LECTURE II

Photon BEC

dr hab. Barbara Piętka barbara.pietka@fuw.edu.pl 3.64

Institute of Experimental Physics Faculty of Physics Warsaw University

LETTER

Bose-Einstein condensation of photons in an optical microcavity

Jan Klaers, Julian Schmitt, Frank Vewinger & Martin Weitz

The realization of a light source with a macroscopically populated photon mode that is not the consequence of a laser-like gain, but is rather due to an equilibrium phase transition of photons has so far been prevented by the lack of a suitable numberconserving thermalization process.

J. Klaers et al., Nature 468, 545 (2010)

Photon BEC Non-interacting, zero mass particles

Photons are bosons, but their condensation was problematic so far.

- Photons have zero mass
- Photons do not interact
- The total number of photons is not conserved
- At low temperatures, photons disappear in the cavity walls instead of occupying the cavity ground state
- Photons can be brought to thermal equilibrium in a black box, but their number is not conserved, which implies that the chemical potential is either not well defined or strictly zero.

Cavity Localized modes

Photon wavelength depends on cavity length.

$$L = \frac{q}{2}\lambda$$

The frequency separation between any two adjacent modes, q and q+1:

$$\Delta \nu = \frac{c}{2nL}$$

Cavity Localized modes

Photon wavelength depends on cavity length.

$$L = \frac{q}{2}\lambda$$

The frequency separation between any two adjacent modes, q and q+1:

$$\Delta \nu = \frac{c}{2nL}$$

Optical cavity longitudinal mode structure:

Photon wavelength depends on cavity length.

$$L = \frac{q}{2}\lambda$$

The frequency separation between any two adjacent modes, q and q+1:

$$\Delta \nu = \frac{c}{2nL}$$

Optical cavity longitudinal mode structure:

Cavity Localized modes

Optical cavity transversal mode structure:

May differ in both frequency and the intensity pattern of the light.

In a cylindrical cavity

J. Klaers et al., Thermalization of a two-dimensional photonic gas in a 'white-wall' photon box. Nature Phys. 6, 512–515 (2010).

Photon BEC Experimental setup

J. Klaers et al., Nature 468, 545 (2010)

J. Klaers, M. Weitz, Bose-Einstein condensation of photons, arXiv:1210.7707

Fluorescent dye in a cavity

- Very short cavity (L = 1.46 μ m)
- High reflectivity mirrors
- Mirrors generate effective trapping potential
- Rhodamine 6G dye

J. Klaers et al., Nature 468, 545 (2010)

Photon BEC Experimental setup

Only one longitudinal cavity mode in dye emission spectrum

 $g(u) = 2(u/\hbar\Omega + 1)$

 $\Omega /2\pi$ (~4 × 1010 Hz) denotes the spacing of transversal cavity modes; that is, the spacing is so small that the transverse motion is quasicontinuous.

Photon BEC Experimental setup

J. Klaers et al., Thermalization of a two-dimensional photonic gas in a 'white-wall' photon box. Nature Phys. 6, 512–515 (2010).

Minimum energy in the system is far above thermal energy.

$$E = \frac{\hbar c}{n_0} |k| = \frac{\hbar c}{n_0} \sqrt{k_z^2 + k_r^2}$$
$$m_{\rm ph} = \hbar \omega_{\rm cut-off} / c^2 \cong 6.7 \times 10^{-36} \text{ kg}$$
$$\lambda_{\rm th} = h / \sqrt{2\pi m_{\rm ph} k_{\rm B} T} \cong 1.58 \text{ }\mu\text{m}$$

Photon BEC Experimental setup

Equilibrium is reached as photons are absorbed and emitted by dye molecules many times, with the interplay between fluorescence and absorption leading to a thermal population of cavity modes, making the photon gas equilibrate at the temperature of the dye solution.

Figure 2 | **Experimental spectra and intensity distribution. a**, The connected dots give measured spectral intensity distributions for temperatures of 300 K (top) and 365 K (bottom) of the resonator set-up. The solid lines are theoretical spectra based on Bose-Einstein-distributed transversal excitations, and for illustration a T = 300 K distribution is also inserted in the bottom graph (dashed line). The measurements shown in this figure were carried out with rhodamine 6G dye dissolved in ethylene glycol ($c = 5 \times 10^{-4}$ M). Note that the spectral maximum of blackbody radiation at T = 300 K is at $\sim 10 \,\mu$ m wavelength, that is, far to the red of the shown spectral regime. **b**, Image of the radiation emitted along the cavity axis at room temperature (T = 300 K), showing a shift towards shorter (higher energetic) optical wavelengths for off-axis radiation. **c**, Spatial intensity distribution at T = 300 K (connected circles) along with the theoretical prediction (solid line).

Photon BEC Results

Equilibrium is reached as photons are absorbed and emitted by dye molecules many times, with the interplay between fluorescence and absorption leading to a thermal population of cavity modes, making the photon gas equilibrate at the temperature of the dye solution.

Result: $\mu \ll -kBT$ and the term -1 in the denominator of the equation can be neglected and the distribution becomes Boltzmann-like.

A Bose–Einstein condensate would be expected for Nph \rightarrow Nc = 80,400 (at which $\mu \rightarrow 0$)

Photon BEC Results

J. Klaers et al., Nature 468, 545 (2010)

The precise onset of BEC in the two-dimensional, harmonically trapped system can be determined from a statistical description using a Bose–Einstein distributed occupation of trap levels, giving a critical particle number of:

$$N_{\rm c} = \frac{\pi^2}{3} \left(\frac{k_{\rm B} T}{\hbar \Omega} \right)^2$$

At room temperature (T 5 300 K): $N_c \cong 77,000$

Photon BEC Results

Increased pumping (photon density) lead to condensation

Figure 2 | **Spectral and spatial intensity distribution. a**, Spectral intensity distributions (connected circles) transmitted through one cavity mirror, as measured with a spectrometer, for different pump powers (see colour key). The intracavity power (in units of $P_{c, exp} = (1.55 \pm 0.60)$ W) is derived from the power transmitted through one cavity mirror. A spectrally sharp condensate peak at the cavity cut-off is observed above a critical power level, with a width limited by the spectrometer resolution. The inset gives theoretical spectra (solid lines) based on a Bose–Einstein distribution of photons for different particle numbers at room temperature¹⁴. a.u., arbitrary units. **b**, Images of the spatial

radiation distribution transmitted through one cavity mirror both below (upper panel) and above (lower panel) criticality, showing a macroscopically occupied TEM₀₀-mode for the latter case. **c**, **d**, Cut through the centre of the intensity distribution for increasing optical pump powers (**c**) and width of the condensate peak versus condensate fraction, along with a theoretical model based on the Gross–Pitaevskii equation with an interaction parameter $\tilde{g} = 7 \times 10^{-4}$ (Methods) (**d**). Error bars are the systematic calibration uncertainties. q = 11 for **c** and **d**. All other measurements use q = 7.

100

Condensate fraction (%)

Photon BEC Sumary

- Dye with overlapping absorption and emission spectra and cut-off energy allows for photon thermalization
- After exceeding critical photon density, BEC appears
- No population inversion, as in lasers
- Spectral distribution shows Bose-Einstein distributed photon energies
- Observed onset of a phase transition occurs on a predicted absolute value of photon number and shows the expected scaling with resonator geometry.

Further reading: Bose-Einstein condensation of photons from the thermodynamic limit to small photon numbers

by R.A. Nyman and B.T. Walker <u>arxiv.org</u> 1706.09645

> by M.Weitz's group in Bonn by R.A. Nyman and B.T.Walke by D. van Oosten's group in Utrecht