical
wave produced by the scattering on the defect. Inmomentum space,
polariton scattering gives rise to the well-knownRayleigh ring23 that
is observed in the far-field images (Figs 2c-IV,3b-IV).

As the laser intensity is augmented, polariton–polariton in-
teractions increase, resulting in the single-polariton dispersion
curves being shifted towards higher energies (blue-shift due to the
repulsive interactions) and also becoming strongly distorted as a
consequence of collective many-body effects12,13. In a simplified
picture, for a specific density | c|2, from parabolic (Fig. 1c) the
dispersion is predicted to become linear in some k-vector rangewith
a discontinuity of its slope in the vicinity of the pump wavevector
kp (see Fig. 1d and refs. 12, 13). Under these conditions, a sound
velocity can be attributed to the polariton fluid, being given by

cs =
p

¯hg | c|2/m (1)

where g is the polariton–polariton coupling strength and m is the
effective mass of the lower polariton branch. If the flow velocity
vp of the polariton fluid (given by vp = ¯hkp/m) is chosen such that
the sound speed cs > vp, then the Landau criterion for superfluidity
is satisfied, as shown in ref. 13. In such a case, as no states are
any longer available for scattering at the frequency of the driving
polariton field (see Fig. 1d), the polariton scattering from the defect
is inhibited and the fluid is able to flow unperturbed.

This situation is observed in Fig. 2, where the real- (c-III)
and momentum- (c-VI) space images of the polariton fluid in
the presence of a ⇠4-µm-diameter defect are shown for a pump
angle of incidence of 2.6�, corresponding to a low in-plane
momentum of kk = �0.337 µm�1 (vp = 6.4⇥ 105 m s�1, point A
in Fig. 1b). The superfluid regime is first attained only in the
centre of the Gaussian excitation spot for the excitation density
corresponding to Fig. 2c-II. As the intensity of the excitation laser
is increased, the superfluid condition extends to the rest of the spot
(Fig. 2c-III), whereas the density in its central part hardly changes.
Simulations based on the solution of polariton non-equilibrium
Gross–Pitaevskii equations (see ref. 13 and the Methods section)
are shown in Fig. 2d. The calculations have been carried out by
fitting the size and depth of the defect and by adjusting the
values of g and | |2 around the experimentally estimated values
(| |2 is obtained from the experimental emitted intensity and g is
estimated from the aperture of the Éerenkov fringes as discussed
later on). Whereas at low excitation density (Fig. 2c-I,IV,d-I,IV)
the fluid presents parabolic density wavefronts in real space and
a scattering ring in momentum space as mentioned above, at
higher excitation density the scattering ring collapses (Fig. 2c-
V,VI,d-V,VI), showing that any scattering of the polariton fluid
by the defect is inhibited and that unperturbed flow is eventually
attained. In real space (Fig. 2c-III,d-III), a complete suppression
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Figure 1 | Experimental set-up and polariton dispersion. a, Overview of the experimental excitation and detection conditions. b, Lower-polariton-branch
dispersion in the linear regime as observed after non-resonant excitation. Points A and B denote the excitation energy and momentum corresponding to
the results shown in Figs 2 and 3, respectively. c, Analytically calculated spectrum of excitations under low-power resonant pumping at the point indicated
by the yellow dot for low pump momentum (point A in b). Injected polaritons can elastically scatter to the same energy states as those indicated by
the green arrow. Ep refers to the energy of the pump beam. d, Spectrum of excitations under strong resonant pumping under the conditions of
superfluidity—Fig. 2c-III, c-VI and d-III, d-VI—where the Landau criterion is fulfilled and injected polaritons cannot scatter owing to the absence of available
final states at the energy of the pump. The red section demonstrates the strongly modified linear shape due to polariton–polariton interaction.
e,f, Analytically calculated spectra for larger pump momentum (point B in b) at low and high density, respectively. At high density, corresponding to that of
Fig. 3b-II, b-V and c-II, c-V, the linear spectrum of excitations results in cs < vp and the Čerenkov regime is attained.

transmission configuration are simultaneously recorded on two
different high-resolution CCD (charge-coupled device) cameras.
With the use of a spectrometer and at low-power, off-resonance
excitation, the characteristic parabolic lower-polariton dispersion
can be observed, as shown in Fig. 1b.

To study the propagation properties of the injected polariton
fluid, the centre of the excitation spot is placed on top of a natural
point-like defect present in the sample. Defects of different sizes
and shapes appear naturally in the growth process of microcavity
samples (see Supplementary Information). At low excitation power
and quasiresonant excitation of the lower polariton branch,
polariton–polariton interactions are negligible: in the near-field
(real-space) images, the coherent polariton gas created by the laser
is scattered by the defect and generates a series of parabolic-like
wavefronts around the defect, propagating away from it, mostly in
the upstream direction (Figs 2c-I and 3b-I). They result from the
interference of an incident polariton plane wave with a cylindrical
wave produced by the scattering on the defect. Inmomentum space,
polariton scattering gives rise to the well-knownRayleigh ring23 that
is observed in the far-field images (Figs 2c-IV,3b-IV).

As the laser intensity is augmented, polariton–polariton in-
teractions increase, resulting in the single-polariton dispersion
curves being shifted towards higher energies (blue-shift due to the
repulsive interactions) and also becoming strongly distorted as a
consequence of collective many-body effects12,13. In a simplified
picture, for a specific density | c|2, from parabolic (Fig. 1c) the
dispersion is predicted to become linear in some k-vector rangewith
a discontinuity of its slope in the vicinity of the pump wavevector
kp (see Fig. 1d and refs. 12, 13). Under these conditions, a sound
velocity can be attributed to the polariton fluid, being given by

cs =
p

¯hg | c|2/m (1)

where g is the polariton–polariton coupling strength and m is the
effective mass of the lower polariton branch. If the flow velocity
vp of the polariton fluid (given by vp = ¯hkp/m) is chosen such that
the sound speed cs > vp, then the Landau criterion for superfluidity
is satisfied, as shown in ref. 13. In such a case, as no states are
any longer available for scattering at the frequency of the driving
polariton field (see Fig. 1d), the polariton scattering from the defect
is inhibited and the fluid is able to flow unperturbed.

This situation is observed in Fig. 2, where the real- (c-III)
and momentum- (c-VI) space images of the polariton fluid in
the presence of a ⇠4-µm-diameter defect are shown for a pump
angle of incidence of 2.6�, corresponding to a low in-plane
momentum of kk = �0.337 µm�1 (vp = 6.4⇥ 105 m s�1, point A
in Fig. 1b). The superfluid regime is first attained only in the
centre of the Gaussian excitation spot for the excitation density
corresponding to Fig. 2c-II. As the intensity of the excitation laser
is increased, the superfluid condition extends to the rest of the spot
(Fig. 2c-III), whereas the density in its central part hardly changes.
Simulations based on the solution of polariton non-equilibrium
Gross–Pitaevskii equations (see ref. 13 and the Methods section)
are shown in Fig. 2d. The calculations have been carried out by
fitting the size and depth of the defect and by adjusting the
values of g and | |2 around the experimentally estimated values
(| |2 is obtained from the experimental emitted intensity and g is
estimated from the aperture of the Éerenkov fringes as discussed
later on). Whereas at low excitation density (Fig. 2c-I,IV,d-I,IV)
the fluid presents parabolic density wavefronts in real space and
a scattering ring in momentum space as mentioned above, at
higher excitation density the scattering ring collapses (Fig. 2c-
V,VI,d-V,VI), showing that any scattering of the polariton fluid
by the defect is inhibited and that unperturbed flow is eventually
attained. In real space (Fig. 2c-III,d-III), a complete suppression
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Figure 2 | Superfluid regime. (See Supplementary Videos S1 and S3.) Observation of polariton fluids created with a low in-plane momentum of
�0.337 µm�1 (excitation angle of 2.6 �) and an excitation-laser blue-detuning of 0.10 meV with respect to the low-density polariton dispersion (point A in
Fig. 1b). a, Experimentally observed (solid points) and calculated (open points) transmitted intensity (proportional to the mean polariton density) as a
function of the excitation power. b, Relative scattered polariton intensity as a function of excitation density, as calculated (open points) and measured
experimentally (solid points), in an area in momentum space indicated by the yellow rectangle in c-IV, which drops by a factor of four at the onset of the
superfluid regime (red line). c-I–III (c-IV–VI), The experimental near-field (far-field, that is, momentum-space) images of the excitation spot around a
defect for the excitation densities marked in a by coloured rectangles. At low power (c-I) the polariton fluid scatters on the defect, giving rise to parabolic
wavefronts and a corresponding elastic scattering ring (c-IV). At high powers the emission patterns are significantly affected by polariton–polariton
interactions (c-II) and eventually show the onset of a superfluid regime (c-III). In momentum space, the approach and eventual onset of a superfluid
regime is demonstrated by the shrinkage (c-V) and collapse (c-VI) of the scattering ring. d, The corresponding calculated images. Solid dot in c-IV and
d-IV: momentum coordinates of the excitation beam.
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Superfluidity of polaritons in semiconductor
microcavities
Alberto Amo1*, Jérôme Lefrère1, Simon Pigeon2, Claire Adrados1, Cristiano Ciuti2, Iacopo Carusotto3,
Romuald Houdré4, Elisabeth Giacobino1 and Alberto Bramati1*
Superfluidity, the ability of a quantum fluid to flow without
friction, is one of the most spectacular phenomena occurring
in degenerate gases of interacting bosons. Since its first
discovery in liquid helium-4 (refs 1, 2), superfluidity has been
observed in quite different systems, and recent experiments
with ultracold trapped atoms have explored the subtle links
between superfluidity and Bose–Einstein condensation3–5. In
solid-state systems, it has been anticipated that exciton–
polaritons in semiconductor microcavities should behave
as an unusual quantum fluid6–8, with unique properties
stemming from its intrinsically non-equilibrium nature. This
has stimulated the quest for an experimental demonstration
of superfluidity effects in polariton systems9–13. Here, we
report clear evidence for superfluid motion of polaritons.
Superfluidity is investigated in terms of the Landau criterion
and manifests itself as the suppression of scattering from
defects when the flow velocity is slower than the speed of
sound in the fluid. Moreover, a Čerenkov-like wake pattern is
observed when the flow velocity exceeds the speed of sound.
The experimental findings are in quantitative agreement with
predictions based on a generalized Gross–Pitaevskii theory12,13,
and establish microcavity polaritons as a system for exploring
the rich physics of non-equilibriumquantumfluids.

Bound electron–hole particles, known as excitons, are fascinat-
ing objects in semiconductor nanostructures. In a quantum well
with a thickness of the order of a few nanometres, the external
motion of the exciton is quantized in the direction perpendicu-
lar to the well, whereas it is free within the plane of the well.
When the quantum well is placed in a high-finesse microcavity,
the strong-coupling regime between excitons and light is easily
reached14, giving rise to exciton–photonmixed quasiparticles called
polaritons, which are an interesting kind of two-dimensional com-
posite boson. Thanks to their sharp dispersion, polaritons have a
small effective mass (of the order of 10�5 times the free-electron
mass) that allows the building of many-body coherent effects, such
as Bose–Einstein condensation15,16, at a lattice temperature of a
few kelvins. Furthermore, their partially excitonic character results
in strong interactions between polaritons, which are expected to
lead to the appearance of superfluid phenomena. Indirect evi-
dence of superfluid motion in polariton systems has recently been
reported through the observation of pinned quantized vortices9,
Bogoliubov-like dispersions10 and pioneering experiments on po-
lariton parametric oscillators11. Despite these remarkable works, a
direct demonstration of exciton–polariton superfluidity is however
still missing. In this Letter, we report the observation of superfluid

1Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure et CNRS, UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05,
France, 2Laboratoire Matériaux et Phénomènes Quantiques, UMR 7162, Université Paris Diderot-Paris 7 et CNRS, 75013 Paris, France, 3BEC-CNR-INFM
and Dipartimento di Fisica, Universita di Trento, I-38050 Povo, Italy, 4Institut de Photonique et d’Electronique Quantique, Ecole Polytechnique Fédérale de
Lausanne, Station 3, CH-1015 Lausanne, Switzerland. *e-mail: alberto.amo@spectro.jussieu.fr; bramati@spectro.jussieu.fr.

motion of a quantum fluid of polaritons created by a laser in a
semiconductor microcavity.

In our experiments, to probe superfluidity we study the
perturbation that is produced in an optically created moving
polariton fluid when a static defect is present in the flow path,
as proposed in refs. 12, 13. This procedure is a direct application
to the polariton system of the standard Landau criterion of
superfluidity5, originally developed for liquid helium and recently
applied to demonstrate superfluidity of atomic Bose–Einstein
condensates (refs 17, 18). The flow without friction characteristic
of a superfluid is demonstrated in the case of polaritons as a
flow without scattering.

To explore the quantum fluid regime a complete control of three
key parameters is needed: the in-plane momentum of polaritons
(that is, the polariton flow velocity), the oscillation frequency
of the polariton field, and its density. In this respect polaritons
constitute an ideal system from the experimental point of view.
The strength of the polariton–polariton interaction within the fluid
can be controlled through the particle density, which in turn is
changed in a precise way by adjusting the incident laser power. Their
partially photonic character also allows the creation of polariton
fluids with a well-defined oscillation frequency, !p, which is that
of the excitation laser, and with a well-defined linear momentum,
kp, by choosing the angle of incidence ✓p (kp = (!p/c)sin✓p, where c
is the light speed). The possibility of controlling the polariton fluid
oscillation frequency is in stark contrast with equilibrium systems,
such as atomic condensates, where the oscillation frequency of the
condensate is fixed by the equation of state relating the chemical
potential to the particle density3: owing to their relatively short
lifetime (of the order of few picoseconds), the steady state of
an excited microcavity results from the interplay between the
pumping rate and the radiative as well as non-radiative losses.
This feature results in much wider possibilities in the structure
of the system’s spectrum of elementary excitations than in the
equilibrium case12,13,19–22.

In our experiment, a polariton fluid is excited in a micro-
cavity sample (see the Methods section), cooled at 5 K, with a
circularly polarized beam from a frequency-stabilized, single-mode
continuous-wave titanium:sapphire laser. The laser field continu-
ously replenishes the escaping polaritons in the fluid. The beam
is focused onto the sample in a spot of ⇠100 µm in diameter
with angles of incidence between 2.6� and 4.0� (Fig. 1a). The
wavelength of the pump laser is around 836 nm, close to reso-
nance with the lower polariton branch. The images of the sur-
face of the sample (near-field emission) and of the far field in
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scale of the figure. These numerical results can be under-
stood through the simplified analytical approximation
that follows.

Provided the interaction energy gj ssX j2 is much smaller
than the polaritonic splitting !UP !!LP, there is no
significant mixing between the LP and UP branches.
Since we are interested in nearly resonant excitation close
to the bottom of the LP dispersion curve, we can describe
the system in terms of the LP field  LP " XLP X #
CLP C only, XLP and CLP being the Hopfield coefficients
quantifying the excitonic and photonic components. In
the parabolic approximation, !LP$k% ’ !0

LP # !hk2=2mLP

and the self-coupling constant is gLP " gjXLPj4. The
mean-field shift of the polariton mode is then !!MF "
gLPj ssLPj2. Under these assumptions, the spectrum of the
LP Bogoliubov excitations can be approximated by the
simple expression

!&
LP ’ !p # !k ' vp !

i"
2

&
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

$2!!MF # #!k ! "p%$#!k ! "p%
q

; (8)

where !k"k!kp, #!k " !h !k2=2mLP, the flow veloc-
ity vp" !hkp=mLP, and the effective pump detuning "p "
!p !!LP$kp% ! !!MF.

In the resonant case ("p " 0), the & branches touch at
k " kp. The effect of the finite flow velocity vp is to

tilt the standard Bogoliubov dispersion [2] via the term
!k ' vp. While in the noninteracting case in Fig. 2(a) the
dispersion remains parabolic, in the presence of interac-
tions [Figs. 2(c) and 2(e)] its slope has a discontinuity at
k " kp: on each side of the corner, the # branch starts
linearly with group velocities, respectively, given by
vr;lg " cs & vp, cs being the usual sound velocity of the
interacting Bose gas cs "

!!!!!!!!!!!!!!!!!!!!!!!!!!!

!h !!MF=mLP

p

. On the hystere-
sis curve of Fig. 1(b), the condition "p " 0 corresponds to
the inversion point A. If one moves to the right of the
point A along the upper branch of the hysteresis curve, the
mean-field shift !!MF increases and the effective pump
detuning "p becomes negative. In this case, as it is shown
in Fig. 2(i), the branches no longer touch each other at kp
and a full gap between them opens up for sufficiently
large values of j"pj (not shown).

On the other hand, the effective pump detuning "p is
strictly positive on the lower branch of the bistability
curve of Fig. 1(b). In this case, the argument of the square
root in (8) is negative for the wave vectors k such that
"p > #!k > "p ! 2!!MF. In this region, the & branches
stick together [14] (i.e., Re(!#) " Re(!!)) and have an
exactly linear dispersion of slope vp [Fig. 2(g)]. The
imaginary parts are instead split, with one branch being
narrowed and the other broadened [14,20]. For !!MF >
"=2, that is on the right of point B in Fig. 1(b), the
multimode parametric instability [20] sets in. In the field
of quantum fluids, this kind of dynamical instabilities are
generally known as modulational instabilities [21].

The dispersion of the elementary excitations of the
system is the starting point for a study of its response
to an external perturbation. In particular, we shall con-
sider here a weak and static disorder as described by the
potential VC;X$x%. In this case, the perturbation source
term ~fd " $VX$ss

X ; VC$
ss
C ;!VX$ss*

X ;!VC$ss*
C %T is time-

independent, as well as the induced perturbation ! ~$d "
!L!1 ' ~fd. The static disorder resonantly excites those
Bogoliubov modes whose frequency is equal to!p. In the
left panels of Fig. 2, the excited modes are given by the
intersections of the mode dispersion with the horizontal

FIG. 3. Real space RRS emission pattern for a localized
defect at x " y " 0 acting on the cavity photon. The defect
potential has a lateral size of 0:8 %m and a depth of 1 meV.
(a) Linear regime as in Figs. 2(a) and 2(b); (b) superfluid
regime as in Figs. 2(e) and 2(f). In each panel, the emitted
intensity is normalized to the transmitted intensity.

FIG. 2. Left panels: Exact Bogoliubov dispersion for the LP
branches calculated from Eq. (7). Right panels: Corresponding
RRS emission pattern in k space. The intensity has been
normalized to the transmitted intensity. The kp point, indi-
cated by the white circles, saturates by far the gray scale.
Resonant case "p " 0, respectively, in the linear regime
(a),(b), with gj#ss

X j2 " 0:2 meV (c),(d), 1 meV (e),(f). "p > 0
case with gj#ss

X j2 " 0:04 meV (g),(h). "p < 0 case with
gj#ss

X j2 " 0:6 meV (i),( j). Pump wave vector: kp "
0:314 %m!1 (a)–(h), 0:408%m!1 (i),( j). Same cavity parame-
ters as in Fig. 1.
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lifetime. This results in a decrease in the speed of
sound (from cs = 3.5 T 1 mm/ps at Dy = 14 mm, to
cs = 1.2 T 0.5 mm/ps at Dy = 50 mm [see (25) for
the estimation of cs], which compensates the ex-
pected acceleration of the solitonwhen it becomes
less deep (smaller ns/n in Eq. 1). Consequently,
the solitons present an almost rectilinear shape.

Simulations based on the Gross-Pitaevskii
equation, with pumping and decay (25) accord-
ing to the model described in (24) for the exper-
imental parameters of Fig. 1, show the nucleation
of a pair of solitons (Fig. 2A) with its associated
phase jump (Fig. 2B). The model confirms that
dark solitons nucleate hydrodynamically due to
the gradient of flow speeds occurring around the
potential barrier, which result in density variations
on the order of the healing length. Once the sol-
iton is formed, the repulsive interparticle interac-
tions stabilize its shape as it propagates (6, 27–29).
By contrast, no stable soliton was observed at
low excitation density when polariton-polariton
interactions are negligible (see fig. S3).

Other hydrodynamic regimes can be explored
by varying the mean polariton density (i.e., the
speed of sound) for a fixed flow speed (Fig. 3).
Here, polaritons move slower than in Fig. 1 (vflow =
0.79 mm/ps, k = 0.34 mm−1), and due to their lim-
ited lifetime, they cannot propagate far away from
the excitation spot. Hence, we have designed an
excitation spot with the shape of half a Gaussian,
with an abrupt intensity cut-off (fig. S1). Below
the red line in Fig. 3, A to C, only polaritons prop-
agating away from the pumped area are present,
and their phase is not imposed by the resonant
pump beam.

Figure 3A shows the polariton flow at sub-
sonic speeds (vflow ¼ 0:25cs, where the bar indi-
cates the mean speed of sound), at high excitation
density. The condensate is in the superfluid re-
gime, as evidenced by the absence of density
modulations in the fluid hitting the barrier and
from the homogeneous phase (Fig. 3D), show-
ing a high value of the zero time first-order co-
herence (25), g(1) (Fig. 3G). When the excitation
density and, correspondingly, the sound speed
is decreased to vf low ¼ 0:4cs (Fig. 3B), the fluid
enters into a regime of turbulence characterized
by the appearance of two low-density channels
in the wake created by the barrier, with extended
phase dislocations (Fig. 3E). We interpret this re-
gime as corresponding to the continuous emission
of pairs of quantized vortices and antivortices
moving through those channels (4–6, 24). Al-
though a direct observation of the phase singu-
larity of the emitted vortices is not possible under
time-integrated cw experiments, the effects of
the vortex flow are clearly seen when looking at
g(1). Figure 3H shows a trace of low degree of
coherence along each channel, due to the con-
tinuous passage of individual vortices. Finally,
if the density is further decreased, we observe
the formation of oblique dark solitons (Fig. 3C;
vflow ¼ 0:6cs), with the characteristic phase jump
along their trajectory (Fig. 3F), and a constant
value of g(1) close to 1 (Fig. 3I).

The three regimes depicted in Fig. 3 have
been anticipated by the nonequilibrium Gross-
Pitaevskii model (24). We report a break-up of

the superfluid regime at vflow e0:4cs, a value
consistent with predictions for the onset of drag
in the presence of large circular barriers (4, 5). Our
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Fig. 2. (A) Real-space emission obtained from the solution of the nonequilibrium Gross-Pitaevskii
equation for the parameters of the experiment depicted in Fig. 1. (B) Normalized real part of the polariton
wave function, showing a phase jump (dark dashed lines) along the solitons (white dotted lines).

Fig. 1. (A) Real-space emission showing a soliton doublet nucleated in the wake of a photonic defect
located at the origin. (B) Horizontal profiles at different downflow distances from the defect Dy. Arrows
indicate the soliton position. (C) Interference between the emitted intensity and a constant-phase ref-
erence beam, showing phase jumps along the solitons (dashed lines). The curved shaped of the fringes
and the decreasing interfringe distance arise from the geometry of the reference beam. (D) Soliton depth
(black circles) and phase jump obtained from (C) (filled triangles; see fig. S4), showing a strong cor-
relation. Open triangles: soliton depth obtained from the measured phase jump and Eq. 1.
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lifetime. This results in a decrease in the speed of
sound (from cs = 3.5 T 1 mm/ps at Dy = 14 mm, to
cs = 1.2 T 0.5 mm/ps at Dy = 50 mm [see (25) for
the estimation of cs], which compensates the ex-
pected acceleration of the solitonwhen it becomes
less deep (smaller ns/n in Eq. 1). Consequently,
the solitons present an almost rectilinear shape.

Simulations based on the Gross-Pitaevskii
equation, with pumping and decay (25) accord-
ing to the model described in (24) for the exper-
imental parameters of Fig. 1, show the nucleation
of a pair of solitons (Fig. 2A) with its associated
phase jump (Fig. 2B). The model confirms that
dark solitons nucleate hydrodynamically due to
the gradient of flow speeds occurring around the
potential barrier, which result in density variations
on the order of the healing length. Once the sol-
iton is formed, the repulsive interparticle interac-
tions stabilize its shape as it propagates (6, 27–29).
By contrast, no stable soliton was observed at
low excitation density when polariton-polariton
interactions are negligible (see fig. S3).

Other hydrodynamic regimes can be explored
by varying the mean polariton density (i.e., the
speed of sound) for a fixed flow speed (Fig. 3).
Here, polaritons move slower than in Fig. 1 (vflow =
0.79 mm/ps, k = 0.34 mm−1), and due to their lim-
ited lifetime, they cannot propagate far away from
the excitation spot. Hence, we have designed an
excitation spot with the shape of half a Gaussian,
with an abrupt intensity cut-off (fig. S1). Below
the red line in Fig. 3, A to C, only polaritons prop-
agating away from the pumped area are present,
and their phase is not imposed by the resonant
pump beam.

Figure 3A shows the polariton flow at sub-
sonic speeds (vflow ¼ 0:25cs, where the bar indi-
cates the mean speed of sound), at high excitation
density. The condensate is in the superfluid re-
gime, as evidenced by the absence of density
modulations in the fluid hitting the barrier and
from the homogeneous phase (Fig. 3D), show-
ing a high value of the zero time first-order co-
herence (25), g(1) (Fig. 3G). When the excitation
density and, correspondingly, the sound speed
is decreased to vf low ¼ 0:4cs (Fig. 3B), the fluid
enters into a regime of turbulence characterized
by the appearance of two low-density channels
in the wake created by the barrier, with extended
phase dislocations (Fig. 3E). We interpret this re-
gime as corresponding to the continuous emission
of pairs of quantized vortices and antivortices
moving through those channels (4–6, 24). Al-
though a direct observation of the phase singu-
larity of the emitted vortices is not possible under
time-integrated cw experiments, the effects of
the vortex flow are clearly seen when looking at
g(1). Figure 3H shows a trace of low degree of
coherence along each channel, due to the con-
tinuous passage of individual vortices. Finally,
if the density is further decreased, we observe
the formation of oblique dark solitons (Fig. 3C;
vflow ¼ 0:6cs), with the characteristic phase jump
along their trajectory (Fig. 3F), and a constant
value of g(1) close to 1 (Fig. 3I).

The three regimes depicted in Fig. 3 have
been anticipated by the nonequilibrium Gross-
Pitaevskii model (24). We report a break-up of

the superfluid regime at vflow e0:4cs, a value
consistent with predictions for the onset of drag
in the presence of large circular barriers (4, 5). Our
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Fig. 2. (A) Real-space emission obtained from the solution of the nonequilibrium Gross-Pitaevskii
equation for the parameters of the experiment depicted in Fig. 1. (B) Normalized real part of the polariton
wave function, showing a phase jump (dark dashed lines) along the solitons (white dotted lines).

Fig. 1. (A) Real-space emission showing a soliton doublet nucleated in the wake of a photonic defect
located at the origin. (B) Horizontal profiles at different downflow distances from the defect Dy. Arrows
indicate the soliton position. (C) Interference between the emitted intensity and a constant-phase ref-
erence beam, showing phase jumps along the solitons (dashed lines). The curved shaped of the fringes
and the decreasing interfringe distance arise from the geometry of the reference beam. (D) Soliton depth
(black circles) and phase jump obtained from (C) (filled triangles; see fig. S4), showing a strong cor-
relation. Open triangles: soliton depth obtained from the measured phase jump and Eq. 1.
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Polariton Superfluids Reveal Quantum
Hydrodynamic Solitons
A. Amo,1,2* S. Pigeon,3 D. Sanvitto,4 V. G. Sala,1 R. Hivet,1 I. Carusotto,5 F. Pisanello,1,4,6
G. Leménager,1 R. Houdré,7 E Giacobino,1 C. Ciuti,3 A. Bramati1*

A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow
enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around
the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the
defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons.
Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the
transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex
streets in the wake of a potential barrier. The direct observation of these topological excitations
provides key information on the mechanisms of superflow and shows the potential of polariton
condensates for quantum turbulence studies.

Superfluidity is the remarkable property of
flow without friction (1). It is characterized
by the absence of excitations when the

fluid hits a localized static obstacle at flow speeds
vflow below some critical velocity vc. For small
potential barriers, the critical velocity is given by
the Landau criterion as the minimum of w(k)/k,
with w(k) being the dispersion of elementary ex-
citations in the fluid. In the case of dilute Bose-
Einstein condensates (BECs), vc corresponds to
cs, the speed of sound of the quantum gas. For
supersonic flows (vflow > cs), small obstacles in-
duce dissipation (drag) via the emission of sound
waves (2, 3).

When the barrier is big, larger than the fluid’s
healing length—the minimum distance induced
by particle interactions for changes in the density
of the condensate—the density modulations caused
by the barrier can generate topological excitations,
such as vortices and solitons. These quantum hy-
drodynamic effects have been predicted to reduce
the critical velocity (4, 5).

Despite the amount of theoretical work (4–6),
few experimental studies have addressed hydro-
dynamic features in atomic condensates through
the observation of the break-up of superfluidity
at fluid velocities lower than the speed of sound
(7, 8). Solitons in a quasi–one-dimensional (1D)

geometry (9) and the nucleation of vortex pairs
in an oblate BEC have been reported (10, 11).
Far from the hydrodynamic regime, formation
of vortices and solitons has been shown by en-
gineering the density and phase profile of the
atomic condensate (12, 13), or by the collision of
two condensates (14).

Polariton superfluids appear promising in
view of quantitative studies of quantum hydro-
dynamics. Polaritons are 2D composite bosons
arising from the strong coupling between quan-
tum well excitons and photons confined in a
monolithic semiconductor microcavity. They pos-
sess an extremely small mass mpol on the order
of 10−8 that of hydrogen, which allows for their
Bose-Einstein condensation at temperatures rang-
ing from a few kelvins (15) up to room temper-
ature (16). All parameters of the system, such as
the flow velocity, density, and shape and strength
of the potential barriers, can be finely tuned with
the use of just one (3) or two (17) resonant lasers,
and by sample (18) or light-induced engineering
(19). A crucial advantage with respect to atomic
condensates is the possibility of fully reconstruct-
ing both the density and the phase pattern of the
polariton condensate from the properties of the
emitted light (20). This has been exploited in the re-
cent observations of macroscopic coherence and
long-range order (15, 18, 21), quantized vortices
(20), superfluid flow past an obstacle (3, 17, 22),
and persistent superfluid currents (23).

Here we use a polariton condensate to reveal
quantum hydrodynamic features, whereby dark
solitons and vortices are generated in the wake of
a potential barrier. Following a recent theoretical
proposal (24), we investigate different regimes at
different flow speeds and densities, ranging from
superfluidity to the turbulent emission of trains of
vortices, and the formation of pairs of oblique dark
solitons of high stability. For spatially large enough
barriers, soliton quadruplets are also observed.

Our experiments are performed in an InGaAs-
GaAs-AlGaAs microcavity at 10 K (25). We ex-

cite the system with a continuous-wave (cw)
single-mode laser quasi-resonant with the lower
polariton branch at an angle of incidence q, re-
sulting in the injection of a polariton fluid with a
well-defined in-plane wave vector (3) (k = k0 sin q,
where k0 is the wave vector of the excitation
laser field) and velocity vflow ¼ kℏ=mpol. The
speed of sound of the fluid cs is related to the
polariton density jyj2 via the relation (22) cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏgjyj2=mpol

q
, where g is the polariton-polariton

interaction constant.

Figure 1A shows the image of a polariton
fluid with k = 0.73 mm−1 and vflow = 1.7 mm/ps,
created with a Gaussian excitation spot 30 mm
in diameter. The resonant pump is centered slight-
ly upstream from a photonic defect of 4.5 mm
present in the microcavity, in order not to lock
the phase of the flowing condensate past the
defect. Two oblique dark solitons with a width
of 3 to 5 mm (Fig. 1B) are spontaneously gener-
ated in the wake of the barrier created by the
defect and propagate within the polariton fluid in
a straight line.

An unambiguous characteristic of solitons
in BECs is the phase jump across the soliton
(12, 13, 26). To reveal the phase variations in the
polariton quantum fluid, we make the emission
from the condensate interfere with a reference
beam of homogeneous phase, with a given angle
between the two beams (20). The result (Fig. 1C)
shows a phase jump of up to p (half an inter-
ference period) as a discontinuity in the interfer-
ence maxima along the soliton.

The 1D soliton relationships obtained from
the solution of the Gross-Pitaevskii equation
(13, 26) can be extended to two dimensions to
relate the soliton velocity vs in the reference
frame of the fluid, the phase jump d, and depth ns
with respect to the polariton density n away from
the soliton:

cos
d
2

" #
¼ 1 −

ns
n

$ %1=2
¼ vs

cs
ð1Þ

In our geometry, a soliton standing in a straight
line in the laboratory frame implies a constant
vs = vflow sin a, where a is defined in Fig. 1A. As
the soliton becomes darker (ns approaching n), the
phase jump saturates at d = p. Indeed, the solitons
remain quite deep up to the first 40 mm of trajec-
tory (Fig. 1, B and D), with a corresponding phase
jump close to, but smaller than, p. At longer dis-
tances, the depth decreases along with the phase
jump. Open triangles in Fig. 1D show the ratio
ns/n as obtained from the measured phase jump
and Eq. 1. This confirms that the soliton relation-
ships, which were derived for condensates with-
out dissipation (26), are applicable locally to
the case of polaritons under cw pumping, where
the polariton density is stationary in time. The
polariton density continuously decreases down-
stream from the barrier due to the finite polariton

REPORTS
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Polariton Superfluids Reveal Quantum
Hydrodynamic Solitons
A. Amo,1,2* S. Pigeon,3 D. Sanvitto,4 V. G. Sala,1 R. Hivet,1 I. Carusotto,5 F. Pisanello,1,4,6
G. Leménager,1 R. Houdré,7 E Giacobino,1 C. Ciuti,3 A. Bramati1*

A quantum fluid passing an obstacle behaves differently from a classical one. When the flow is slow
enough, the quantum gas enters a superfluid regime, and neither whirlpools nor waves form around
the obstacle. For higher flow velocities, it has been predicted that the perturbation induced by the
defect gives rise to the turbulent emission of quantized vortices and to the nucleation of solitons.
Using an interacting Bose gas of exciton-polaritons in a semiconductor microcavity, we report the
transition from superfluidity to the hydrodynamic formation of oblique dark solitons and vortex
streets in the wake of a potential barrier. The direct observation of these topological excitations
provides key information on the mechanisms of superflow and shows the potential of polariton
condensates for quantum turbulence studies.

Superfluidity is the remarkable property of
flow without friction (1). It is characterized
by the absence of excitations when the

fluid hits a localized static obstacle at flow speeds
vflow below some critical velocity vc. For small
potential barriers, the critical velocity is given by
the Landau criterion as the minimum of w(k)/k,
with w(k) being the dispersion of elementary ex-
citations in the fluid. In the case of dilute Bose-
Einstein condensates (BECs), vc corresponds to
cs, the speed of sound of the quantum gas. For
supersonic flows (vflow > cs), small obstacles in-
duce dissipation (drag) via the emission of sound
waves (2, 3).

When the barrier is big, larger than the fluid’s
healing length—the minimum distance induced
by particle interactions for changes in the density
of the condensate—the density modulations caused
by the barrier can generate topological excitations,
such as vortices and solitons. These quantum hy-
drodynamic effects have been predicted to reduce
the critical velocity (4, 5).

Despite the amount of theoretical work (4–6),
few experimental studies have addressed hydro-
dynamic features in atomic condensates through
the observation of the break-up of superfluidity
at fluid velocities lower than the speed of sound
(7, 8). Solitons in a quasi–one-dimensional (1D)

geometry (9) and the nucleation of vortex pairs
in an oblate BEC have been reported (10, 11).
Far from the hydrodynamic regime, formation
of vortices and solitons has been shown by en-
gineering the density and phase profile of the
atomic condensate (12, 13), or by the collision of
two condensates (14).

Polariton superfluids appear promising in
view of quantitative studies of quantum hydro-
dynamics. Polaritons are 2D composite bosons
arising from the strong coupling between quan-
tum well excitons and photons confined in a
monolithic semiconductor microcavity. They pos-
sess an extremely small mass mpol on the order
of 10−8 that of hydrogen, which allows for their
Bose-Einstein condensation at temperatures rang-
ing from a few kelvins (15) up to room temper-
ature (16). All parameters of the system, such as
the flow velocity, density, and shape and strength
of the potential barriers, can be finely tuned with
the use of just one (3) or two (17) resonant lasers,
and by sample (18) or light-induced engineering
(19). A crucial advantage with respect to atomic
condensates is the possibility of fully reconstruct-
ing both the density and the phase pattern of the
polariton condensate from the properties of the
emitted light (20). This has been exploited in the re-
cent observations of macroscopic coherence and
long-range order (15, 18, 21), quantized vortices
(20), superfluid flow past an obstacle (3, 17, 22),
and persistent superfluid currents (23).

Here we use a polariton condensate to reveal
quantum hydrodynamic features, whereby dark
solitons and vortices are generated in the wake of
a potential barrier. Following a recent theoretical
proposal (24), we investigate different regimes at
different flow speeds and densities, ranging from
superfluidity to the turbulent emission of trains of
vortices, and the formation of pairs of oblique dark
solitons of high stability. For spatially large enough
barriers, soliton quadruplets are also observed.

Our experiments are performed in an InGaAs-
GaAs-AlGaAs microcavity at 10 K (25). We ex-

cite the system with a continuous-wave (cw)
single-mode laser quasi-resonant with the lower
polariton branch at an angle of incidence q, re-
sulting in the injection of a polariton fluid with a
well-defined in-plane wave vector (3) (k = k0 sin q,
where k0 is the wave vector of the excitation
laser field) and velocity vflow ¼ kℏ=mpol. The
speed of sound of the fluid cs is related to the
polariton density jyj2 via the relation (22) cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏgjyj2=mpol

q
, where g is the polariton-polariton

interaction constant.

Figure 1A shows the image of a polariton
fluid with k = 0.73 mm−1 and vflow = 1.7 mm/ps,
created with a Gaussian excitation spot 30 mm
in diameter. The resonant pump is centered slight-
ly upstream from a photonic defect of 4.5 mm
present in the microcavity, in order not to lock
the phase of the flowing condensate past the
defect. Two oblique dark solitons with a width
of 3 to 5 mm (Fig. 1B) are spontaneously gener-
ated in the wake of the barrier created by the
defect and propagate within the polariton fluid in
a straight line.

An unambiguous characteristic of solitons
in BECs is the phase jump across the soliton
(12, 13, 26). To reveal the phase variations in the
polariton quantum fluid, we make the emission
from the condensate interfere with a reference
beam of homogeneous phase, with a given angle
between the two beams (20). The result (Fig. 1C)
shows a phase jump of up to p (half an inter-
ference period) as a discontinuity in the interfer-
ence maxima along the soliton.

The 1D soliton relationships obtained from
the solution of the Gross-Pitaevskii equation
(13, 26) can be extended to two dimensions to
relate the soliton velocity vs in the reference
frame of the fluid, the phase jump d, and depth ns
with respect to the polariton density n away from
the soliton:

cos
d
2

" #
¼ 1 −

ns
n

$ %1=2
¼ vs

cs
ð1Þ

In our geometry, a soliton standing in a straight
line in the laboratory frame implies a constant
vs = vflow sin a, where a is defined in Fig. 1A. As
the soliton becomes darker (ns approaching n), the
phase jump saturates at d = p. Indeed, the solitons
remain quite deep up to the first 40 mm of trajec-
tory (Fig. 1, B and D), with a corresponding phase
jump close to, but smaller than, p. At longer dis-
tances, the depth decreases along with the phase
jump. Open triangles in Fig. 1D show the ratio
ns/n as obtained from the measured phase jump
and Eq. 1. This confirms that the soliton relation-
ships, which were derived for condensates with-
out dissipation (26), are applicable locally to
the case of polaritons under cw pumping, where
the polariton density is stationary in time. The
polariton density continuously decreases down-
stream from the barrier due to the finite polariton
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Quantum hydrodynamic solitons
behind an obstacle

observations show that solitons in the polariton
fluid can be stable down to subsonic speeds. This
is in contrast to calculations for atomic conden-
sates, in which oblique dark solitons are predicted

to be stable only at supersonic speeds (6, 27).
Because our nonequilibrium simulations (Fig. 2)
reproduce the observed nucleation at subsonic
speeds, we infer that the additional damping in

the polariton system arising from the finite life-
time is responsible for the stabilization of the
soliton at subsonic speeds.

Finally, we have explored the possibility of
going beyond the generation of soliton doublets
by using a large circular potential barrier (6).
Figure 4A shows a polariton flow at low momen-
tum (k = 0.2 mm−1) injected in a Gaussian spot
slightly above the obstacle, which nucleates a
soliton doublet. If the momentum of the flow is
increased above a certain value, the strong den-
sity mismatch before and after the defect can gen-
erate a soliton quadruplet (Fig. 4B, k = 1.1 mm−1).
In principle, it should be possible to access even
higher-order solitons by increasing both the ob-
stacle size and the ratio vflow/cs.

Our results demonstrate the potential of po-
lariton superfluids for experimental studies of
quantum hydrodynamics. Both the velocity and
the density of the quantum fluid can be finely
controlled by optical means, and simultaneous
access to the condensate density, phase, and co-
herence is available from the emitted light. These
features have been essential in the reported obser-
vation of hydrodynamic generation of oblique
solitons in the wake of potential barriers, and offer
the opportunity to probe more complex phenome-
na like Andreev reflections (30), nucleation and
trapping of vortex lattices (24), and quantum
turbulence (31).

References and Notes
1. A. J. Leggett, Rev. Mod. Phys. 71, S318 (1999).
2. I. Carusotto, S. X. Hu, L. A. Collins, A. Smerzi, Phys. Rev.

Lett. 97, 260403 (2006).
3. A. Amo et al., Nat. Phys. 5, 805 (2009).
4. T. Frisch, Y. Pomeau, S. Rica, Phys. Rev. Lett. 69, 1644

(1992).
5. T. Winiecki, B. Jackson, J. F. McCann, C. S. Adams,

J. Phys. At. Mol. Opt. Phys. 33, 4069 (2000).
6. G. A. El, A. Gammal, A. M. Kamchatnov, Phys. Rev. Lett.

97, 180405 (2006).
7. C. Raman et al., Phys. Rev. Lett. 83, 2502 (1999).
8. R. Onofrio et al., Phys. Rev. Lett. 85, 2228 (2000).
9. P. Engels, C. Atherton, Phys. Rev. Lett. 99, 160405

(2007).
10. S. Inouye et al., Phys. Rev. Lett. 87, 080402 (2001).
11. T. W. Neely, E. C. Samson, A. S. Bradley, M. J. Davis,

B. P. Anderson, Phys. Rev. Lett. 104, 160401 (2010).
12. S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock,

Phys. Rev. Lett. 83, 5198 (1999).
13. J. Denschlag et al., Science 287, 97 (2000).
14. J. J. Chang, P. Engels, M. A. Hoefer, Phys. Rev. Lett. 101,

170404 (2008).
15. J. Kasprzak et al., Nature 443, 409 (2006).
16. S. Christopoulos et al., Phys. Rev. Lett. 98, 126405 (2007).
17. A. Amo et al., Nature 457, 291 (2009).
18. E. Wertz et al., Nat. Phys. 6, 860 (2010).
19. A. Amo et al., Phys. Rev. B 82, 081301 (2010).
20. K. G. Lagoudakis et al., Nat. Phys. 4, 706 (2008).
21. C. W. Lai et al., Nature 450, 529 (2007).
22. I. Carusotto, C. Ciuti, Phys. Rev. Lett. 93, 166401 (2004).
23. D. Sanvitto et al., Nat. Phys. 6, 527 (2010).
24. S. Pigeon, I. Carusotto, C. Ciuti, Phys. Rev. B 83,

144513 (2011).
25. Materials and methods are available on Science Online.
26. A. D. Jackson, G. M. Kavoulakis, C. J. Pethick, Phys. Rev. A

58, 2417 (1998).
27. A. M. Kamchatnov, L. P. Pitaevskii, Phys. Rev. Lett. 100,

160402 (2008).
28. A. V. Yulin, O. A. Egorov, F. Lederer, D. V. Skryabin,

Phys. Rev. A 78, 061801 (2008).

Fig. 3. (A to C) Real-space images of the polariton gas flowing downward at different excitation densities in
the presence of a double defect (total width: 15 mm). The gas is injected above the red line (25). At high
density (A) (117 mW), the fluid is subsonic (vflow = 0:25cs) and flows in a superfluid fashion around the
defect. At lower densities (B) (36 mW; vflow = 0:4cs), a turbulent pattern appears in the wake of the defect,
eventually giving rise to the formation of two oblique dark solitons (C) (vflow = 0:6cs; 27 mW). (D to F)
Interferograms corresponding to (A) to (C), respectively. (G) to (I) show the corresponding degree of first-
order coherence [g(1), see (25)]. Saturated values of g(1) are due to the uncertainty in the measurements.
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Fig. 4. Real-space images of the polariton flow around a large defect (17 mm in diameter) at low (A) (k =
0.2 mm−1) and high (B) (k = 1.1 mm−1) injected wave vectors showing, respectively, the formation of a
soliton doublet and quadruplet.
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Half-solitons - unique feature of exciton polaritons
spinor character of the condensate

Excitons with total angular momentum        couple to light

• Bright excitons
Jz = �1 ��- excitons with                  couple to        photons spin down polaritons

- excitons with                  couple to        photonsJz = +1 �+ spin up polaritons

J

n" = n#

condensate with two 
spin components

• Dark excitons,                  , do not couple to lightJ = ±2

n"

n#

spin polarized condensates

n" 6= n#

or



Full Vortices Half Vortices

Phase shift: 2π π

Polarization rotation: 0 π

Density @ core: Minimum Minimum in σ+  
Maximum in σ − 

Quantum numbers: m=1,2,… (k , m)=(±½,±½)

Observation: • Superfluids 
• Condensates 
• Superconductors 
•Exciton-polaritons

High Tc 
superconductors 
Exciton-polaritons

K. Lagoudakis et al., Nat. Phys. 4, 706 (2008)
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Half-solitons in a polariton quantum fluid behave
like magnetic monopoles
R. Hivet1, H. Flayac2, D. D. Solnyshkov2, D. Tanese3, T. Boulier1, D. Andreoli1, E. Giacobino1, J. Bloch3,
A. Bramati1*, G. Malpuech2 and A. Amo3*
Magnetic monopoles1 are point-like sources of magnetic field,
never observed as fundamental particles. This has triggered
the search for monopole analogues in the form of emergent
particles in the solid state, with recent observations in spin-
ice crystals2–4 and one-dimensional ferromagnetic nanowires5.
Alternatively, topological excitations of spinor Bose–Einstein
condensates have been predicted to demonstrate monopole
textures6–8. Here we show the formation of monopole ana-
logues in an exciton–polariton spinor condensate hitting a
defect potential in a semiconductor microcavity. Oblique dark
solitons are nucleated in the wake of the defect9,10 in the
presence of an effective magnetic field acting on the polariton
pseudo-spin11. The field splits the integer soliton into a pair
of oblique half-solitons12 of opposite magnetic charge, subject
to opposite effective magnetic forces. These mixed spin-phase
excitations thus behave like one-dimensional monopoles13. Our
results open the way to the generation of stable magnetic
currents in photonic quantum fluids.

Magnetic monopoles are the magnetic counterparts of electric
charges, characterized by a divergent field. The seminal work of
Dirac1 showed that monopoles are not forbidden by the laws
of quantum mechanics. In particular, he considered particles
characterized by a wavefunction with a nodal line and a non-
integrable phase around it. One route to create an object behaving
like a monopole is thus to engineer a wavefunction with such
characteristics. A model system to do this is a spinor Bose–Einstein
condensate14–16, demonstrating properties such as superfluidity
or persistent currents. In reduced dimensions, not only do these
quantum fluids support topological defects17, such as vortices (two
dimensional; 2D) or solitons (1D) characterized by a node, but an
adequate spin distribution can also provide a vector field with a
non-zero divergence, satisfying Maxwell’s equations for a point
magnetic charge6–8. Monopoles can then be arranged in spinor con-
densates in the form of mixed spin-phase topological excitations,
with amagnetic analogue of theCoulomb force acting on them13.

Exciton–polariton (polariton) condensates seem a well-suited
system to evidence and study such original effects in quantum
fluids. Polaritons are the quasi-particles arising from the strong
coupling between excitons and photons confined in planar
semiconductor microcavities (InGaAs/GaAs/AlGaAs in our case)18.
Polariton fluids are easy to manipulate with standard optical
techniques19–22 and they have recently become a model system
for the study of quantum fluid effects such as superfluidity23,
vortex formation24,25 or oblique solitons9,10. Their spin structure is
especially interesting: polaritons are bosons with only two allowed
spin projections ±1 on the growth axis of the sample, which

1Laboratoire Kastler Brossel, Université Pierre et Marie Curie, Ecole Normale Supérieure et CNRS, UPMC case 74, 4 place Jussieu, 75005 Paris, France,
2Institut Pascal, PHOTON-N2, Clermont Université, University Blaise Pascal, CNRS, 24 avenue des Landais, 63177 Aubière cedex, France, 3Laboratoire de
Photonique et Nanostructures, CNRS, Route de Nozay, 91460 Marcoussis, France. *e-mail: bramati@spectro.jussieu.fr; alberto.amo@lpn.cnrs.fr.
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Figure 1 | Polariton pseudospin, effective magnetic field and experimental
set-up. a, Bloch sphere representing all of the possible spin configurations
of the polariton gas and the associated polarizations: the poles represent
circular polarization, the equator represents linearly polarized states and
the intermediate latitudes represent elliptically polarized states.
b, Direction of the effective magnetic field created by the TE–TM splitting
for polaritons propagating in different directions. c, Scheme of the resonant
injection of the polariton fluid above a round potential barrier present in the
sample. Half-solitons nucleate in its wake. ↵ is the angle of incidence of the
excitation beam with respect to the normal to the microcavity plane.

couple to circularly polarized (�±) photons in and out of the
cavity. A coherent superposition of different spin populations
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Figure 2 |Density and phase tomography of the half-solitons. a, Emitted intensity of the polariton gas in �+ (I) and �� (II) circularly polarized
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gives rise to polarization states that can be described by a
pseudospin vector S mapped onto a Bloch sphere (Fig. 1a).
Another remarkable feature of microcavities is the presence
of an effective in-plane magnetic field (Fig. 1b) induced by
the polarization splitting between the transverse electric (TE)–
transverse magnetic (TM) polarization modes11. The effective
field interacts with the polariton pseudospin, adding a magnetic
energy term HTE–TM = �S ·�TE–TM to the Hamiltonian (see
Supplementary Information) and it provides the analogue of
a Coulomb force acting on topological monopoles13. Finally,
polariton–polariton interactions are strongly spin-anisotropic of
the antiferromagnetic type26. This is an absolute requirement for
the observation of any stable monopole structure7,8. Indeed, a
topological monopole in a two-component spinor condensate is
stable against its destruction by an in-plane effective magnetic field
if the difference in the interaction energy between the same and
opposite spins exceeds the magnetic energy13.

One kind of spin-phase topological defect already reported
in polariton quantum fluids are the so-called half-vortices27,28.
However, no probing of the monopole behaviour has been
possible yet, because of the disorder-induced pinning28. The 1D

counterpart of a half-vortex is a dark half-soliton, characterized by
a notch in the polariton density of the fluid, and a simultaneous
phase and polarization rotation of up to ⇡/2 in the condensate
wavefunction across the soliton12.

Here, we report on the experimental observation of oblique
half-solitons and on their separation and acceleration caused by
the effective magnetic field present in semiconductor microcavities.
Oblique solitons (or half-solitons in the spinor case) are formed
in the wake of a localized potential barrier present in the path
of a flowing condensate9. They can be seen as the trajectories
of 1D solitons in the direction perpendicular to the flow (x),
travelling across a 2D flow. The second spatial coordinate (y ,
parallel to the flow) represents the time coordinate of the 1D system
(t = y/vf, where vf is the flow velocity). This means that the soliton
trajectory becomes traceable in a steady state regime29. Studying
such trajectories, we demonstrate that an integer oblique soliton
separates into a pair of half-solitons of opposite magnetic charge
accelerated in opposite directions.

In our experiments we create a polariton fluid in a semiconduc-
tor microcavity (see Methods) at a temperature of 10 K by quasi-
resonant excitation of the lower polariton branch with a continuous
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Characteristics:
notch in the density
polarization rotation and
phase jump of up to       

across a soliton
⇡/2

spinor character of the condensate
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wave Ti:sapphiremonomode laser. Polarization-resolved real-space
images of the polariton fluid in the transmission geometry are then
recorded on a CCD (charge-coupled device) camera owing to the
photons escaping out of the cavity (Fig. 1c). The fluid is injected at
supersonic speed (in-planemomentum of kP =1.3 µm�1, seeMeth-
ods), upstream from the potential barrier formed by a structural
photonic defect present in our sample. Under these conditions, a
circularly polarized excitation beam leads to the formation of pairs
of oblique dark solitons in the wake of the barrier9, characterized
by a phase jump close to ⇡ across each notch (see Supplementary
Information). In the present experiments, we create a polariton gas
with linear polarization parallel to the flow (TM polarization, along
the y direction). This is a key feature needed to explore the nucle-
ation of spin-phase topological excitations, which can be evidenced
by analysing the circularly polarized components of the emission.

First, we demonstrate the formation of half-integer solitons.
Figure 2a-I shows the nucleation of two oblique dark solitons to the
right of the barrier wake in the �+ component of the emission. They
can be identified as dark straight notches in the polariton density.
These solitons are almost absent in the �� component (Fig. 2a-II).
In turn, in the �� emission, a deep soliton (S1) clearly appears to the
left of the barrier wake (blue arrow), where only a very shallow one
is present in �+ (see the profiles in Fig. 2c). The absence of mirror
symmetry between Fig. 2a-I and a-II arises from the specific and
uncontrolled form of the natural potential barrier. The individual
dark solitons in each of the Sz = ±1 states of the fluid appear
as long spatial traces with a high degree of circular polarization
(⇢c = (I+ � I�)/(I+ + I�), where I± is the emitted intensity in �±
polarization), as shown in Fig. 3a. Interferometric images obtained
by combining the real-space emission with a reference beam of
homogeneous phase (Fig. 2b-I and b-II) give access to the phase
jump across each soliton. For instance, for the soliton S1 observed
in ��, 42 µm after the obstacle we measure a phase jump of
1✓� =0.85⇡ (Fig. 2e; note that it would be⇡ for a strict dark soliton
with zero density at its centre9), whereas in the same region the
phase in the �+ component does not change (1✓+ ⇡0).

A dark soliton present in just one spin component of the fluid is
the fingerprint of a half-soliton12. The mixed spin-phase character
of these topological excitations is further evidenced when analysing
them in the linear polarization basis. In the regions where the
two circular polarizations are of equal intensity (that is, the fluid
surrounding the half-solitons) we can define a linear polarization
angle ⌘ = (✓+ �✓�)/2 and a global phase � = (✓+ +✓�)/2, where
✓+ and ✓� are the local phases of each circularly polarized
component12,27. In our experiments we directly access the phase
jump 1� and the change of ⌘ across the solitons by studying
the linearly polarized emission in the diagonal and anti-diagonal
directions (polarization plane rotated by +45� and �45� with
respect to the TM direction). Figure 2d,f shows that the half-soliton
S1 is also present in these polarizations with a phase jump of
1� ⇡0.4⇡. This confirms that across the half-solitons, � undergoes
a jump1� ⇡0.85⇡/2⇡ (1✓+ +1✓�)/2, that is, one-half the phase
jump observed in the circularly polarized component in which
the soliton is present. We also expect a similar jump 1⌘ of the
direction of polarization. This is demonstrated in Fig. 3b, where all
the half-solitons present in our fluid (dashed lines extracted from
Fig. 2a-I and a-II) appear as walls between domains of diagonal
(magenta) and anti-diagonal (green) polarization. Mapping the
linear polarization vector in the vicinity of soliton S1 (Fig. 4a), we
deduce a jump of the polarization direction of1⌘⇡0.32⇡ (Fig. 4c),
close to1�, the ideal expected value.

Analysing the half-soliton trajectory from polarization-resolved
real-space measurements, we study their acceleration in the field
�TE–TM originating from the TE–TM splitting present in the
structure11, pointing in the direction of the flow (y , red arrow in
Fig. 1b). The acceleration arises from the interaction between this
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Figure 3 | Polarization texture of half-solitons. a,b, Left panels, the
measured degree of circular and diagonal polarizations, respectively; right
panels, the calculated patterns from the solution of the nonlinear
spin-dependent Schrödinger equation describing the system in the
conditions of the experiment (see Supplementary Information). The dashed
lines show the trajectory of the inner (grey) and outer (black) half-solitons
extracted from Fig. 2a-I and a-II. The trajectories of the half-solitons appear
as extremes of circular polarization, and as domain walls in diagonal
polarization. The grey arrows in b indicate the direction of acceleration of
the half-solitons induced by the effective magnetic field.

magnetic field and the pseudospin texture of the half-soliton, shown
in Fig. 4b for S1. In the direction perpendicular to the soliton (dot-
ted line), the in-plane pseudospin S is divergent, because it points
away fromS1 on both sides, as expected for amagnetic charge.

We are able to evaluate the force acting on the half-soliton
as the gradient of the magnetic energy with respect to the
half-soliton position x0. The magnetic energy per unit length isR

�S(x 0 �x0) ·�TE–TM dx 0, where the integral is performed along
the x 0 transverse direction, perpendicular to the half-soliton located
at x0. The energy has a positive contribution from the left of the
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Bright solitons
transition from positive to negative mass

(U¼ gN, where g ≈ 10 meV mm22 is the two-body interaction coef-
ficient). For the typical soliton potential energies realized in our exper-
iment U ≈ 0.3 meV (corresponding to N ≈ 30 mm22), from which we
deduce w ≈ 2 mm. The short free polariton lifetime ("5 ps) means
that solitons emerging from this balance will traverse distances of
"10 mm before they dissipate. To sustain these solitons for longer
we need to provide a continuous supply of energy. Energy is
pumped into the microcavity using a continuous-wave (c.w.) pump
beam, focused to a 70 mm (full-width at half maximum, FWHM)
Gaussian spot (Fig. 1b).

We highlight the important properties of dissipative solitons that
justify the choice of our experimental parameters to realize soliton
production. The polariton density varies strongly across the bright
soliton profile, reaching its maximum at the centre, whereas the
pump beam profile tends to hold the density at a quasi-constant
level across the much larger pump spot25,26. Furthermore, due to
localization in real space the soliton profile in momentum space is
broad. As a result, solitons can only be expected under conditions
when the pump state is unstable with respect to spatially inhomo-
geneous perturbations at momenta different from that of the
pump25,26. If the microcavity is driven by a pump beam slightly blue-
shifted with respect to the unperturbed lower polariton (LP) branch,
the pump polariton field exhibits bistability as a function of the
pump beam power and angle (Figs 1c, 4). The polariton bistability
is usually accompanied by parametric (modulational) instability,
which has been studied extensively in microcavities17,30,31. This
instability is a particular case of polaritonic four-wave mixing.
Bright solitons are excited on top of the stable background of the
lower branch of the bistability loop (Fig. 1c) and can be qualitatively
interpreted as locally excited islands of the modulationally unstable
upper branch solution25,26. Broadband four-wave mixing of polari-
tons, expanding well beyond the momenta intervals with the para-
metric amplification, enables coherent scattering from the locally
perturbed pump to the continuum of momenta forming the

soliton (Fig. 1a). Simultaneously, the soliton formation requires
the transverse momentum of the pump kp (that is, the incident
angle of the laser beam) to be such that the effective polariton
mass is negative, ensuring self-focusing of the repulsively interacting
polaritons25. This mechanism can lead to self-localization only
along the direction of the pump momentum (one-dimensional soli-
tons)25. Simultaneous localization in two dimensions involves more
subtle physics, and the corresponding solitons exist only in a narrow
range of pump intensities26.

Figure 1c shows the bistable dependence of the polariton emis-
sion intensity collected from our device at nearly zero transverse
momenta (direction normal to the cavity plane) as a function of
the pump momentum (kp) at the fixed energy of the pump
photon 1.5363 eV, which is "0.3 meV above the unperturbed LP
branch at kp ≈ 2.37 mm21. With kp increasing beyond the bistable
interval, the intracavity polariton field increases abruptly over the
excitation pump spot. This transition is also accompanied by
the strong parametric generation of polaritons into the state with
k ≈ 0 (refs 17,21). According to the above discussion and the pre-
dictions of refs 25 and 26, bright polariton solitons should exist
within the bistability interval (Fig. 1c).

We excited bright polariton solitons using a picosecond writing
beam focused into a spot (Fig. 1b) with a diameter in the range
7–15 mm, which is small compared to the diameter of the pump
beam of 70 mm. The writing beam was TE-polarized and the
pump beam TM-polarized. The experimental arrangement of the
pump and writing beams is shown schematically in Fig. 1b, with
both beams incident along the x-direction. The unperturbed polar-
iton density (before the application of the writing beam) was in the
state corresponding to the lower branch of the bistability loop (see
arrow in Fig. 1c), with no indication of the parametric generation
of polaritons with momenta different from the pump. The bistabil-
ity domain was scanned by changing the pump momentum, and it
was found that the optimal conditions for clear soliton observations
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Figure 1 | Experimental configuration and observation of soliton propagation. a, Dispersion (energy–momentum) diagram of the lower-branch polaritons
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existed close to the right boundary of the bistability interval shown
in Fig. 1c. The solitonic emission was collected along a 2-mm-stripe
of the streak camera image (see Methods) parallel to the direction of
incidence of the pump. The light was collected inside the finite
interval of angles corresponding to momenta 0 , kx , kp, thereby
avoiding collection of the reflected pump beam, which otherwise
leads to detector saturation. Figure 1d,e shows spatiotemporal
traces of the intensities in TE and TM polarizations for typical
non-diffracting and non-decaying propagating wave packets excited
with the writing beam. Here, the 7 mm writing beam arrives at
position x¼220 mm at time t¼ 0, where the writing beam trans-
verse momentum is the same as that of the pump kwb¼ kp.

We now present the experimental results, supported by theory in
the next section, which prove that the wave packets arise from bright
polariton solitons propagating across the excitation spot. We first

demonstrate that the velocity of the soliton is independent of kwb.
The role of the writing beam is to create a local perturbation of
the pump state, which in turn results in soliton formation due to
scattering from the pump state (Fig. 1b). It has been shown numeri-
cally for linearly polarized polariton solitons that their velocity is
close to the group velocity of the polaritons at the pump momen-
tum25. To test this prediction, we changed the momentum of the
writing beam to half of the pump momentum, kwb¼ kp/2
(Fig. 1f,g). We observe a soliton velocity in Fig. 1f of
!1.68 mm ps21, the same as that in Fig. 1d,e, where kwb¼ kp. The
independence of the polariton soliton velocity on kwb is in sharp con-
trast to that expected for conservative solitons, where the soliton vel-
ocity is solely determined by the momentum of the excitation pulse2.

We also show that the size of the soliton is determined by the
pump and cavity parameters and is independent of the size of the
writing beam, as is true for other types of dissipative solitons22,23.
The size of the excited wave packet, w, in the soliton regime is
expected to be fixed by the potential energy U of the solitons,
where U is of the order of the pump energy detuning with respect
to the energy of the unperturbed lower branch polaritons
(w ≈ 1/

!!!
U

√
as discussed earlier). This is illustrated in Fig. 2a–f,

which shows the profiles of polariton wave packets along
their propagation direction (x) at different times and positions for
writing beam sizes of !7 mm (Fig. 2a–c) and !15 mm (Fig. 2d–f).
In the initial stage of soliton excitation, these writing beams
produce polariton wave packets of very different widths (Fig. 2a,d),
which then quickly evolve into solitons of the same size (!5 mm),
as shown in Fig. 2b,e, as expected for soliton formation.

We next demonstrate the unambiguous non-spreading and non-
decaying features of the soliton wave packets. Figure 2g,h shows the
dependences of the intensity and width of the excited wave packets,
respectively, on their position as a function of the writing beam
power, Pwb. Within the range of Pwb from 1.6 mW to 2.3 mW, the
soliton intensity and width are nearly constant. Furthermore, the
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Figure 3 | Two-dimensional soliton images. Two-dimensional streak camera
measurements of a soliton travelling across the microcavity plane.
Experimental conditions are as in Fig. 2a–c. Cross-sections taken along the
y-direction indicate a soliton FWHM of 5 mm.

ARTICLES NATURE PHOTONICS DOI: 10.1038/NPHOTON.2011.267

NATURE PHOTONICS | VOL 6 | JANUARY 2012 | www.nature.com/naturephotonics52

M. Sich et al.,  
Nature Photonics (2011)


