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Exciton condensation



An exciton is a bound state of an electron and an imaginary 
particle called an electron hole in an insulator or semiconductor.

• Quasiparticles: electrons and holes with half-
integer spin  

• The overall charge for this quasiparticle is zero.  

• It carries no electric current. 

• ! It is a composite BOSON !
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Excitons - 3D
Consider an electron-hole pair bound by the coulomb 

interactions:
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Fig. 4.7: A Wannier–Mott exciton is the solid-state analogy of a hydrogen atom, while they have very different
sizes and binding energies. Unlike atoms, the excitons have a finite lifetime.

(2003).
In the present section we only discuss the Wannier–Mott excitons in semiconduc-

tor structures. Such excitons can be conveniently described within the effective mass
approximation that allows the periodic crystal potential to be neglected and describes
electrons and holes as free particles having a parabolic dispersion and characterized by
effective masses dependent on the crystal material. Usually, the effective masses of car-
riers are smaller than the free-electron mass in vacuum m0. For example, in GaAs the
electron effective mass is me = 0.067m0, the heavy-hole mass is mhh = 0.45m0.

Consider an electron–hole pair bound by the Coulomb interaction in a crystal having
a dielectric constant ε. The wavefunction of relative electron–hole motion f(r) can be
found from the Schrödinger equation analogous to one describing the electron state in a
hydrogen atom:

− !2

2µ
∇2f(r) − e2

4πεε0r
f(r) = Ef(r) , (4.22)

with µ = memh/(me + mh) the reduced mass, r =
√

x2 + y2 + z2 the distance be-
tween electron and hole. The solutions of eqn (4.22) are well known as they correspond
to the states of the hydrogen atom with the following renormalizations:68

m0 → µ, e2 → e2/ε , (4.23)

68In the hydrogen-atom problem the reduced mass is equal, in good approximation, to the electron
mass m0 because of the very large mass of the nucleus.

dielectric constant of a crystal

E q u a t i o n i s a n a l o g o u s t o 
Schrodinger equation for a 
hydrogen atom with the following 
renormalisations:
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effective mass:

e-h distance:
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130 SEMICLASSICAL DESCRIPTION OF LIGHT–MATTER COUPLING

For example, the wavefunction of the 1s state of exciton reads:

f1s =
1

√

πa3
B

e−r/aB , (4.24)

with the Bohr radius aB given as:

aB =
4π!2εε0

µe2
. (4.25)

The binding energy of the ground exciton state is

EB =
µe4

(4π)22!2εε2
=

!2

2µa2
B

. (4.26)

Given the difference between the reduced mass µ and the free-electron mass, and
taking into account the dielectric constant in the denominator, one can estimate that the
exciton binding energy is about three orders of magnitude less than the Rydberg con-
stant. Table 4.2 shows the binding energies and Bohr radii for Wannier–Mott excitons
in different semiconductor materials.

Table 4.2 Strongly anisotropic conduction and valence bands, direct transitions far
from the centre of the Brillouin zone.
∗ Strongly anisotropic conduction and valence bands, direct transitions far from the cen-
tre of the Brillouin zone.
∗∗ In the presence of a magnetic field of 5 T.
∗∗∗ An exciton in hexagonal GaN.
∗∗∗∗ The ground-state corresponds to an optically forbidden transition, data given
for n = 2 state.

Semiconductor crystal Eg (eV) me/m0 EB (eV) aB (Å)
PbTe∗ 0.17 0.024/0.26 0.01 17 000
InSb 0.237 0.014 0.5 860
Cd0.3Hg0.7Te 0.257 0.022 0.7 640∗∗

Ge 0.89 0.038 1.4 360
GaAs 1.519 0.066 4.1 150
InP 1.423 0.078 5.0 140
CdTe 1.606 0.089 10.6 80
ZnSe 2.82 0.13 20.4 60
GaN∗∗∗ 3.51 0.13 22.7 40
Cu2O 2.172 0.96 97.2 38∗∗∗∗

SnO2 3.596 0.33 32.3 86∗∗∗∗

The exciton excited states form a number of hydrogen-like series. Observation of
such a series of excitonic transitions in the photoluminescence spectra of Cu2O in
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∗∗∗∗ The ground-state corresponds to an optically forbidden transition, data given
for n = 2 state.

Semiconductor crystal Eg (eV) me/m0 EB (eV) aB (Å)
PbTe∗ 0.17 0.024/0.26 0.01 17 000
InSb 0.237 0.014 0.5 860
Cd0.3Hg0.7Te 0.257 0.022 0.7 640∗∗

Ge 0.89 0.038 1.4 360
GaAs 1.519 0.066 4.1 150
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The exciton excited states form a number of hydrogen-like series. Observation of
such a series of excitonic transitions in the photoluminescence spectra of Cu2O in

Wave-function of the 1s state: 
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130 SEMICLASSICAL DESCRIPTION OF LIGHT–MATTER COUPLING

For example, the wavefunction of the 1s state of exciton reads:

f1s =
1

√

πa3
B

e−r/aB , (4.24)

with the Bohr radius aB given as:

aB =
4π!2εε0

µe2
. (4.25)

The binding energy of the ground exciton state is

EB =
µe4

(4π)22!2εε2
=

!2

2µa2
B

. (4.26)

Given the difference between the reduced mass µ and the free-electron mass, and
taking into account the dielectric constant in the denominator, one can estimate that the
exciton binding energy is about three orders of magnitude less than the Rydberg con-
stant. Table 4.2 shows the binding energies and Bohr radii for Wannier–Mott excitons
in different semiconductor materials.

Table 4.2 Strongly anisotropic conduction and valence bands, direct transitions far
from the centre of the Brillouin zone.
∗ Strongly anisotropic conduction and valence bands, direct transitions far from the cen-
tre of the Brillouin zone.
∗∗ In the presence of a magnetic field of 5 T.
∗∗∗ An exciton in hexagonal GaN.
∗∗∗∗ The ground-state corresponds to an optically forbidden transition, data given
for n = 2 state.

Semiconductor crystal Eg (eV) me/m0 EB (eV) aB (Å)
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Excitons - 3D

T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz & M. Bayer, 
Nature 514, 343–347 (16 October 2014)

Giant Rydberg excitons in the copper oxide Cu2O



Excitons - 2D (in quantum well)
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Fig. 4.8: Reduction of the dimensionality of a semiconductor system from 3D to 0D from a bulk semicon-
ductor to a quantum dot. The electronic density of states g(E) = dN/dE—with dN the number of electron
quantum states within the energy interval dE—changes drastically between systems of different dimension-
alities as is shown schematically in the figure. This variation of the density of states is very important for
light-emitting semiconductor devices.

4.3.3 Quantum wells

The Schrödinger equation for an exciton in a quantum well (QW) reads:
(

− !2

2me
∇2

e −
!2

2mh
∇2

h + Ve(ze) + Vh(zh) − e2

4πεε0|re − rh|

)

Ψ = EΨ , (4.27)

with Ve,h(ze,h) the confining potential for electron, hole on the z-axis, which is the
growth axis of the structure. Solving exactly eqn (4.27) is not an easy task. We approach
the problem variationally over a class of trial functions having the form:

Ψ(re, rh) = F (R)f(ρρρ)Ue(ze)Uh(zh) , (4.28)

where
R =

mere + mhrh

me + mh
(4.29)

is the exciton centre of mass coordinate and

ρρρ = ρρρe − ρρρh (4.30)

is the inplane radius-vector of electron and hole relative motion, r = (ρρρ, z). Four com-
ponents of the trial function (4.28) describe the exciton centre of mass motion, the rela-
tive electron–hole motion in the plane of the QW, and electron and hole motion normal
to the plane direction. The factorization of the exciton wavefunction makes sense when
the QW width is less than or comparable to the exciton Bohr diameter in the bulk semi-
conductor. In this case, the electron and hole are quantized independently of each other.
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On the other hand, in larger QWs, one can assume that the exciton is confined as a
whole particle and keeps the internal structure of a 3D hydrogen atom. Here and later
we shall consider narrow QWs where eqn (4.28) represents a good approximation. The
four terms that compose the exciton wavefunction are normalized to unity:

∫

|Ue(ze)|2dze = 1,

∫ ∞

0
|f(ρ)|22πρdρ = 1 , (4.31a)

∫

|Uh(zh)|2dzh = 1,

∫ ∞

0
|F (R)|22πRdR = 1 . (4.31b)

After substitution of the trial function (4.28) and integration over R, eqn (4.27)
becomes:

{

− !2

2me

∂2

∂z2
e

− !2

2mh

∂2

∂z2
h

− 1

ρ

∂

∂ρ

(

!2

2µ
ρ

∂

∂ρ

)

+ Ve(ze) + Vh(zh)

− e2

4πεε0

√

ρ2 + (ze − zh)2
− P 2

exc

2(me + mh)
− E

}

f(ρ)Ue(ze)Uh(zh) = 0 , (4.32)

where Pexc is the excitonic momentum, P = 0 for the ground state. Equation (4.32)
can be transformed into a system of three coupled differential equations, each defining
one of the components of our trial function. The equation for f(ρ) is obtained by mul-
tiplication of both parts of eqn (4.32) by U∗

e (ze)U∗
h(zh) and integrating over ze and zh.

This yields:
{

−1

ρ

∂

∂ρ

(

!2

2µ
ρ

∂

∂ρ

)

− e2

4πεε0

∫∫ |Ue(ze)|2|Uh(zh)|2
√

ρ2 + (ze − zh)2
dzedzh

}

f(ρ) = −EQW
B f(ρ) ,

(4.33)
where EQW

B is the exciton binding energy. The electron and hole confinement energies
Ee and Eh, and wavefunctions Ue,h(ze,h), can be obtained by multiplying eqn (4.32)
by f∗(ρ)U∗

h,e(zh,e) and integrating over ze,h and ρ:

{

− !2

2me,h
∇2

e,h + Ve,h − e2

4πεε0

∫∫ |f(ρ)|2|Uh,e(zh,e)|2
√

ρ2 + (ze − zh)2
2πρdρdzh,e

}

Ue,h(ze,h)

= Ee,hUe,h(ze,h) . (4.34)

In the ideal 2D case, |Ue,h(ze,h)|2 = δ(ze,h) and eqn (4.33) transforms into
{

− !2

2µ

1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

− e2

ερ

}

f(ρ) = E2D
B f(ρ) , (4.35)

which is an exactly solvable 2D hydrogen atom problem. For the ground state:

f1S(ρ) =

√

2

π

1

a2D
B

exp(−ρ/a2D
B ) , (4.36)

Bohr radius :

Binding energy of a ground state:

Wave-function of the 1s state: 

Solutions are again similar to 2D hydrogen atom:

134 SEMICLASSICAL DESCRIPTION OF LIGHT–MATTER COUPLING

with
a2D
B =

aB

2
, (4.37)

and aB the Bohr radius of the three-dimensional exciton given by eqn (4.25). The bind-
ing energy of the two-dimensional exciton exceeds by a factor of 4 the bulk exciton
binding energy:

E2D
B = 4EB , (4.38)

For realistic QWs, eqns. (4.32) and (4.33) still can be decoupled if the Coulomb term in
eqn (4.33) is neglected. This allows the functions |Ue,h(ze,h)| to be found independently
from each other as well as f(ρ). Solving eqn (4.32) with a trial function

f(ρ) =

√

2

π

1

a
exp(−ρ/a) , (4.39)

where a is a variational parameter, one can express the binding energy as:

EQW
B (a) = − !2

2µa2
+

e2

4πεε0

∫∫∫ |f(ρ)|2|Ue(ze)|2|Uh(zh)|2
√

ρ2 + (ze − zh)2
2πρdρdzedzh . (4.40)

Maximization of EQW
B (a) finally yields the exciton binding energy in a QW, which

ranges from EB to E2D
B and depends on the QW width and barrier heights for electrons

and holes. The binding energy increases if the exciton confinement strengthens. This is
why the dependence of the binding energy on the QW width is non-monotonic: for wide
wells the confinement increases with the decrease of the QW width, while for ultranar-
row wells the tendency is inverted due to tunnelling of electron and hole wavefunctions
into the barriers (Fig. 4.9).

Fig. 4.9: Exciton binding energy as a function of the QW width (schema). The insets show the QW potential
and wavefunctions of electron (convex shape) and hole (concave shape) for different QW widths.
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Energies of the excited states:



Exciton condensation
few facts

BEC was predicted in the early1960’s by Moskalenko, Blatt and coworkers 
and Casella (independently).

S.A. Moskalenko, Fiz. Tverd. Tela. 4, 276 (1962).
J.M. Blatt, K.W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962).
Casella, R.C. Source: Journal of the Physics and Chemistry of Solids, v 24, p 19-26, Jan. 1963.

Necessary conditions for excitonic BEC
assumption: number of excitons is conserved

1. the lifetime of excitons is much longer than the thermalisation time
2. the exciton density is below the critical limit (in which the binding of the 
electrons and holes breaks down as in electron - hole plasma).

Possible description within weakly interacting Bose gas theory.



Exciton condensation
quantum coherence

Thermal de Broglie wavelength must be comparable or larger that the 
average distance between the particles:

2

one can expect Bose-Einstein condensation of excitons under two conditions: 1) when the

number of excitons is approximately conserved; in particular, their lifetime is much longer

than the time it takes for them to thermalize to a well-defined temperature, and 2) when

the density of the excitons is not too high, because competing phases occur at high density

such as electron-hole plasma, in which the binding of the electrons and holes into excitons

breaks down.

Under these conditions, it is straightforward to describe the exciton gas by weakly inter-

acting Bose gas theory. The general condition for quantum coherent effects to be important

is that the thermal deBroglie wavelength λdB of the particles be comparable to or larger

than the average distance rs between the particles. The order of magnitude of the deBroglie

wavelength is found by equating

h̄2k2

2m
=

h̄2(2π)2

2mλ2
dB

∼ kBT, (1)

which implies

λdB ∼
2πh̄√
2mkBT

. (2)

In three dimensions, the average distance rs scales as rs ∼ n−1/3, where n is the density of

the particles. Setting λdB ∼ rs gives

n ∼
23/2

(2π)3
(mkBT )3/2

h̄3 , (3)

or

T ∼
(2πh̄)2

2mkB
n2/3. (4)

In equilibrium, the standard calculation of statistical mechanics [4] gives the critical density

for Bose-Einstein condensation,

Tc = 0.17
(2πh̄)2

2mkB
n2/3. (5)

Even away from perfect equilibrium, however, the relations (3) and (4) will still apply as the

conditions for Bose-Einstein statistical effects, which include a peaking of the distribution

of the particles near the ground state, also known as a “quasicondensate.”

Note that these relations give a critical temperature inversely proportional to the mass

m. This means that light mass implies Bose-Einstein effects at higher temperature. Since
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E.g., K. Huang, Statistical Mechanics, 2nd 
ed., (Wiley, 1987)



Exciton condensation
particle mass significancy

Light mass implies Bose-Einstein effects at higher temperature !
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atoms POLARITONS EXCITONS

m Rb: 104me 10-4me 10-2me

TC 10-7K RT possible ~ 4 K possible

n 1014/cm3 <1011/cm2
limit: 

1017/cm3 or 1011/cm2 

lifetime ∞ 10 ps 
typically ~100 ns 

 up to 1 ms in specially 
designed samples



Exciton condensation
lifetime

Exciton lifetime must be long enough to allow thermalisation (ps timescale).

Many excitons are stable at room temperature
e.g. Cu2O, CuCl, CdSe, ZnO, GaN

and many semiconductors seemed to satisfy this requirement.

But the temperature - particle density relation has some important consequences.



Exciton condensation
comment on temperature vs particle density dependence

3

FIG. 1: Generic phase diagram of excitons in a three-dimensional bulk semiconductor. FE = free

exciton gas. BEC = exciton BEC. BCS (EI) = excitonic insulator state, which is a BCS state; there

is a BEC-BCS crossover at low temperature as density increases. EHP = electron-hole plasma, i.e.

ionized excitons. There are two regimes for this, a non-degenerate and a degenerate plasma. The

general condition for degeneracy is rs ∼ a, that is, the average distance between the particles be

comparable to the exciton Bohr radius.

excitons have mass of the order of two electron masses, this led to the proposal that exciton

condensates could be the first room temperature condensate. The excitons in many semicon-

ductors are stable at room temperature, e.g. Cu2O, CuCl, CdSe, ZnO, and GaN. To have a

Bose-Einstein condensate, one must ensure that the exciton lifetime is also long enough to

allow thermalization, as discussed above. Several of these semiconductors seemed to satisfy

this requirement, and experiments on them began in the 1970’s, as discussed below.

The relations (3) and (4) also imply that the critical temperature for Bose-Einstein ef-

fects depends on the density. In liquid helium and in BCS superconductors, the density is

essentially a fixed quantity. By contrast, it is quite easy to vary the density of excitons to

very low density by simply changing the intensity of a light source which generates electrons

in the conduction band and holes in the valence band of the semiconductor. Therefore one

has a density-dependent critical temperature, Tc ∼ n2/3, as plotted in Fig. 1. From the ideal
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Problems:  
1. competing phases of electron and holes system
2. density dependent recombination mechanisms

D. Snoke and G. M. 
Kavoulakis, Reports on 
Progress in Physics 77 

(2014)
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BCS (EI) - state analogous to 
BCS superconductor state

EI - exciton insulator 

FE - free excitons
EHP - electron - hole 

plasma
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Exciton condensation
BCS state of excitons
Analog to BCS superconductor state first proposed by John Bardeen, Leon 
Cooper and John Robert Schrieffer („BCS”) in 1957

(Nobel Prize in Physics in 1972)

Superconductivity is a microscopic effect caused by a condensation of 
Cooper pairs into a boson-like state.

2. Przejście z BEC do BCS

Strong pairing:
atoms form molecules of up and down spin
molecules are bosonic
bosonic molecules condense into BEC

Weak pairing:
atoms interact over a large distances
BCS theory



Exciton condensation
BCS state of excitons

In a dense e-h system excitons are Cooper-pair-like Bose-particles and the 
exciton condensate is analogous to BCS superconductor state.

It is called excitonic insulator because the pairing occurs between electrons 
and holes and therefore the pair is neutral.

The transition between BEC and BCS state is smooth and the condensation 
has a mixed nature for intermediate densities.

Analog to BCS superconductor state first proposed by John Bardeen, Leon 
Cooper and John Robert Schrieffer („BCS”) in 1957

(Nobel Prize in Physics in 1972)

Superconductivity is a microscopic effect caused by a condensation of 
Cooper pairs into a boson-like state.



Exciton condensation
BEC - BCS crossover

2. Przejście z BEC do BCS

BEC - BCS crossover (and vice versa) was demonstrated for the first time for 
atomic condensates (of fermionic atoms) in 2003.

The continuous crossover between BEC and BSC state is one of the 
fundamental problems in theoretical physics.

1969: David Eagles - BEC of fermion pairs for extreme concentrations
1980: Tony Leggett - problem described for T=0
1985: Phillip Nozieres and Stefan Smitt-Rink - generalisation of the problem for non-zero 
temperatures
1993: Mohit Randeria et al. - problem described within the integral trajectories
1995: Roman Micnas et al. - T matrices and Monte Carlo simulations

summary after T. Domański, IF UMCS Lublin

K. E. Strecker et al. , Phys. Rev. Lett 91, 080406 (2003)
M. Greiner et al., Nature 426, 537 (2003)

M. Bartenstein et al., Phys. Rev. Lett. 92, 203201 (2004)



BEC BCS

rs - inter-particle distance
aB - Bohr radius

Fermi level of electrons 
(and holes) small 

compared to the intrinsic 
exciton binding energy

Fermi level of electrons 
(and holes) large 

compared to the intrinsic 
exciton binding energy

Exciton condensation
BCS state of excitons

Dense and diluted limit of e-h system determines the relation:

4

Bose gas theory, one would say that to have a condensate at room temperature, one simply

needs to increase the density of the excitons until their critical temperature for condensation

is above room temperature. However, there are limits to the density of excitons which can

be obtained. These limits come from 1) competing phases of the electrons and holes, and 2)

density-dependent recombination mechanisms.

Competing phases. There are three possible competing phases for electrons and holes

besides the exciton Bose-Einstein condensate (EBEC). One of these is the “excitonic insu-

lator” (EI) state which is a BCS state of the electrons and holes instead of two spin states

of the electrons. This state arises under the general condition rs < a, where a is the exciton

Bohr radius, i.e, the pair correlation length. This is equivalent to the condition na3 > 1.

This condition corresponds to the case that a Fermi level of the electrons (and also of the

holes, assuming they have comparable mass) exists in the system which is large compared to

the intrinsic binding energy of the excitons. We can see this by noting first that the exciton

binding energy Ryex and the excitonic Bohr radius a are related by the formula (in MKS

units)

Ryex =
e2

8πϵa
, (6)

which is the same as for a hydrogen atom except that the electric force has been renormalized

by the screening in the medium, e2 → e2/ϵ, where ϵ is the dielectric constant of the medium.

The hydrogenic formula for a is

a =
4πϵh̄2

e2m
. (7)

On the other hand, the Fermi energy of an electron gas in the low-temperature limit is given

by [4]

EF =

(

3π2h̄3

√
2m3/2

n

)2/3

, (8)

where n is the density. Setting this larger than the binding energy gives

3π2h̄3

√
2m3/2

n >

(

e2

8πϵa

)3/2

∼
(

4πϵh̄2

e2m

)3/2

n >
1

a3/2
, (9)

which is equivalent to na3 > 1, using (7) for the excitonic Bohr radius.
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BEC BCS

rs - inter-particle distance
aB - Bohr radius

Fermi level of electrons 
(and holes) small 

compared to the intrinsic 
exciton binding energy

Fermi level of electrons 
(and holes) large 

compared to the intrinsic 
exciton binding energy

n - density
D - dimensionality

diluted dense

Exciton condensation
BCS state of excitons

Dense and diluted limit of e-h system determines the relation:

For excitonic BEC density of particles should be kept below

5

In the EI limit the gas still is coherent, like a BCS superconductor, below a critical

temperature. There should be a crossover from exciton BEC to the excitonic insulator state

at low temperature, as density is increased. Indeed, some of the earliest work on the theory

of BEC-BCS crossover was done in the context of thinking about exciton systems, notably

foundational theory by Keldysh and Kozlov [5, 6], Hanamura and Haug [7–9], and Comte

and Noziéres [10, 11]; for a general review of the early theory of excitonic condensates, see

Ref. [12]). These works showed that excitonic condensation in the low-density BEC limit was

a sound concept, despite the fermionic nature of the underlying electrons and holes, and there

is a smooth transition to the BCS-like EI phase at high density. The critical temperature

for this high-density EI phase will decrease with increasing density, however, so that raising

the density is no longer advantageous. In practical terms, this means that the density of

the particles should be kept below 1/a3. Excitonic condensation can be expected at room

temperature only if a is small enough that this limit can be satisfied even for densities given

by (3) at room temperature. The condition that the critical density at room temperature

be less than 1/a3 turns out not to be an issue for most of the semiconductors listed above

with excitons which exist at room temperature, since large binding energy of the excitons

also corresponds to small Bohr radius.

Another competing phase is ionization to an incoherent electron-hole plasma (EHP).

This is analogous to the classical ionization of an atomic gas at high temperature and high

density due to three-body collisions; it is sometimes called the excitonic “Mott” transition

because it is a conductor-insulator transition, although the mechanism is quite different

from the Mott transition in cold-atom lattices. The theory of this transition is actually

quite complicated (for a review, see Ref. [13]; see also recent work by Manzke and coworkers

[14, 15]). Self-consistent theory of this transition involves the dynamic screening of the

electron-hole interaction, which in turn depends on the number of ionized electrons and

holes. Figure 1 illustrates the basic shape of the boundary for this phase. The position of

the phase boundary depends on the binding energy of the excitons; in general we can say

that higher binding energy pushes this curve to higher temperature. Therefore having deeply

bound excitons also helps avoid this competing phase.

Another competing phase is the electron-hole liquid (EHL), sometimes also called “con-

densation.” This state received a significant amount of attention in the 1970’s and 1980’s
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In 2D case for excitons in GaAs QWs

Exciton condensation
BCS state of excitons

and in many semiconductors it is not a problem due to large binding 
energies of excitons.



Exciton condensation
EH plasma phase

Electron - hole plasma occurs for high temperatures and high densities.

Mechanism is analogous to classical ionisation of an atomic gas.

Position of the phase boundary depends strongly on the binding energy of 
excitons: the higher the binding energy the higher the boundary is pushed to 
higher temperature.

Deeply bound excitons are preferable for BEC.

Analogue of „Mott” transition : conductor - insulator transition.

Screening of the electron-hole interaction by the number of ionised e and h.



Exciton condensation
EH liquid phase

Electron-hole liquid (EHL) was first observed in Ge and Si in 1970’s.

Electrons and holes are not bound into pairs as excitons or biexcitons but 
instead form two interpenetrating Fermi gases with the properties of classical 
liquid (with a surface tension).

EHL is a conductor.

6

[16, 17] following its observation in two bulk semiconductors, Ge and Si. This state is analo-

gous to liquid mercury: the electrons and holes generated by optical excitation are not bound

into pairs as excitons or biexcitons but instead form two interpenetrating Fermi gases with

the properties of a classical liquid, with a surface tension. The EHL state is a conductor,

while the EBEC state is an insulator, because excitons are charge neutral. If the EHL state

does exist, it will prevent EBEC at any temperature and density, since its phase boundary

also scales as T ∼ n2/3 in three dimensions.

The EHL state only occurs in indirect-gap semiconductors like Si and Ge with multiple

degenerate valleys in the conduction band. This degeneracy allows the density of the excited

electrons to be high while still keeping the average kinetic energy of the carriers low. This

means that the mutual attraction of the electrons and holes overcomes the kinetic energy

cost of the Fermi level of free carriers, leading to a net free energy savings to enter the EHL

state at high excited carrier density [17]. In a nice experiment, Timofeev and coworkers [18]

used a stress geometry to lift this degeneracy in a germanium crystal, and magnetic field to

prevent biexciton formation, and found that the EHL state did not occur, leaving only free

excitons. At high density they saw evidence for Bose-Einstein statistics of the excitons (see

Ref. [12], section 1.4.2), although not for EBEC.

As illustrated in Fig. 1, it is expected that at low enough temperature and density, excitons

can undergo BEC, and if the excitons have large binding energy and small Bohr radius this

could even occur at room temperature. Therefore experimental research on Bose-Einstein

condensation of excitons began in the 1970’s with a focus on deeply bound excitons in bulk

semiconductors. As we will see, however, the second competing effect mentioned above,

namely density-dependent recombination mechanisms, have turned out to be a major issue.

Deeply bound excitons and Cu2O. The earliest experiments on excitonic condensation

in bulk semiconductors were done with the bulk semiconductors CdSe and CuCl [19–22].

The most complete study on CuCl was done in the early 1980’s [23, 24]. In CuCl, there is

a tightly bound biexciton state (i.e., an excitonic molecule like H2), which, of course, is also

an integer-spin boson which can in principle undergo BEC. The biexciton binding energy

in CuCl is 26 meV, which is comparable to kBT at room temperature. The experiments

with CuCl ran into interpretive difficulties, however, because CuCl has a strong polariton

effect, in which photons in the medium couple strongly to the exciton or biexciton states,

EHL phase boundary scales with

If EHL exists it prevents excitonic BEC at any temperature and density !



Exciton condensation
short summary

Electron - hole liquid

Ge
Si

Bose - Einstein condensate

Cu2O ?
Indirect excitons in coupled quantum wells ??

excitonic insulator (BCS-like condensate)

electron bilayer in high magnetic fields at filling 
factor = 1 



Exciton condensation
short summary

At low temperatures and low densities excitons can undergo BEC

Excitons with large binding energies and small Bohr radius are preferable for 
BEC.

How to realize cold exciton gases ?
Tlattice << 1 K in He refrigerators

finite lifetime of excitons could result to high exciton temperature: Texciton > Tlattice

find excitons with lifetime >> cooling time Texciton ~ Tlattice

Challenges for realization of exciton
condensates

To solve: Find or design 
semiconductor structures where

short lifetime excitons have long lifetimes >> cooling 
times

competing ground states, e.g. EHL excitons form the lowest energy state

exciton destruction, e.g. due to Mott 
transition

excitons have large binding energy

disorder disorder is weak
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Exciton condensation
short summary

At low temperatures and low densities excitons can undergo BEC

Excitons with large binding energies and small Bohr radius are preferable for 
BEC.

Around the same time deeply bound excitons in Cu2O were discovered.

First experiments were performed on CdSe and CuCl bulk semiconductors.

H. Kuroda, S. Shionoya, H. Saito, and E. Hanamura, J. Phys. Soc. Japan 35, 534 (1973). 
T. Goto, T. Anzai, and M. Ueta, J. Phys. Soc. Japan 35, 940 (1973) 
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Exciton condensation
condensation in CuCl

Binding energy of 26 meV.

Which is comparable to kT at room temperature.

Deeply bound biexciton state.

But has also a strong polaritonic effect in which excitons and 
biexcitons strongly couple to light.

This leads to a short radiative lifetimes.
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Exciton condensation
condensation in CuCl

Binding energy of 26 meV.

Which is comparable to kT at room temperature.

Deeply bound biexciton state.

But has also a strong polaritonic effect in which excitons and 
biexcitons strongly couple to light.

This leads to a short radiative lifetimes.

The question about the existence of bosonic 
stimulated scattering was not answered.



Exciton condensation
BEC in Cu2O

hot excitons that do not allow one to observe the absorption spectrum of ultracold excitons [27].
To reduce this heating of the exciton ensemble, it was proposed that the spectral phase (π step)
of the excitation pulse be modulated to generate of an ultracold orthoexciton gas at 1015 cm−3.
As found in [27], the residual hot excitons prevent a further increase in density. In the current
paper, we present an improved spectral phase-modulation technique that enables us to reach an
ultracold orthoexciton density of 1016 cm−3. At this density, we examine the stability of the
dense exciton ensemble by measuring 1s–2p absorption spectrum.

1s ortho
1s para

pump:
1220 nm

K

continuumE

2p

116 meV

12 meV

2p

1s ortho
1s para

Lyman transition

4p
3p

129 meV
133 meV

Fig. 1. Excitation and probe configurations of present experiment. Generation of ultracold
1s orthoexcitons in Cu2O is realized by resonant two-photon excitation using a broadband
femtosecond pulse. The density and the momentum distribution of the generated orthoex-
citons are detected by exciton Lyman spectroscopy. The energy of the 1s–np transition of
orthoexcitons is approximately 116 meV, 129 meV, and 133 meV, respectively.

The principle by which the heating is reduced is as follows: For resonant two-photon excita-
tion of a two-level system by a pulse, the transition probability (the transition strength) P2ph in
the absence of near-resonant intermediate states is written as

P2ph ∝
∣∣∣∣
∫ ∞

−∞
A(

ω0
2

+Ω)A(
ω0
2

−Ω)× exp
[
i
{

φ(ω0
2

+Ω))+φ(ω0
2

−Ω)
}]

dΩ
∣∣∣∣
2
, (2)

where A(ω) and φ(ω) are the amplitude and phase of the excitation pulse, respectively. The
transition amplitude is the sum of the contributions of all frequency pairs that satisfy energy
conservation, in which each pair is attached with a phase equal to the sum of the spectral
phases at the corresponding frequencies. The maximum amplitude is obtained when all the
spectral components have the same phase (e.g., a transform-limited pulse). On the one hand,
the maximum amplitude may be achieved if the spectral phase distribution is asymmetric with
respect to the resonance frequency. On the other hand, for a three-photon transition into the
continuum, only the temporal intensity profile matters, and the phase coherence plays no role
because of the broad energy distribution of the final states. In the absence of near-resonant in-
termediate states the three-photon transition probability is proportional to the third order of the
pulse intensity integrated over the entire pulse duration. Therefore, to reduce the three-photon
transition probability, we should modulate the phase of the pulse in a way that decreases the
peak intensity in comparison with that of a transform-limited pulse. At the same time, an anti-
symmetric spectral phase distribution with respect to the central frequency allows us to achieve
the maximum two-photon transition probability. We note that there also exists a stepwise ex-
citation path via two-photon resonant orthoexciton states to the continuum. However, if we
assume that this process dominates, the simulation results cannot explain the experimental data
shown in Fig. 4(b) of Ref. [27]. Therefore, we conclude that the contribution of this process is
negligible.

(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.003261 | OPTICS EXPRESS  3265
#201842 - $15.00 USD Received 25 Nov 2013; revised 24 Jan 2014; accepted 24 Jan 2014; published 4 Feb 2014

Biexciton state weakly bound.

K. Yoshioka, K. Miyashita, M. Kuwata-Gonokami, 
Optics Express 22, 3261 (2013) 

Exciton binding energy
of 150 meV.

Two types of excitons:
orthoexcitons - spin triplet (parallel spins of electron and hole)
paraexcitons - spin singlet (anti-parallel spins of electron and hole)

The highest valence and the lowest conduction bands are formed from Cu states, 
the 3d and 4s orbitals, respectively.

Cu2O is therefore a forbidden direct-gap semiconductor.
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(C) 2014 OSA 10 February 2014 | Vol. 22,  No. 3 | DOI:10.1364/OE.22.003261 | OPTICS EXPRESS  3265
#201842 - $15.00 USD Received 25 Nov 2013; revised 24 Jan 2014; accepted 24 Jan 2014; published 4 Feb 2014

Biexciton state weakly bound.

K. Yoshioka, K. Miyashita, M. Kuwata-Gonokami, 
Optics Express 22, 3261 (2013) 

Exciton binding energy
of 150 meV.

Two types of excitons:
orthoexcitons - spin triplet (parallel spins of electron and hole)
paraexcitons - spin singlet (anti-parallel spins of electron and hole)

Paraexciton is the ground state and due to the crystal lattice symmetry has zero 
oscillator strength for interaction with photons.

Orthoexciton (spin-triplet) has a quadrupole allowed radiative recombination 
process (also phonon assisted processes are allowed).

(almost) infinite lifetime: 100 ns - 1 ms (weakly phonon allowed 
transitions, recombination on impurities or applied stress)



Exciton condensation
BEC in Cu2O

Phonon-assisted luminescence spectroscopy.

9

FIG. 2: Recombination processes of Wannier excitons in a direct band-gap semiconductor. K is the

wave vector associated with the center-of-mass momentum of the exciton; Egap is the semiconductor

band gap energy, and Eex is the exciton binding energy. h̄ωphon is the energy of an optical phonon,

which is nearly independent of momentum.

in a direct-gap semiconductor like Cu2O. Only excitons with low momentum can recombine

via the direct recombination process, while an exciton at any momentum can recombine

via the phonon-assisted process, with the phonon taking up any excess momentum. The

phonon-assisted process can occur for both the paraexciton, which is a singlet state, and the

orthoexciton state, which is a triplet that lies 12 meV above the paraexciton in unstressed

crystals. The energy of the emitted photon is equal to the total energy of the exciton minus

the energy of the optical phonon, which is nearly constant. The energy spectrum of the

phonon-assisted luminescence therefore gives the kinetic energy distribution of the excitons

directly. If we take the matrix element as nearly independent of the exciton momentum,

which is the case in Cu2O, then the intensity of the light emitted at a given energy is directly

proportional to the number of excitons with the corresponding kinetic energy h̄2K2/2m.

Figure 3 shows typical spectra of phonon-assisted luminescence from orthoexcitons in

Cu2O at various temperatures up to room temperature. At high temperature, an optical

phonon can be both emitted or absorbed when an exciton recombines. Therefore there are

two lines, one at the exciton energy minus the optical phonon energy, and one at the exciton

energy plus the optical phonon energy. The theory fits to each peak in the data in Fig. 3

are given simply by I(E +E0) ∝ D(E)f(E), where E is the exciton kinetic energy, D(E) is

Exciton can recombine with the photon 
emission and a phonon taking up any excess 
momentum

Can occur for orthoexcitons and paraexcitons.

Energy spectrum (spectral function) gives the kinetic energy distribution 
of excitons (not possible to observe for atoms and extensively explored for 
polaritons).

10

FIG. 3: Solid lines: luminescence from excitons in Cu2O from low temperature to room tempera-

ture. Dashed line: fit to the theory for phonon-assisted luminescence discussed in the text, giving

the thermal distribution of the excitons. A single parameter, namely the lattice temperature, is

used to fit all the curves. From Ref. [37].

the density of states of the excitons, proportional to E1/2 in three dimensions, and f(E) is

the occupation number of the excitons, proportional to e−E/kBT at low density. The relative

height of the two lines depends on the temperature of the lattice. At low temperature,

the phonon-emission line dominates, since there are no phonons to absorb, while at high

temperature, the two lines become comparable.

When many-body interactions are taken into account, the analysis of the phonon-assisted

luminescence is slightly more complicated. Each momentum state emits with an energy

profile given by the spectral function A(k⃗,ω), which is approximately equal to δ(ω − ωk⃗) at

low density and low temperature, but can be substantially broadened when there are strong

particle-particle interactions [43–45]. This brings up a crucial difference between exciton

BEC experiments and experiments on cold atoms. The fact that excitons can recombine and

turn into photons allows us to have direct access to the spectral function. (This property has

been used widely in the exciton-polariton BEC experiments, e.g. to show spectral narrowing

D.W. Snoke, A. Shields, and M. Cardona, Phys. Rev. B 
45, 11693 (1992)
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Spectral function
energy shift - real part of the self-energy
broadening - imaginary part of the self-energy - inverse of the 
scattering time of the excitons (exciton-exciton, exciton-phonon, 
exciton-impurity, ...)

Purpose: 
1. To estimate the absolute density of the excitons

Early experiments show that orthoexcitons and paraexcitons exceeded 
the critical densities for BEC

2. Possibly fit the spectrum with the Bose-Einstein distribution

But the spectral broadening do not correspond to the presumed exciton 
densities.

Auger recombination process dominates !
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Auger recombination process dominates !

D.P. Trauernicht, J.P. Wolfe, and A. Mysyrowicz, Phys. Rev. 34, 2561 (1986)

Two excitons collide, one recombines 
and instead of emitting photon the 
energy is given to ionise the second 
exciton. 
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FIG. 5: The Auger recombination process. In (a), the exciton on the left recombines, giving its

energy to the exciton on the right, which leads to the final state (b) of a single ionized exciton.

process could generate orthoexcitons at long distances from the surface due to up-conversion

from paraexcitons.

Auger recombination. This brings up the Auger recombination process in Cu2O, which

was established to occur in Cu2O in the 1980’s [40] and became an increasingly important

topic of study in the 1990’s. The Auger process occurs when two excitons collide, and one of

them recombines, but instead of emitting a photon, the energy of the recombining exciton

is given to ionizing the second exciton, as shown in Fig. 5. The hot electron and hole thus

produced can then lose energy by phonon emission or by collisions with other carriers, and

finally form into an exciton again. It is assumed that the spins of the electron and hole are

randomized in this process, so that the returning exciton can be either an orthoexciton or

paraexciton.

The Auger recombination process is density dependent, since it is proportional to the rate

of excitons colliding with each other. The Auger rate is therefore parametrized by a constant

typically called A, such that the rate of the process is

1

τ
= An, (12)

where n is the density. For a single population with an intrinsic radiation lifetime τr, this

gives the rate equation
∂n

∂t
= G(t)−

n

τr
−

1

2
An2, (13)

where G(t) is the generation rate of the excitons. A factor of 1/2 occurs because half the

excitons are returned to the population after ionization. For a two-population system such

The Auger recombination process. In (a), the exciton on the left 
recombines, giving its energy to the exciton on the right, which leads to 
the final state (b) of a single ionised exciton.

Hot electron and hole loose energy by 
emitting phonons or by collisions and 
form an exciton again.

Returning exciton can be either ortho- 
or para-exciton.

Exciton lifetime is density dependent.
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Auger recombination process dominates and shortens the lifetime of excitons.

Conclusion:

Only at sufficiently low temperature the time scale for thermalisation via phonons 
can be much shorter than the lifetime due to Auger recombination.

further experiments are performed at 
hundreds of mK temperatures :-(

Stress is used to produce a three-dimensional harmonic trap for paraexcitons.
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emission collection of the shrunken cloud image on the entrance slit 
of the spectrometer (7.5 m wide on the cloud).

Note that two distinct features are needed to pursue paraexci-
ton BEC at sub-Kelvin temperatures. The first is coherent harmonic 
motion of paraexcitons in a trap. To establish the energy structure 
of excitons in a three-dimensional harmonic potential trap, their 
mean scattering time should be longer than the period of harmonic 
oscillation. Therefore, the exciton–phonon scattering rate ( phonon) 
must be less than the trap frequency (ftrap): phonon < ftrap. This has not 
been realized in previous trap experiments at liquid 4He tempera-
tures, where phonon is a few hundred MHz and ftrap is 13 MHz23. At 
sub-Kelvin temperatures, the phonon scattering time is reduced 
and is comparable to the exciton lifetime of 300 ns (Supplementary 
Information). This implies that phonon is a few MHz, which satis-
fies the condition described above. The second is smaller heating 

resulting from weaker excitation power. Owing to the large inel, the 
collision-limited paraexciton number N effectively scales as N G0.5, 
where G is the generation rate of excitons or the optical excitation 
power. Because the exciton gas is captured in a three-dimensional 
harmonic potential, the critical exciton number Nc scales as Nc T3 
(Nc T3/2 in free space). Therefore, the optical power required to 
reach the critical exciton number in a harmonic trap is proportional 
to T 6, whereas the specific heat of semiconductors scales as T 3. This 
naive consideration indicates that the lower the exciton temperature 
is, the more favourable the conditions are for achieving BEC with 
the least lattice temperature increase.

High-density excitation. To increase the number of trapped 
paraexcitons while keeping the lattice temperature unchanged 
(TL = 354 mK), we chop the pump beam with appropriate duty cycles 
to make the average power constant (Methods). For ideal Bose par-
ticles well above the critical number, a large occupation number of 
the ground state is expected. Instead, as shown in Figure  3, we have 
observed anomalous spectra when the paraexciton number crosses 
the critical number. With increasing estimated paraexciton number, 
N = 2×107, 5×108 and 2×109 (Fig. 3a–c, respectively), a high-energy 
signal appears suddenly up to around 400 eV above the potential 
minima. In Figure 3d, we plot the integrated emission intensity 
ratio between the higher-energy part (2.01924–2.02004 eV) and the 
bottom part (2.01902–2.01921 eV) versus the paraexciton number.  
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Figure 1 | Capturing cold 1s paraexcitons in a single Cu2O crystal.  
(a) Inhomogeneous strain field is formed by pressing the single crystal 
with a glass lens. The field acts as a three-dimensional harmonic trap for 
paraexcitons, where the trap bottom is located 133 m below the surface of 
the crystal. A focused excitation laser beam passes through the bottom of 
the trap. (b, c) The strain field causes a position-dependent energy shift for 
both ortho- and paraexcitons. The excitation beam creates orthoexcitons 
only around the trap via a phonon-assisted absorption process; they rapidly 
convert to paraexcitons with their position almost unchanged. Paraexcitons 
flow into the bottom of the trap, dissipating their excess energy to the 
lattice. Accumulated paraexcitons move along the trap potential coherently 
owing to the very small interaction rate of cold paraexcitons with phonons.
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Figure 2 | Coherent trapping of 1s paraexcitons at sub-Kelvin 
lattice temperatures. Trapped paraexciton gas is observed via direct 
luminescence, which is only weakly allowed under the applied strain 
field. The spatially resolved luminescence is recorded as a function of TL 
under the weakest excitation condition. (a) TL = 1.5 K. (b) TL = 800 mK. 
(c) TL = 287 mK. Dashed curves are calculated potential profiles of the 
harmonic trap. (d–f) Spatial full width at half maximum (FWHM), spectral 
FWHM and total luminescence intensity of the paraexciton gas along the 
z-axis, respectively, versus the lattice temperature. Dashed curves are 
theoretical predictions assuming the classical thermal distribution. Green 
lines show experimental resolution of our setup.
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emission collection of the shrunken cloud image on the entrance slit 
of the spectrometer (7.5 m wide on the cloud).

Note that two distinct features are needed to pursue paraexci-
ton BEC at sub-Kelvin temperatures. The first is coherent harmonic 
motion of paraexcitons in a trap. To establish the energy structure 
of excitons in a three-dimensional harmonic potential trap, their 
mean scattering time should be longer than the period of harmonic 
oscillation. Therefore, the exciton–phonon scattering rate ( phonon) 
must be less than the trap frequency (ftrap): phonon < ftrap. This has not 
been realized in previous trap experiments at liquid 4He tempera-
tures, where phonon is a few hundred MHz and ftrap is 13 MHz23. At 
sub-Kelvin temperatures, the phonon scattering time is reduced 
and is comparable to the exciton lifetime of 300 ns (Supplementary 
Information). This implies that phonon is a few MHz, which satis-
fies the condition described above. The second is smaller heating 

resulting from weaker excitation power. Owing to the large inel, the 
collision-limited paraexciton number N effectively scales as N G0.5, 
where G is the generation rate of excitons or the optical excitation 
power. Because the exciton gas is captured in a three-dimensional 
harmonic potential, the critical exciton number Nc scales as Nc T3 
(Nc T3/2 in free space). Therefore, the optical power required to 
reach the critical exciton number in a harmonic trap is proportional 
to T 6, whereas the specific heat of semiconductors scales as T 3. This 
naive consideration indicates that the lower the exciton temperature 
is, the more favourable the conditions are for achieving BEC with 
the least lattice temperature increase.

High-density excitation. To increase the number of trapped 
paraexcitons while keeping the lattice temperature unchanged 
(TL = 354 mK), we chop the pump beam with appropriate duty cycles 
to make the average power constant (Methods). For ideal Bose par-
ticles well above the critical number, a large occupation number of 
the ground state is expected. Instead, as shown in Figure  3, we have 
observed anomalous spectra when the paraexciton number crosses 
the critical number. With increasing estimated paraexciton number, 
N = 2×107, 5×108 and 2×109 (Fig. 3a–c, respectively), a high-energy 
signal appears suddenly up to around 400 eV above the potential 
minima. In Figure 3d, we plot the integrated emission intensity 
ratio between the higher-energy part (2.01924–2.02004 eV) and the 
bottom part (2.01902–2.01921 eV) versus the paraexciton number.  
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Figure 1 | Capturing cold 1s paraexcitons in a single Cu2O crystal.  
(a) Inhomogeneous strain field is formed by pressing the single crystal 
with a glass lens. The field acts as a three-dimensional harmonic trap for 
paraexcitons, where the trap bottom is located 133 m below the surface of 
the crystal. A focused excitation laser beam passes through the bottom of 
the trap. (b, c) The strain field causes a position-dependent energy shift for 
both ortho- and paraexcitons. The excitation beam creates orthoexcitons 
only around the trap via a phonon-assisted absorption process; they rapidly 
convert to paraexcitons with their position almost unchanged. Paraexcitons 
flow into the bottom of the trap, dissipating their excess energy to the 
lattice. Accumulated paraexcitons move along the trap potential coherently 
owing to the very small interaction rate of cold paraexcitons with phonons.
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Figure 2 | Coherent trapping of 1s paraexcitons at sub-Kelvin 
lattice temperatures. Trapped paraexciton gas is observed via direct 
luminescence, which is only weakly allowed under the applied strain 
field. The spatially resolved luminescence is recorded as a function of TL 
under the weakest excitation condition. (a) TL = 1.5 K. (b) TL = 800 mK. 
(c) TL = 287 mK. Dashed curves are calculated potential profiles of the 
harmonic trap. (d–f) Spatial full width at half maximum (FWHM), spectral 
FWHM and total luminescence intensity of the paraexciton gas along the 
z-axis, respectively, versus the lattice temperature. Dashed curves are 
theoretical predictions assuming the classical thermal distribution. Green 
lines show experimental resolution of our setup.
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A threshold-like rise of the ratio near Nc at an exciton tempera-
ture of 0.8 K is apparent, indicating that the BEC transition occurs 
at the condition expected for ideal bosons. We also examine the 
temperature dependence measurements under a constant excita-
tion density. We set the excitation level at the maximum density of  
(Fig. 3d) N = 2×109 at TL = 354 mK. The lattice temperature depend-
ence of the ratio also shows an abrupt increase at TL~400 mK  
(Fig. 3e), demonstrating the BEC transition of excitons (lowering 
TL results in a slight exciton temperature drop and an increased 
exciton number). In estimating N, we first calculated N in the weak-
est excitation linear regime from the amount of optical absorp-
tion (36% of incident power on the refrigerator) and the lifetime 
of paraexcitons, assuming an overall trap collection efficiency of 
30%. The validity of this method of exciton counting has been 
confirmed by exciton Lyman spectroscopy16. Using the data from 
this low-density regime, we determined N for higher-density exci-
tations by comparing the emission signal intensity of the bottom 

part. This prevents possible ambiguity in estimating the number 
of paraexcitons, although rate equations taking into account the 
inelastic collision-induced loss (therefore effectively shorter life-
time in high-density regions) estimates the similar number (see 
also Supplementary Information).

Discussion
As mentioned above, in this case inelastic collision is essential 
for inducing the anomalous spatial spectral profiles of the signal. 
Therefore, we exclude the effect of the renormalized energy due 
to the mean-field shift associated with the elastic scattering of the 
condensate 26. We propose a feasible scenario: competition between 
bosonic-stimulated scattering and inelastic scattering-induced loss 
in the condensate. Considering the inelastic scattering cross-sec-
tion (or collisional loss coefficient on the order of 10 − 16 cm3 ns − 1) 
and the spatial spread of the ground-state wavefunction of 1.4 m 
at full width at half maximum, the ground state is apparently unsta-
ble against ~109 condensed paraexcitons. This yields a collision-
induced lifetime of less than 100 fs. By analysing rate equations 
considering collisional loss in the condensate and its redistribution 
to the thermal part, we estimate that the maximum condensate frac-
tion is around 1% (80% in the case of ideal bosons) with a bosonic-
stimulated scattering rate of 7 ns − 1. Paraexcitons expelled from the 
condensate explains the enhancement of the observed signal in 
the high-energy part (Supplemenary Information). This situation 
is analogous to several examples of atomic condensates. It is well 
known that the condensate fraction for atomic hydrogen is limited 
to several percent due to the small s-wave elastic scattering length 
and two-body collisional loss4. It is indeed predicted that the spa-
tial compression of the condensate in a magnetic trap leads to an 
enhanced relaxation due to the two-body (dipolar) scattering, and 
that the increase in the released hot atoms can be a measure of the 
transition to BEC27. This ‘relaxation explosion’ is exactly the case 
for the current system where the elastic scattering length is com-
parably small and the two-body collision-induced loss is present. 
Therefore, we conclude that dilute excitons obey the Bose–Einstein 
statistics and form BEC when the system crosses the phase bound-
ary for ideal bosons, although depicting the precise phase diagram 
requires further experimental efforts. For excitons in semiconduc-
tors, in addition, the efficient cooling of the paraexcitons having 
high translational momenta via emission of acoustic phonons has 
an important role to thermalize the exciton gas and to force expelled 
excitons to come back towards the bottom of the trap (see also our 
numerical simulation in Supplementary Information). For 7Li atoms 
with attractive interactions, the three-body loss leads to the collapse 
of BEC. The observed condensate fraction is a few percent at most, 
as determined by the attractive forces and the repulsion due to  
position-momentum uncertainty3,28.

To prepare a large condensate fraction, we must reduce the local 
density below 1015 cm − 3. Therefore, making colder exciton gas is 
essential. Active methods to enhance exciton–phonon coupling, 
together with better sample quality, are desired. A dynamic trap can 
be helpful for making a shallower trap potential upon growth of the 
condensate. Because inelastic scattering dominates elastic scattering, 
evaporative cooling does not work in this system. Elucidating the 
mechanism for the large inelastic scattering cross-section is appar-
ently crucial. It is interesting to compare our results with recently 
observed ultracold chemical reactions of molecules29 and rapid  
inelastic collision of quantum-degenerate p-wave molecules30.

Methods
Sample cooling. A cryogen-free 3He refrigerator (Oxford Instruments, Heliox-
ACV) was used to cool the high-purity Cu2O single-crystal conductively. The 
size of the optical windows and the numerical aperture were carefully chosen to 
prevent any heat load into the coldest plate of the refrigerator. The lowest crystal 
temperature without irradiation of the excitation beam was 278 mK. The sample 
was 5.3×5.3×9.1 mm in size. Stress was applied along the [100] axis of the crystal  
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Figure 3 | Anomalous luminescence of 1s paraexcitons when crossing 
the phase boundary for Bose–Einstein condensation. Spatially resolved 
luminescence signals taken at TL = 354 mK, where the estimated 
paraexciton number N in the trap is (a) 2×107 (b) 5×108 and (c) 2×109. 
Signal intensities are normalized. Arrows show the boundary of the higher-
energy (2.01924–2.02004 eV) and bottom (2.01902–2.01921 eV) parts 
of the signal. (d) Ratio between the higher-energy and bottom parts of 
the signal versus the estimated paraexciton number. Phase space density 
is calculated from the estimated number and the volume of the cloud at 
exciton temperature T = 0.8 K, assuming ideal, non-interacting bosons.  
(e) The ratio versus the lattice temperature under a constant excitation 
density (N = 2×109 at 354 mK).

„Explosion” of paraexcitons below 
a critical temperature

probably due to non-
equilibrium effects.

„Threshold like behaviour 
indicates the BEC.”

Not observed by other groups, but 
the experimental conditions were 
different.
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There is a rich variety of quantum liquids—such as supercon-
ductors, liquid helium and atom Bose–Einstein condensates—
that exhibit macroscopic coherence in the form of ordered arrays
of vortices1–4. Experimental observation of a macroscopically
ordered electronic state in semiconductors has, however,
remained a challenging and relatively unexplored problem. A
promising approach for the realization of such a state is to use
excitons, bound pairs of electrons and holes that can form in
semiconductor systems. At low densities, excitons are Bose-
particles5, and at low temperatures, of the order of a few kelvin,
excitons can form a quantum liquid—that is, a statistically
degenerate Bose gas or even a Bose–Einstein condensate5–7.
Here we report photoluminescence measurements of a quasi-
two-dimensional exciton gas in GaAs/AlGaAs coupled quantum
wells and the observation of a macroscopically ordered exciton
state. Our spatially resolved measurements reveal fragmentation
of the ring-shaped emission pattern into circular structures that
form periodic arrays over lengths up to 1mm.

We studied spatially resolved photoluminescence (PL) of quasi-
two-dimensional gases of indirect excitons in GaAs/AlGaAs coupled
quantum wells (QWs); see Fig. 1b. Coupled QWs form a unique
system where a cold exciton gas, and, more generally, a cold gas of
light boson quasiparticles, can be created8–12. The indirect excitons
in coupledQWs are characterized by high cooling rates, three orders
of magnitude higher than in bulk GaAs, and a long lifetime, more
than three orders of magnitude longer than in a single GaAs QW.
This lifetime is much longer than the characteristic timescale for
cooling of initially hot photogenerated excitons down to tempera-
tures well below 1K, where the dilute Bose gas of indirect excitons
becomes statistically degenerate10. Because the exciton mass, M, is
small, smaller than the free electron mass m 0, the quantum
degeneracy temperature T0 ¼ ðp!h2nÞ=ð2MgkBÞ (where g is the
spin degeneracy of the exciton state, kB is the Boltzmann constant
and !h is the Planck constant) exceeds 1K at experimentally acces-
sible exciton densities, n.

Another important advantage of the system is a repulsive inter-
action between the indirect excitons, characteristic of oriented
dipoles: indirect excitons are dipoles oriented perpendicularly to
the QW plane (Fig. 1b). The repulsive interaction stabilizes the
exciton state against the formation of metallic electron–hole drop-
lets13,14, reinforces the Bose–Einstein condensation15 and results in a
screening of an in-plane random potential (which is caused by
interface fluctuations, impurities, and so on, and is unavoidable in
any QW sample). In two-dimensional systems with a repulsive
interaction a phase transition to a superfluid exciton state is possible
at finite temperatures16. The latter is characterized by a long-range
order at low temperatures17.

A high density of indirect excitons is achieved by nonresonant
laser photoexcitation with energies at or above the direct exciton
resonance where the photon absorption coefficient is high (Fig. 1b).
In a quasiequilibrium, almost all photoexcited carriers relax to the
indirect exciton states because they are lower in energy (the ratio

Figure 1 Radial dependence of the indirect exciton photoluminescence (PL). a, Peak
intensity of the indirect exciton PL versus r, the distance from the excitation spot centre, at

T ¼ 1.8 K, gate voltage V g ¼ 1.22 V, and the excitation powers P ex ¼ 6, 33, 95, 220,

290, 390, 530 and 770mW. c, Peak intensity of the indirect exciton PL versus r at
P ex ¼ 390mW, V g ¼ 1.22 V, and T ¼ 2.4, 4.4, 7, 10 and 14 K. The excitation spot

profiles are shown by the purple dashed lines in a and c. The solid purple line in c shows
the peak intensity of the direct exciton PL. The corresponding spatial dependence of the

PL spectra at T ¼ 2.4 and 14 K are shown in e and f. The uppermost spectra are recorded
at r ¼ 0, the lowest at r ¼ 107mm, and the step is 3.7mm. The indirect exciton PL line (I)

is at about 1.545–1.55 eV; the direct PL line (D) is at about 1.57 eV; the broad line arising

below the indirect exciton line is the bulk n þ-GaAs emission. The selected spectra at

T ¼ 2.4 K are shown in d: in the excitation spot centre at r ¼ 0 (red), in the internal ring

centre at r ¼ 29mm (green), and in the external ring centre at r ¼ 83 mm (black, the

intensity is multiplied by 4). b, Energy band diagram of the CQW structures; e, electron; h,

hole. The PL of indirect excitons is characterized by the rings centred at the excitation

spot: the internal ring is located near the edge of the excitation spot, while the external ring

is observed far away from the excitation spot.
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in coupledQWs are characterized by high cooling rates, three orders
of magnitude higher than in bulk GaAs, and a long lifetime, more
than three orders of magnitude longer than in a single GaAs QW.
This lifetime is much longer than the characteristic timescale for
cooling of initially hot photogenerated excitons down to tempera-
tures well below 1K, where the dilute Bose gas of indirect excitons
becomes statistically degenerate10. Because the exciton mass, M, is
small, smaller than the free electron mass m 0, the quantum
degeneracy temperature T0 ¼ ðp!h2nÞ=ð2MgkBÞ (where g is the
spin degeneracy of the exciton state, kB is the Boltzmann constant
and !h is the Planck constant) exceeds 1K at experimentally acces-
sible exciton densities, n.

Another important advantage of the system is a repulsive inter-
action between the indirect excitons, characteristic of oriented
dipoles: indirect excitons are dipoles oriented perpendicularly to
the QW plane (Fig. 1b). The repulsive interaction stabilizes the
exciton state against the formation of metallic electron–hole drop-
lets13,14, reinforces the Bose–Einstein condensation15 and results in a
screening of an in-plane random potential (which is caused by
interface fluctuations, impurities, and so on, and is unavoidable in
any QW sample). In two-dimensional systems with a repulsive
interaction a phase transition to a superfluid exciton state is possible
at finite temperatures16. The latter is characterized by a long-range
order at low temperatures17.

A high density of indirect excitons is achieved by nonresonant
laser photoexcitation with energies at or above the direct exciton
resonance where the photon absorption coefficient is high (Fig. 1b).
In a quasiequilibrium, almost all photoexcited carriers relax to the
indirect exciton states because they are lower in energy (the ratio
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290, 390, 530 and 770mW. c, Peak intensity of the indirect exciton PL versus r at
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profiles are shown by the purple dashed lines in a and c. The solid purple line in c shows
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between the indirect and direct exciton densities is typically.104).
The initially photogenerated excitons are hot, but quickly cool
down to the lattice temperature, T lattice, by phonon emission. For
example, the exciton temperature, TX, can drop down to 400mK in
about 5 ns, that is, a time much shorter than the indirect exciton
lifetime10. Therefore, there are two ways to overcome the obstacle of
hot generation and study cold gases of indirect excitons with TX <
T lattice: (1) use a separation in time and study the indirect excitons a
few nanoseconds after the end of the photoexcitation pulses10; (2)
use a separation in space and study the indirect excitons beyond the
photoexcitation spot. In the second case, excitons can cool down to
T lattice as they travel away from the photoexcitation spot.
Here, exploring the spatially and spectrally resolved PL experi-

ments, we have observed a ring structure in the indirect exciton PL
and a macroscopically ordered state of indirect excitons appearing
in the ring that is farthest from the excitation spot.
At the lowest excitation powers, Pex, the spatial profile of the

indirect exciton PL intensity closely follows the laser excitation
intensity (Fig. 1a). However, at high Pex we observed a nontrivial
pattern for that profile. The pattern is characterized by a ring
structure (Fig. 1): the laser excitation spot is surrounded by two

concentric bright rings separated by an annular dark intermediate
region. The rest of the sample outside the external ring is dark. The
internal ring appears near the edge of the laser excitation spot, and
the external ring can be more than 100 mm from the excitation spot.
Its radius increases with Pex. The ring structure follows the laser
excitation spot when it is moved over the whole sample area. This
nontrivial spatial profile of the indirect exciton PL intensity is only
observed at low temperatures. When the temperature is increased
the bright rings wash out, the PL intensity in the inter-ring region
and outside the external ring increases, and the profile approaches a
monotonic bell-like shape (Fig. 1c).

The external ring is fragmented into circular structures that form
a periodic array over macroscopic lengths, up to around 1mm (Fig.
2a–e). This is demonstrated in Fig. 3e which shows the nearly linear
dependence of the fragment positions along the ring versus their
number. The fragments follow the external ring either when the
excitation spot is moved over the sample area or when the ring

Figure 2 Excitation density dependence of the spatial pattern of the indirect exciton PL
intensity. a–e, The pattern at T ¼ 1.8 K, V g ¼ 1.22 V and P ex ¼ 290 (a), 390 (b, c),
690 (d), and 1,030 (e) mW. For a, b, d and e the area of view is 530 £ 440mm. The

external ring of the indirect exciton PL is fragmented into a periodic chain of circular

structures. The fragments follow the external ring both when its radius is changed by

varying P ex or when the laser excitation is moved over the sample area. The indirect

exciton PL intensity is also strongly enhanced in some spots within the area terminated by

the external ring. The position of these spots is fixed on the sample. f, Indirect exciton PL
spectra in a peak (red) and the adjacent pass (black) on the fragment chain along the ring.

Colour bar in c starts from zero (blue), and presents a linear scale in arbitrary units.

Figure 3 Temperature dependence of the spatial pattern of the indirect exciton PL

intensity. a, b, The pattern at T ¼ 1.8 (a) and 4.7 K (b) for V g ¼ 1.22 V, and

P ex ¼ 690mW. The area of view is 475 £ 414mm. c, The corresponding variation of the
indirect exciton PL intensity along the external ring at T ¼ 1.8, 4.7 and 7.7 K. The ring

fragmentation into the periodic chain washes out with increasing temperature. This is

visualized by the PL contrast (d) presented by an amplitude of the Fourier transform. The
dependence of the position of the indirect exciton PL intensity peaks along the external

ring versus the peak number is nearly linear (e), showing that the fragments form a

periodic chain.
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Exciton condensation
BEC of dark excitons

„Grey” exciton condensates.

Excitons in semiconductor quantum wells are composed of 
electrons (±1/2 spin) and holes (±3/2 spin)

„bright” excitons (±1) : ∓1/2 electrons and ±3/2 holes
„dark” excitons (±2) : ±1/2 electrons and ±3/2 holes

Dark excitons are ground state excitons.
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decades of active experimental research. By contrast, the
excitonic component of a polariton being by construction
coupled to light, polariton condensation can be studied
through photoluminescence, which recently led to remark-
able experiments [11–14].

While in the very dilute regime the exciton condensate
must be completely dark, no matter how small the en-
ergy difference between dark and bright states is [8], it
was recently shown [9] that at sufficiently large density,
carrier exchange between bright and dark excitons brings
a coherent bright component to the condensate which be-
comes “gray”. Such a coherence between dark and bright
excitons is very similar to what occurs in the well-known
phases of superfluid 3He (see, e.g., ref. [15]), and in the
more recent spinor condensates of ultracold atomic Bose
gases [16], where components of these superfluids corre-
sponding to different internal degrees of freedom coexist
and are coherent. This coherent coupling allows probing
the exciton condensate through the photoluminescence of
its bright part. As the bright component is very small,
the photoluminescence signal is very weak. Neverthe-
less, it shall unveil the existence of a dense population
of dark excitons, the spatial coherence of the condensate
and its internal “spin” structure through the polarisation
of the emitted light. In semiconductor quantum wells,
the dark nature of exciton Bose-Einstein condensation has
been overlooked until very recently [8,10], most probably
because the splitting between bright and dark states is
small compared to the thermal energy at critical temper-
ature. Here, we present compelling experimental evidence
for a “gray” Bose-Einstein condensate of excitons [8,9]
through the experimental observation of all its theoreti-
cally predicted characteristics.

We study excitons confined in a 25 nm wide GaAs single
quantum well embedded in a field-effect device with an
electrical polarization, set by the potential Vg = −4.7 V
applied on a surface electrode, keeping electrons and holes
well apart. As the electron and hole wave functions have a
small overlap, these dipolar excitons have a long radiative
lifetime (∼ 20 ns) and a rather large energy splitting be-
tween bright and dark states (∼ 20 µeV, see refs. [17,18]).
The electrical polarisation also ensures a repulsive effective
exciton-exciton interaction which prevents the formation
of biexcitons at the typical density nc where Bose statis-
tics becomes dominant (nc ≃ mXkBT/!2 ∼ 1010 cm−2 for
2D excitons with mass mX at 1 K).

We use a pump laser (λpump = 641.5 nm) with an energy
above the AlGaAs barriers of the quantum well in order
to create a dense and well-thermalised exciton gas. For
such laser excitation photo-injected electrons and holes
are captured by the quantum well with different efficien-
cies [19,20]: a region richer in holes is formed around
the laser excitation, itself surrounded by an electron-rich
domain resulting from both the photo-current passing
through our device and the modulation doping of the
structure (see fig. 1(A)). In this landscape, dipolar exci-
tons are created through the Coulomb interaction between

(A)

1470

1472

1474

1476

1478

1480

En
er

gy
 [m

eV
]

Position [µm]

0

40

80

120

Position [µm]

Intensity [a.u.]

~1.2meV

(E) (F)

-50 -25 0 25 50 -50 -25 0 25 50

-50

-25

0

25

50
Po

si
tio

n 
[µ

m
]

0 20001000

Time 
[ns]

1030

pump probe 1

1010
1120

1100

20ns 20ns

probe 2

0

200

400

600

Intensity [a.u.]

(D)( C )

0

40

80

120

40ns
Electrode

Ground

SQW

Pump beam V <0g (B)

Fig. 1: (Color online) (A) Sketch of our field-effect device:
a pump beam excites a wide single quantum well (SQW) em-
bedded in a field-effect device. This results in a region rich
in holes (open circles) around the laser spot, surrounded by a
region rich in electrons (filled circles). These excess charges
screen the electric field imposed by the potential Vg applied on
the top electrode of the device. (B) Schematic time sequence
showing pump and probe pulses together with the intervals
during which our experimental results are recorded (green).
(C), (D): real photoluminescence image recorded in a 40 ns long
time interval, starting 10 ns after extinction of the pump excita-
tion, at 350 mK (C) and at 7K (D). (E), (F): spatial profiles of
the excitonic confinement deduced from the E(probe)

X measured
in the “probe 1” pulse (red line) together with the exciton
blueshift deduced from E(pump)

X measured during the “probe
2” pulse (blue line). These profiles are taken along the white
straight lines indicated in (C), (D). The solid black lines in
(E), (F) show the profiles of the photoluminescence intensity.
In (E) the gray region underlines a large exciton density at
350 mK in a region of anomalously weak photoluminescence.
It reveals the existence of a “gray” exciton condensate.

photo-injected electrons and holes, the exciton transport
being somewhat complicated by the ambipolar diffusion
of excess carriers which screen the external field applied
through our top gate electrode.

Figures 1(C) and (D) show the photoluminescence emis-
sion 10 ns after the pump pulse at 350 mK and 7 K, re-
spectively. Both reveal a pattern characteristic of the
charge separation existing in the quantum well, namely
a macroscopic exciton ring formed a few tens of microns
away from the pump excitation [21,22]. Figures 1(E)
and (F) show the exciton confinement potential together
with the profile of the exciton density for these measure-
ments. They are both deduced from a weak probe pulse
which injects a very dilute exciton cloud after the pump

10012-p2

Exciton condensation
BEC of dark excitons

„Gray” condensates of dipolar excitons.

Radiative lifetime ~ 20 ns.
Energy splitting between bright and 
dark states ~ 20 µeV.
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like those illustrated schematically in Fig. 1. Importantly, the
excitons in this system are present in equilibrium, waiting patiently
for experimenters to reveal their properties.
The techniques required to grow high-quality single and bilayer

electron systems are now well established and have been vital in a
great many important physics discoveries, notably the famous
fractional quantum Hall effect9. At first sight it seems impossible
to achieve BEC of excitons in electron–electron bilayers, because all
the fermions have repulsive interactions. Quantum well electrons
are, however, able to perform remarkable tricks when placed in a
strong perpendicular magnetic field.
The Lorentz force bends classical electron trajectories into cir-

cles—cyclotron orbits. In a 2D quantum system the kinetic energy of
these orbits is quantized into discrete units. The set of orbits with a
particular energy, a ‘Landau level’, is, however, highly degenerate
because the tiny cyclotron orbits can be positioned all across the 2D
plane. It turns out that the number of degenerate states in the
lowest-energy Landau level is equal to the number of quanta of
magnetic flux that pass through the electron layer. At high magnetic
field it is easy to enter a regime in which the total number of
electrons is less than the number of states in the lowest Landau level.
In Fig. 1, for example, we illustrate the circumstance in which the
number of electrons in each layer is one-third of the number of
available states; this is referred to as filling factor n ¼ 1/3.
BEC at strong magnetic fields in electron–electron bilayers is

most easily understood bymaking a particle–hole transformation in
one of the two layers; we have chosen the bottom layer for this in
Fig. 1. The particle–hole transformation10,11 is one in which we
simply keep track of the empty states in the Landau level rather than
the full ones. It is mathematically exact, changes the filling factor of
the transformed layer from n to 1 2 n, and changes the sign of
the carrier charge from negative to positive. The interaction of
holes with electrons in the untransformed layer is thus attractive.

Particle–hole transformations also change the sign of the kinetic
energy, from negative to positive for valence-band holes at zero
magnetic field for example. Because the kinetic energy is the same
for all electrons and holes in the lowest Landau level, BEC at strong
fields is just as likely to occur in electron–electron bilayers as in
electron–hole bilayers.

This last point is a subtle one; indeed, spontaneous coherence12

and superfluidity13 were predicted in electron–electron bilayers
without explicitly recognizing their equivalence to earlier predic-
tions14 for electron–hole bilayers. We emphasize, however, that
particle–hole transformation of a conduction-band Landau level
is completely equivalent to the much more familiar transformation
used to map unoccupied valence-band electron states into holes.

In Fig. 1 the number of holes in the bottom layer exceeds the
number of electrons in the top layer. To create an exciton BEC, these
populations should be nearly equal; one should therefore beginwith
half-filled Landau levels in each layer. Early experiments proved that
in this 1/2 þ 1/2 situation a bilayer electron system can exhibit a
quantized Hall effect15. In other words, its Hall resistance, measured
with electrical currents flowing in parallel through the two layers, is
precisely equal to h/e2, Planck’s constant divided by the square of
the electron charge. This remarkable effect results from a complex
interplay of Landau quantization, Coulomb interaction effects, and
imperfections in the 2D plane. Although observation of a quantized
Hall effect in the bilayer system at this filling factor demonstrates the
importance of interlayer Coulomb interactions, it does not on its
own suggest the existence of an exciton BEC. The hunt for BEC
requires different experimental tools.

Experimental evidence for exciton formation
In a bilayer 2D electron system the two quantumwells are separated
by a thin barrier layer. By adjusting the thickness and composition
of this barrier, it is possible for electrons in one layer to interact
strongly, via the Coulomb interaction, with the electrons in the

Figure 2 Tunnelling rate versus interlayer voltage in a bilayer electron system.
These traces are actual data, and are taken at magnetic fields where exciton
condensation is most expected (that is, one half-filling of the lowest Landau level per
layer). In the blue trace the layers are relatively far apart, whereas in the red trace
they are closer together. The dramatic difference between them is a direct indication
that a phase transition in the bilayer system occurs when the layer separation is
reduced below a critical value. The huge enhancement of the tunnelling rate at zero
energy in the red trace points to interlayer electron–hole correlations: that is, it
suggests that every electron is positioned opposite a hole into which it can easily
tunnel.

Figure 1 An electron–electron bilayer system in a strong magnetic field is equivalent
to an electron–hole bilayer. a, Cartoon depiction of two parallel layers of electrons.
b, In a magnetic field the kinetic energy of 2D electrons is quantized into discrete
Landau energy levels. Each such Landau level contains a huge number of
degenerate orbitals, here depicted schematically as a checkerboard of sites. If the
field is strong enough, all electrons reside in the lowest Landau level, and only
occupy a fraction (here one-third) of the available sites. c, A particle–hole
transformation applied to the lower electron layer places the emphasis on the
unoccupied sites—that is, the holes (coloured green) in that layer. This
transformation, which is formally exact and completely equivalent to the more
familiar transformation used to describe empty valence-band states in a
semiconductor as holes, changes the sign of the Coulomb interactions between
layers from repulsive to attractive. Exciton BEC occurs when holes in the lower layer
bind to electrons in the upper layer. This is most likely to occur when the number of
electrons and holes are equal, that is, when each layer is half-filled (this is not the
case in this figure).
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other layer, and yet have an extremely small probability of quantum
mechanically tunnelling through the barrier. Achieving this strong-
correlation, weak-tunnelling limit is key to the occurrence of
excitonic Bose condensation in the bilayer 2D electron system, as
we discuss further below.

Figure 2 shows measurements16 of the rate at which electrons
tunnel between the two layers of a bilayer 2D electron system as a
function of voltage difference. These data were taken at very low
temperatures and with the magnetic field adjusted to produce the
half-filling per layer condition. The two traces in the figure differ
only in the effective interlayer separation. For the blue trace, the
layers are relatively far apart. For voltages near zero, the tunnelling
rate is very small. This suppression of the tunnelling is not sensitive
to small changes in the magnetic field and grows more severe as the
temperature is reduced. Often referred to as a Coulomb gap, the
effect is a consequence of strong correlations between electrons—
within the individual layers. Tunnelling at low voltages (or, equiva-
lently, low energies) is suppressed because an electron attempting to
enter a 2D electron layer at highmagnetic field blunders disruptively
into the delicate dance being performed by the electrons in that layer
as they skilfully avoid one another. This clumsy entry can only
produce a highly excited, non-equilibrium state and can occur only
at high voltage. Although quite interesting in its own right, the effect
obviously does not suggest exciton condensation.

The red trace is Fig. 2 is dramatically different. A slight reduction
in the effective layer separation has produced a giant peak in the
tunnelling rate. In sharp contrast to the suppression effect in the
blue trace, this peak grows rapidly in height as the temperature is
reduced and is very sensitive to magnetic field. Small changes in the
field away from the value needed to produce a half-filled lowest
Landau level rapidly destroy the peak.

The stark difference between the two traces in Fig. 2 suggests that
a quantum phase transition occurs as a function of effective layer

separation. The strong peak in the tunnelling rate seen at
small separations is inconsistent with the arguments used to under-
stand the suppression effect at larger separations. Instead of being
unaware of the correlations in the layer about to be entered, the
tunnelling electron is apparently already participating in the dance.
Indeed, the peak suggests that all electrons are strongly correlated
with their neighbours in both layers. Moreover, the temperature and
magnetic-field dependence of the peak point to the existence of a
new and intrinsically bilayer collective state in which electrons in
one layer are always positioned opposite holes in the other layer.
Strong electron–hole correlations are necessary but not sufficient

for exciton condensation. To make the argument for excitonic BEC
in a bilayer 2D electron system more compelling, an experiment
demonstrating the transport of electron–hole pairs is needed. But
how does one move and detect neutral objects? The key is to note
that the uniform flow of excitons is equivalent to ordinary electrical
currents flowing in opposite directions in the two layers. Technical
tricks have allowed us to make independent electrical connections
to the individual layers in bilayer electron samples17. With these
contacts it is easy to arrange for equal and opposite currents to flow
in the two layers and directly test whether or not excitons are
available to perform the particle transport.
Figure 3 shows a cartoon version of what is expected from such a

counterflowmeasurement. The two traces represent the Hall voltages
expected in the two layers, neglecting all quantum effects except
exciton condensation. Because of the Lorentz force on a moving
charge, the Hall voltage is, in most cases, simply proportional to the
magnetic field. In a bilayer system with counterflowing currents, the
Hall voltages in the two layers will be of opposite sign.
If the distance between the two layers is too large, or if the

magnetic field is far from the half-filling per layer condition, exciton
condensation will not occur. If, however, the layers are closely
spaced and the magnetic field is just right, interlayer electron–
hole pairs will form and carry the counterflow current. The Hall
voltage in each layer should then drop to zero, as suggested in the
figure. This prediction can be understood in a variety of ways, most
simply by observing that excitons are neutral and thus feel no
Lorentz force. Without the Lorentz force the Hall voltage must
vanish. This remarkable prediction has recently been confirmed by
our own group at Caltech18 and the effect has been reproduced, in a
slightly different bilayer system, by researchers at Princeton19. The
same experiments do, however, show that the electron–hole trans-
port current flows with a weak but measurable dissipation. The
activated temperature dependence of the dissipation is inconsistent
with independent exciton transport, because the exciton diffusion
constant should then approach a constant as the temperature goes

Figure 3 Hall voltage measurements reveal exciton condensation. The two traces
schematically indicate the Hall voltages in the two electron layers when the electrical
currents flowing in them are oppositely directed. All quantum effects, except exciton
condensation, have been ignored. When the currents are carried by independent
charged particles in the two layers, non-zero Hall voltages must be present to
counteract the Lorentz forces. Because the currents are oppositely directed, these
voltages have opposite signs in the two layers. However, if exciton condensation
occurs at some magnetic field, the oppositely directed currents in the two layers are
carried by a uniform flow of excitons in one direction. Being charge-neutral, these
excitons experience no Lorentz force and the Hall voltage is expected to vanish. This
remarkable effect has very recently been definitively observed.

Figure 4 Motion of unpaired vortices leads to dissipation in excitonic superfluids.
The elementary excitations in quantum Hall excitonic superfluids are vortices that
carry electrical charge and topological charge. In an ideal system at low
temperatures vortices occur in bound pairs and do not contribute to the decay of
excitonic supercurrents. Disorder, however, is present in all real samples and is
capable of producing unpaired vortices. The weak dissipation observed in recent
counterflow experiments is associated with the activated transport of such unpaired
vortices.
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Exciton condensation
summary

„The Bose-Einstein condensation of excitons has a long 
history with seminal contributions from Leonid V. Keldysh. 
Despite numerous efforts, however, a compelling 
experimental evidence is still missing.”

R. Zimmermann
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