Wstęp do Optyki i Fizyki Materii Skondensowanejl

"BUT THIS IS THE SIMPLIFIED VERSION FOR THE GENERAL PUBLIC."

1100-3003

Ciało stałe 5

Wydział Fizyki UW Jacek.Szczytko@fuw.edu.pl Piotr.Fita@fuw.edu.pl

Nasz cel:

Twierdzenie Blocha

$$\varphi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}) e^{i\vec{k}\vec{r}}$$

pasm do pierwszej strefy

Landolt-Boernstein

$$\varphi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}\vec{r}}u_{n,\vec{k}}(\vec{r})$$

Wektor \vec{k} nie jest pędem (operator pędu $\hat{p} = -i\hbar\nabla$)

$$\hat{p}\varphi_{n,\vec{k}}(\vec{r}) = -i\hbar\left(u_{n,\vec{k}}\ i\vec{k} + \nabla u_{n,\vec{k}}(\vec{r})\right)e^{i\vec{k}\vec{r}} \neq \hbar\vec{k}\varphi_{n,\vec{k}}(\vec{r})$$

Funkcja Blocha w równaniu Schrödingera:

$$\Delta \varphi_{n,\vec{k}}(\vec{r}) = \dots = \left(\Delta u_{n,\vec{k}}(\vec{r}) + 2i\vec{k}\nabla u_{n,\vec{k}}(\vec{r}) - \vec{k}^2 u_{n,\vec{k}}(\vec{r})\right)e^{i\vec{k}\vec{r}}$$

Po wstawieniu do równania i uproszczeniu przez $e^{i\vec{k}\vec{r}}$ dostajemy równanie na $u_{n\vec{k}}(\vec{r})$:

$$\left(-\frac{\hbar^2}{2m}\,\Delta - \frac{\hbar}{m}\,i\vec{k}\nabla + \frac{\hbar^2}{2m}\vec{k}^2\right)u_{n,\vec{k}}(\vec{r}) = \left(\frac{\hat{p}^2}{2m} + \frac{\hbar}{m}\,\vec{k}\hat{p} + \frac{\hbar^2\vec{k}^2}{2m}\right)u_{n,\vec{k}}(\vec{r})$$

Równanie Schrodingera na obwiednię $u_{n,\vec{k}}(\vec{r})$:

$$\left(\frac{\hat{p}^2}{2m} + \frac{\hbar}{m} \vec{k}\hat{p} + V(\vec{r})\right)u_{n,\vec{k}}(\vec{r}) = \left(E_n - \frac{\hbar^2\vec{k}^2}{2m}\right)u_{n,\vec{k}}(\vec{r})$$

$$\varphi_{n,\vec{k}}(\vec{r}) = e^{i\vec{k}\vec{r}}u_{n,\vec{k}}(\vec{r})$$

Wektor \vec{k} nie jest pędem (operator pędu $\hat{p} = -i\hbar \nabla$)

$$\hat{p}\varphi_{n,\vec{k}}(\vec{r}) = -i\hbar\left(u_{n,\vec{k}}\ i\vec{k} + \nabla u_{n,\vec{k}}(\vec{r})\right)e^{i\vec{k}\vec{r}} \neq \hbar\vec{k}\varphi_{n,\vec{k}}(\vec{r})$$

Funkcja Blocha w równaniu Schrödingera:

$$\Delta \varphi_{n,\vec{k}}(\vec{r}) = \dots = \left(\Delta u_{n,\vec{k}}(\vec{r}) + 2i\vec{k}\nabla u_{n,\vec{k}}(\vec{r}) - \vec{k}^2 u_{n,\vec{k}}(\vec{r}) \right) e^{i\vec{k}\vec{r}}$$

Po wstawieniu do równania i uproszczeniu przez $e^{i\vec{k}\vec{r}}$ dostajemy równanie na $u_{n\vec{k}}(\vec{r})$:

$$\left(-\frac{\hbar^2}{2m}\,\Delta - \frac{\hbar}{m}\,i\vec{k}\nabla + \frac{\hbar^2}{2m}\vec{k}^2\right)u_{n,\vec{k}}(\vec{r}) = \left(\frac{\hat{p}^2}{2m} + \frac{\hbar}{m}\vec{k}\hat{p} + \frac{\hbar^2\vec{k}^2}{2m}\right)u_{n,\vec{k}}(\vec{r})$$

Równanie Schrodingera na obwiednię $u_{n,\vec{k}}(\vec{r})$:

$$\left(\frac{\hat{p}^2}{2m} + \frac{\hbar}{m}\vec{k}\hat{p} + V(\vec{r})\right)u_{n,\vec{k}}(\vec{r}) = \left(E_n - \frac{\hbar^2\vec{k}^2}{2m}\right)u_{n,\vec{k}}(\vec{r})$$

Równanie Schrodingera na obwiednię $u_{n,\vec{k}}(\vec{r})$:

$$\left(\frac{\hat{p}^2}{2m} + \frac{\hbar}{m}\,\vec{k}\hat{p} + V(\vec{r})\right)u_{n,\vec{k}}(\vec{r}) = \left(E - \frac{\hbar^2\vec{k}^2}{2m}\right)u_{n,\vec{k}}(\vec{r})$$

Jest to tzw. równanie **kp** wykorzystywane do obliczeń energii i funkcji falowych wokół pewnego znanego rozwiązania dla $\vec{k} = \vec{k}_0$.

Pełny hamiltonian

$$\widehat{H}_{\vec{k}}u_{n,\vec{k}}(\vec{r}) = \left(\widehat{H}_{\vec{k}_0} + \widehat{H}'\right)u_{n,\vec{k}}(\vec{r}) = E_n(\vec{k})u_{n,\vec{k}}(\vec{r})$$

Zaburzenie:

$$\widehat{H}' = \frac{\hbar}{m} \left(\vec{k} - \vec{k}_0 \right) \hat{p}$$

Funkcję $u_{n,\vec{k}}(\vec{r})$ oraz energię $E_n(\vec{k})$ znajdujemy w rachunku zaburzeń

Rozwijamy
$$E_n(\vec{k}) = \left(E_n - \frac{\hbar^2 \vec{k}^2}{2m}\right)$$
 wokół punktu ekstremalnego, np. $k = 0$:
 $E_n(\vec{k}) = E_n(0) + H'_{nn} + \sum_{l \neq n} \frac{|H'_{nl}|^2}{E_n(0) - E_l(0)} + \cdots$

Dla

$$H'_{nl} = \int u_{n,0}(\vec{r})\hat{H}' \, u_{l,0}(\vec{r}) \, d^3r = -\frac{i\hbar}{m} \vec{k} \int u_{n,0}(\vec{r}) \nabla u_{l,0}(\vec{r}) \, d^3r = \sum_{i=1}^3 a_i k_i$$

Liniowe w \vec{k}

$$E_{n}(\vec{k}) = E_{n}(0) + \sum_{i=1}^{3} a_{i}k_{i} + \sum_{i=1}^{3} \sum_{j=1}^{3} \left(\frac{\hbar^{2}}{2m} \,\delta_{ij} + b_{ij}\right) k_{i}k_{j} + \cdots$$

W ekstremum człony liniowe znikają
$$E_{n}(\vec{k}) = E_{n}(0) + \sum_{i=1}^{3} \sum_{j=1}^{3} \left(\frac{1}{m^{*}}\right) \frac{\hbar^{2}k_{i}k_{j}}{2} + \cdots$$

$$E_n(\vec{k}) = E_n(0) + \sum_{i=1}^3 \sum_{j=1}^3 \left(\frac{1}{m_{ij}^*}\right) \frac{\hbar^2 k_i k_j}{2} + \cdots$$

Wprowadzamty tzw. tensor odwrotności masy efektywnej:

$$\frac{1}{m_{ij}^*} = \frac{\delta_{ij}}{m} + \frac{2\hbar^2}{m^2} \sum_{l \neq n} \frac{\int u_{n,0} \frac{\partial}{\partial x_i} u_{l,0} d^3 r \cdot \int u_{n,0} \frac{\partial}{\partial x_j} u_{l,0} d^3 r}{E_n(0) - E_l(0)}$$

Tensor jest symetryczny ($m_{ij} = m_{ji}$). Jeśli ekstremum energii jest w punkcie $\Gamma(k=0)$ to powierzchnia stałej energii jest elipsoidą w przestrzeni \vec{k} , która po sprowadzeniu do osi głównych ma postać:

$$E_n(\vec{k}) \approx E_n(0) + \frac{\hbar^2}{2} \left(\frac{k_1^2}{m_1^*} + \frac{k_2^2}{m_2^*} + \frac{k_3^2}{m_3^*} \right)$$

Gdzie m_i^* to masy efektywne w kierunku osi głównych.

Energia $E_n(\mathbf{k})$ wokół ekstremum dla kryształu jednoosiowego (np. GaN):

$$E_n(\vec{k}) = E_n(0) + \frac{\hbar^2}{2} \left(\frac{k_1^2 + k_2^2}{m_{\perp}^*} + \frac{k_3^2}{m_{\parallel}^*} \right)$$

Dla kryształu kubicznego:

$$E_n(\vec{k}) = E_n(0) + \frac{\hbar^2 k^2}{2m^*}$$
 tzw. pasmo **sferyczne**

W pobliżu ekstremum (np. punkt $\Gamma(k=0)$) możemy ograniczyć się do przybliżenia parabolicznego – **pasmo parabloczne**.

W ogólności w zależności energii od wektora falowego występują człony wyższego rzędu, które zostały zaniedbane (wyższe rzędy rachunku zaburzeń).

W ogólności energia elektronu jest funkcją składowych wektora falowego $k = (k_1, k_2, k_3)$. Powierzchnia stałej energii w ogólnym przypadku może mieć skomplikowany charakter, a jej kształt zależy od wszystkich pasm.

Badanie tensora masy efektywnej to jeden z głównych problemów fizyki ciała stałego.

Energia $E_n(\mathbf{k})$ wokół ekstremum

Struktura pasmowa ciał stałych

Przykłady:

Struktura pasmowa ciał stałych

The energy $E_n(\mathbf{k})$ around extremum for the uniaxial crystal (np. GaN):

$$E_n(\vec{k}) = E_n(0) + \frac{\hbar^2}{2} \left(\frac{k_1^2 + k_2^2}{m_{\perp}^*} + \frac{k_3^2}{m_{\parallel}^*} \right)$$

For a cubic crystal:

Elektrony i dziury

Elektrony i dziury

$$f_d = \sum_{\substack{i=1\\i\neq j}}^{2N} f(\mathbf{k}_i) \qquad \mathbf{k}_d = \sum_{\substack{i=1\\i\neq j}}^{2N} \mathbf{k}_i = \sum_{\substack{i=1\\i\neq j}}^{2N} \mathbf{k}_i - \mathbf{k}_e = -\mathbf{k}_e$$

 $E_n(\vec{k}) = E_n(0) \pm \frac{\hbar^2 k^2}{2m^*}$

 $\mathbf{v}_d(\mathbf{k}_e) = -\mathbf{v}_e(\mathbf{k}_e)$ $\mathbf{v}_d(\mathbf{k}_d) = \mathbf{v}_e(\mathbf{k}_e)$

Tight-Binding Approximation

FIGURE 2.17. Valence bands constructed from p orbitals. (a) Lattice of p_z orbitals. (b) Band structure of the p_z orbitals only; the band is 'light' along k_z to the right and 'heavy' along k_x (or k_y) to the left. (c) Total bands from all three p orbitals, showing a doubly degenerate 'heavy' band and a single 'light' band.

Struktura pasmowa

Yu, Cardona Fundametals of semiconductors

Fig. 2.14. Electronic band structure of GaAs calculated by the pseudopotential technique. The energy scale and notation (double group) are similar to those for Fig. 2.13 [Ref. 2.8, p. 103]

Efekt Halla

Siła Lorentza:
$$\vec{F} = q\vec{v} \times \vec{B}$$

Model Drudego: $m^* \left\{ \frac{d\vec{v}}{dt} + \frac{\vec{v}}{\tau} \right\} = q\vec{E} + q\vec{v} \times \vec{B}$
 $\tau - \text{czas relaksacji pędowej (scattering time)}$
 $m^* \left\{ \frac{dv_x}{dt} + \frac{v_x}{\tau} \right\} = qE_x + qv_yB$
 $m^* \left\{ \frac{dv_y}{dt} + \frac{v_y}{\tau} \right\} = qE_y - qv_xB$
Dostajemy:
 $v_y \{1 + \omega_c^2 \tau^2\} = \frac{q\tau}{m^*} (E_y - \omega_c \tau E_x)$

Dostajemy:

$$v_{y}\{1+\omega_{c}^{2}\tau^{2}\} = \frac{q\tau}{m^{*}} \left(E_{y}-\omega_{c}\tau E_{x}\right)$$
$$\omega_{c} = \frac{qB}{m^{*}} \qquad \mu = \frac{q\tau}{m^{*}} \qquad j_{y} = 0 = \sum_{i} q_{i}nv_{y}^{i}$$

Efekt Halla

Zaniedbując $\omega_c^2 \tau^2 \ll 1$ i biorąc pod uwagę przewodnictwo elektronów *n* i dziur *p*:

$$R_{H} = \frac{E_{y}}{j_{x}B} = \frac{1}{|e|} \frac{p\mu_{h}^{2} - n\mu_{c}^{2}}{(n\mu_{c} + p\mu_{h})^{2}}$$

Np. dla $p = 0 \mod R_H = -\frac{1}{en}$ stała Halla

Potencjał kulombowski (ekscyton)

NAJPIERW:

Potencjał kulombowski 3D w półprzewodniku o stałej dielektrycznej ε_r , masie efektywnej m^* :

 $V(r) = -\frac{e^2}{4\pi\varepsilon_r\varepsilon_0}\frac{1}{r}$ $Ry = \left(\frac{e^2}{4\pi\varepsilon_0}\right)^2 \frac{m}{2\hbar^2} = \frac{\hbar^2}{2ma_B^2} = \frac{1}{2}\frac{e^2}{4\pi\varepsilon_0a_B} = 13.6 \text{ eV}$ $a_B = \frac{4\pi\varepsilon_0\hbar^2}{m_0e^2} = 0.5 \text{ Å}$ $E_n = -Ry\frac{1}{n^2}$ $E_n = -\left(\frac{m^*}{n}\right)\frac{1}{2}Ry\frac{1}{n^2}$

$$E_n = -\left(\frac{m^*}{m_0}\right) \frac{1}{\varepsilon_r^2} Ry \frac{1}{n^2}$$
$$a_B^* = \frac{4\pi\varepsilon_r\varepsilon_0\hbar^2}{m_0e^2} \left(\frac{m_0}{m^*}\right) = a_B\varepsilon_r \left(\frac{m_0}{m^*}\right)$$

Metoda ciasnego wiązania - wnioski

W ramach metody ciasnego wiązania powstawanie pasm wyjaśniamy jako efekt wzajemnego oddziaływania stanów atomowych poszczególnych atomów tworzących ciało stałe. Stany atomowe klasyfikujemy jako należące do odpowiednich powłok:

Nieparzysta liczba elektronów na komórkę (metal)

Parzysta liczba elektronów na komórkę (niemetal) Parzysta liczba elektronów na komórkę ale przekrywające się pasma (metale II grupy, np. Be → slajd później!)

Gęstoś stanów 2D - grafen

Liniowa zależność dyspersyjna w grafenie:

Metoda ciasnego wiązania przy uwzględnieniu odziaływania z najbliższymi sąsiadami [P. R. Wallace, "The Band Theory of Graphite", Physical Review 71, 622 (1947).] daje :

$$E(\vec{k}) = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2\frac{k_y a}{2} + 4\cos\frac{k_y a}{2} \cdot \cos\frac{k_x \sqrt{3}a}{2}\right)} \approx \hbar \tilde{c} |\vec{k} - \vec{k}_i|$$

Gęstoś stanów 2D - grafen

Liniowa zależność dyspersyjna w grafenie:

Metoda ciasnego wiązania przy uwzględnieniu odziaływania z najbliższymi sąsiadami [P. R. Wallace, "The Band Theory of Graphite", Physical Review 71, 622 (1947).] daje :

$$E(\vec{k}) = \pm \sqrt{\gamma_0^2 \left(1 + 4\cos^2\frac{k_y a}{2} + 4\cos\frac{k_y a}{2} \cdot \cos\frac{k_x \sqrt{3}a}{2}\right)} \approx \hbar \tilde{c} |\vec{k} - \vec{k}_i$$

Domieszkowanie półprzewodników

Półprzewodniki

II		IV	V	VI
Be	В	С	Ν	0
Mg	AI	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те

Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

Rozkłady statystyczne

Prawdopodobieństwo obsadzenia stanu kwantowego o energi
iE
 $E_{\rm F}$ – potencjał chemiczny

Anyons – eg. composite fermions $|\Psi_1\Psi_2\rangle = e^{i\theta}|\Psi_2\Psi_1\rangle$ Slave fermions (chargon, holon, spinon) = fermion+bozon with the charge-spin separation

Rozkład Fermiego-Diraca

Enrico Fermi 1901 – 1954

Paul Adrian Maurice Dirac 1902 – 1984

Rozkład Fermiego-Diraca

Rozkład Fermiego-Diraca

Rozkład Fermiego-Diraca

Prawdopodobieństwo obsadzenia stanu kwantowego

 E_F – potencjał chemiczny

Rozkład Fermiego-Diraca

Prawdopodobieństwo obsadzenia stanu kwantowego

 E_F – potencjał chemiczny

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przew udzenia z pasma walencyjnego.

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Jaka jest koncentracja nośników dla T>0?

W półprzewodnikach samoistnych w warunkach równowagi termodynamicznej, elektrony w paśmie przewodnictwa pojawiają się wyłącznie wskutek wzbudzenia z pasma walencyjnego.

Eg\T	77K	300K	1200K	materiał	
0,25eV	10 ⁹ cm ⁻³	$10^{16} \mathrm{cm}^{-3}$	10 ¹⁸ cm ⁻³	InSb PbSe	
1eV	-	$10^{10} \mathrm{cm}^{-3}$	10 ¹⁷ cm ⁻³	Ge, Si, GaAs	hewsk
4eV	-	-	10 ¹¹ cm ⁻³	ZnS, SiC, GaN, ZnO, C (diament)	R. Stepi

Koncentracja samoistna typowych półprzewodników

W powyższej tabelce wartości poniżej 10¹⁰ cm⁻³ nie mają sensu gdyż koncentracja zanieczyszczeń, a co za tym idzie koncentracja wynikająca z nieintencjonalnego domieszkowania jest większa

$$n = p = \sqrt{N_c N_v} e^{-\frac{Eg}{2k_B T}} \qquad n = N_c e^{\frac{E_F - E_c}{k_B T}}$$
$$p = N_v e^{-\frac{E_F - E_v}{k_B T}}$$
W jaki sposób kontrolować koncentrację nośników?

W półprzewodnikach spotykamy szereg odstępstw od idealnej struktury kryształu:

· defekty struktury kryształu, luki, atomy w położeniu międzywęzłowym, dyslokacje powstałe np. w procesie wzrostu.

· obce atomy (**domieszki**) wprowadzane intencjonalnie lub wskutek zanieczyszczeń (poziom czystości)

Wskutek ich występowania pojawiają się między innymi:

- · stany dozwolone w przerwie wzbronionej na skutek odstępstw od potencjału idealnej sieci
- · ładunki przestrzenne w izolatorach
- · ekranowanie przez swobodne nośniki

Stany domieszkowe dzielimy na:

 · głębokie –potencjał krótkozasięgowy, zlokalizowany głównie w obszarze jednej komórki elementarnej – np. luka, domieszka izoelektronowa (o tej samej wartościowości co macierzysty atom np. N w InP).

· płytkie - głownie potencjał długozasięgowy – kulombowski

Model wodoropodobny

Atom o wartościowości wyższej o jeden niż atom macierzysty staje się źródłem potencjału kulombowskigo zmodyfikowanego stałą dielektryczną kryształu, wywołanego dodatkowym protonem w jądrze. Dodatkowy elektron będący w paśmie przewodnictwa odczuwa ten potencjał. Jego stany są opisane równaniem masy efektywnej:

$$T = -\frac{\hbar^2}{2m^*}\Delta \qquad U = -\frac{1}{4\pi\varepsilon_0}\frac{e^2}{\varepsilon_r r}$$

 $[T+U]\phi(\vec{r}) = E\phi(\vec{r})$

II	Ш	IV	V	VI
Be	В	С	Ν	0
Mg	AI	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те

Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

Model wodoropodobny

Ostatecznie zagadnienie sprowadza się do problemu atomu wodoru z nośnikiem swobodnym o masie m*, w ośrodku dielektrycznym ze stałą ε i małą "poprawką" do potencjału.

$$E_n = -\left(\frac{m^*}{m_0}\right) \frac{1}{\varepsilon_r^2} Ry \frac{1}{n^2}$$

$$a_B^* = \frac{4\pi\varepsilon_r\varepsilon_0\hbar^2}{m_0e^2} \left(\frac{m_0}{m^*}\right) = a_B\varepsilon_r \left(\frac{m_0}{m^*}\right)$$

Dla typowych półprzewodników $m_e^* \approx 0.1 m_e$ $\varepsilon_s \approx 10$:

Dla wodoru Ry = 13.6 eV oraz $a_B = 0.053 \text{ nm}$

Dla GaAs $Ry^* \approx 5$ meV oraz $a_B^* \approx 10$ nm

П	III	IV	V	VI
Be	В	С	N	0
Mg	AI	Si	Ρ	S
Zn	Ga	Ge	As	Se
Cd	In	Sn	Sb	Те

Grupa IV: diament, Si, Ge Grupy III-V: GaAs, AlAs, InSb, InAs... Grupy II-VI: ZnSe, CdTe, ZnO, SdS...

Spektroskopia w dalekiej podczerwieni

Model wodoropodobny

jonizacja domieszki

Domieszkowanie

Koncentracja nośników w półprzewodniku niesamoistnym

Rozważmy półprzewodnik, w którym:

- $N_{\!A}$ koncentracja akceptorów
- N_D koncentracja donorów
- p_A koncentracja neutralnych akceptorów
- n_D koncentracja neutralnych donorów
- n_c koncentracja elektronów w paśmie przewodnictwa
- p_v koncentracja dziur w paśmie walencyjnym

Z warunku neutralności kryształu: $n_c + (N_A - p_A) = p_v + (N_D - n_D)$ $n_c + n_D = (N_D - N_A) + p_v + p_A$

ENERGIA ELEKTRONÓW

Domieszkowanie

Dioda – czyli złącze p-n

Dioda – czyli złącze p-n

Flat band

Dioda – czyli złącze p-n

Domieszkowanie półprzewodników

Figure 9.3: The energy diagram for the transition region of a p-n junction.

Obsadzenie poziomów domieszkowych

dla półprzewodników skompensowanych w niskich temperaturach energia aktywacji termicznej wynosi E_D , a nie $\frac{E_D}{2}$

jeśli domieszek jest dużo, tak, że funkcje falowe związanych na nich elektronów się przekrywają – energie jonizacji maleją, tworzą się pasma domieszkowe

przy koncentracjach domieszek rzędu:

$$a_B^* \cdot (N_D)^{\frac{1}{3}} \approx 0.26$$

zachodzi przejście fazowe niemetal-metal (tzw. przejście Motta)

Obsadzenie poziomów domieszkowych

Fonony

Przypomnienie – ruch jednowymiarowego łańcucha złożonego na przemian z różnych mas $M_1 > M_2$:

Potencjał periodyczny:

Funkcja falowa:

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} \exp(i\vec{G}\vec{r}) \qquad \qquad \varphi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r})$$

Równanie Schrödingera: $\left(\frac{\hat{p}^2}{2m} + V(\vec{r})\right)\varphi(\vec{r}) = E \varphi(\vec{r})$

Wstawiamy:

$$\sum_{\vec{k}} \frac{\hbar^2 \vec{k}^2}{2m} C_{\vec{k}} \exp(i\vec{k}\vec{r}) + \sum_{\vec{k},\vec{G}} C_{\vec{k}} V_{\vec{G}} \exp[i(\vec{k}+\vec{G})\vec{r}] = E \sum_{\vec{k}} C_{\vec{k}} \exp(i\vec{k}\vec{r})$$

Suma po wszystkich \vec{k} , \vec{G} , stąd:

$$\sum_{\vec{k},\vec{G}} C_{\vec{k}} V_{\vec{G}} \exp[i(\vec{k}+\vec{G})\vec{r}] = \dots \vec{k}+\vec{G} \to \vec{k} \dots = \sum_{\vec{k},\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \exp[i\vec{k}\vec{r}]$$

Stąd:

$$\sum_{\vec{k}} \exp(i\vec{k}\vec{r}) \left[\left(\frac{\hbar^2 \vec{k}^2}{2m} - E \right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \right] = 0 \quad \text{Dla dowolnego } \vec{r}.$$

Potencjał periodyczny:

Funkcja falowa:

$$V(\vec{r}) = \sum_{\vec{G}} V_{\vec{G}} \exp(i\vec{G}\vec{r})$$

$$\varphi(\vec{r}) = \sum_{\vec{k}} C_{\vec{k}} \exp\left(i\vec{k}\vec{r}\right)$$

$$\sum_{\vec{k}} \exp(i\vec{k}\vec{r}) \left[\left(\frac{\hbar^2 \vec{k}^2}{2m} - E \right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k}-\vec{G}} V_{\vec{G}} \right] = 0 \quad \text{Dla dowolnego } \vec{r}.$$

$$\left(\frac{\hbar^2 \vec{k}^2}{2m} - E\right) C_{\vec{k}} + \sum_{\vec{G}} C_{\vec{k} - \vec{G}} V_{\vec{G}} = 0$$

Równanie na współczynniki $C_{\vec{k}}$ Okazuje się, że jest wspólne dla $C_{\vec{k}-\vec{G}_1}, C_{\vec{k}-\vec{G}_2}, C_{\vec{k}-\vec{G}_3}$ Równanie dla

$$\psi_{n,\vec{k}}(\vec{r}) = \sum_{\vec{G}} C(\vec{k} - \vec{G}) e^{-i\vec{G}\vec{r}} e^{i\vec{k}\vec{r}}$$

Równanie dla "pakietu f. Blocha"

$$\varphi(\vec{r}) = \sum_{\vec{k}} \ \psi_{n,\vec{k}}(\vec{r})$$

Twierdzenie Blocha

Funkcje Blocha, których wektory falowe różnią się o wektor przestrzeni odwrotnej \vec{G} są takie same! $\psi_{n,\vec{k}+\vec{G}}(\vec{r}) = \psi_{n,\vec{k}}(\vec{r})$ $\vec{G} = h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3$

Dowód:

$$.. \Rightarrow \psi_{n,\vec{k}}(\vec{r}) = \sum_{\vec{G}} C(\vec{k} - \vec{G}) e^{-i\vec{G}\vec{r}}$$

$$\begin{split} \psi_{n,\vec{k}+\vec{G}}(\vec{r}) &= u_{n,\vec{k}+\vec{G}}(\vec{r}) \, e^{i(\vec{k}+\vec{G})\vec{r}} = \sum_{\vec{G}'} C\left(\vec{k}+\vec{G}-\vec{G}'\right) e^{-i\vec{G}'\vec{r}} \, e^{i(\vec{k}+\vec{G})\vec{r}} = \cdots \\ &= \sum_{\vec{G}''} C\left(\vec{k}-\vec{G}''\right) e^{-i\vec{G}''\vec{r}} \, e^{i(\vec{k})\vec{r}} = \psi_{n,\vec{k}}\left(\vec{r}\right) \\ \text{Co z energiq?} & \left(\frac{\vec{p}^2}{2m_0} + V(\vec{r})\right) \psi_{n,\vec{k}}(\vec{r}) = E\left(n,\vec{k}\right) \, \psi_{n,\vec{k}}(\vec{r}) \\ & \left(\frac{\vec{p}^2}{2m_0} + V(\vec{r})\right) \psi_{n,\vec{k}+\vec{G}}(\vec{r}) = E\left(n,\vec{k}+\vec{G}\right) \, \psi_{n,\vec{k}+\vec{G}}(\vec{r}) \end{split}$$

Twierdzenie Blocha

Funkcje Blocha, których wektory falowe różnią się o wektor przestrzeni odwrotnej $ec{G}$ są takie

same!

Dowód:

 $\psi_{n,\vec{k}+\vec{G}}(\vec{r}) = \psi_{n,\vec{k}}(\vec{r})$ $\vec{G} = h\vec{g}_1 + k\vec{g}_2 + l\vec{g}_3$

$$... \Rightarrow \psi_{n,\vec{k}}(\vec{r}) = \sum_{\vec{G}} C(\vec{k} - \vec{G}) e^{-i\vec{k}\vec{r}}$$

$$\begin{split} \psi_{n,\vec{k}+\vec{G}}(\vec{r}) &= u_{n,\vec{k}+\vec{G}}(\vec{r}) \, e^{i(\vec{k}+\vec{G})\vec{r}} = \sum_{\vec{G}'} C\left(\vec{k}+\vec{G}-\vec{G}'\right) e^{-i\vec{G}'\vec{r}} \, e^{i(\vec{k}+\vec{G})\vec{r}} = \cdots \\ &= \sum_{\vec{G}''} C\left(\vec{k}-\vec{G}''\right) e^{-i\vec{G}''\vec{r}} \, e^{i(\vec{k})\vec{r}} = \psi_{n,\vec{k}}\left(\vec{r}\right) \\ \text{Co z energiq?} & \left(\frac{\vec{p}^2}{2m_0} + V(\vec{r})\right) \psi_{n,\vec{k}}(\vec{r}) = E\left(n,\vec{k}\right) \, \psi_{n,\vec{k}}(\vec{r}) \\ & \left(\frac{\vec{p}^2}{2m_0} + V(\vec{r})\right) \psi_{n,\vec{k}+\vec{G}}(\vec{r}) = E\left(n,\vec{k}+\vec{G}\right) \, \psi_{n,\vec{k}+\vec{G}}(\vec{r}) \end{split}$$

Energia jest periodyczną funkcją wektora falowego \vec{k} !

 $\Rightarrow E(n, \vec{k}) = E(n, \vec{k} + \vec{G})$

Twierdzenie Blocha

Właściwości funkcji Blocha: $\varphi_{n,\vec{k}}(\vec{r}) = u_{n,\vec{k}}(\vec{r}) e^{i\vec{k}\vec{r}}$

- 1. $u_{n,\vec{k}}(\vec{r}+\vec{R}) = u_{n,\vec{k}}(\vec{r})$
- 2. $\varphi_{n,\vec{k}+\vec{G}}(\vec{r}) = \varphi_{n,\vec{k}}(\vec{r})$
- $3. \quad E_n(\vec{k}) = E_n(\vec{k} + \vec{G})$

Dla potencjału periodycznego dążącego do zera (model prawie swobodnych elektronów):

Przy tablicy

 $E_n(\vec{k}) = E_n(\vec{k} + \vec{G}) \approx \frac{\hbar^2}{2m} |\vec{k} + \vec{G}|^2$

Kwazi-cząstki kwazi-wszechświata

Matematyka i przyroda

Dialog z przyrodą musi być prowadzony w języku matematyki, w przeciwnym razie przyroda nie odpowiada na nasze pytania. prof. **Michał Heller**

Hubble Ultra Deep Field 2014

Pierwiastki

Group	1	2]	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	1 H																		2 He
2	з Li	4 Be												5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg												13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
			1															I	

	*	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*Lanthanoids		La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
	**	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**Actinoids		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Cząstki elementarne

LHC CERN

Cząstki elementarne

LHC CERN

CALL OF MELL	some rarges and their reperces											
Cząst	Category	Particle Name	Symbol	Anti- particle	Mass (MeV/c ²)	B	L _e	Lµ	L,	5	Lifetime(s)	Principal Decay Modes ^a
	Leptons	Electron	e*	e+	0,511	0	+1	0	ö	0	Stable	
		Electron- neutrino	v,	$\overline{\nu}_{e}$	$<7~{\rm eV}/\epsilon^2$	0	+1	0	θ	0	Suble	
		Muon	μ~	μ^+	105.7	0	0	+1	0	0	2.20×10^{-6}	$e^{-}\overline{\nu}_{e}\nu_{\mu}$
		Muon- neutrino	ν_{μ}	$\overline{ u}_{\mu}$	< 0.3	0	0	+1	0	0	Stable	
		Tau	τ-	τ^+	1.784	0	0	0	+1	0	$< 4 \times 10^{-13}$	$\mu^- \overline{\nu}_{\mu} \nu_{\tau}, e^- \overline{\nu}_e \nu_{\tau}$
		Tau- neutrino	v ₇	$\overline{\nu}_{\tau}$	< 30	0.	0	0	+1	0	Stable	ţ
	Hadrons											
	Mesons	Pion	π^+	π^{-}	139.6	0	0	0	0	0	2.60×10^{-8}	$\mu^+ \nu_{\mu}$
			π^0	Self	135.0	0	0	0	0	0	0.83×10^{-16}	2γ
		Kaon	K+	К-	493.7	0	0	0	0	+1	1.24×10^{-8}	$\mu^+ \nu_\mu, \pi^+ \pi^0$
			K_s^{α}	\overline{K}_{s}^{0}	497.7	0	0	0	0	+1	0.89×10^{-10}	$\pi^{+}\pi^{-}, 2\pi^{0}$
105	200		K _L ⁰	\overline{K}_{L}^{0}	497.7	0	0	0	0	+1	5.2×10^{-8}	$\pi^{\pm} e^{\mp} \overline{\nu}_{e^{+}} 3\pi^{0}$
particles												$\pi^{\pm}\mu^{\mp}\overline{\nu}_{\mu}$
Part		Eta	η	Self	548.8	0	0	0	0	0	$< 10^{-18}$	$2\gamma, 3\pi^{0}$
			η^{2}	Self	958	Ø	0	0	0	0	2.2×10^{-21}	$\eta \pi^+ \pi^-$
	Baryons	Proton	Р	P	938.3	+1	0	0	0	0	Stable	
		Neutron	n	n	939.6	+1	0.	0	0	0	614	$pe^-\overline{\nu}_e$
		Lambda	Λ^0	Λ^0	1 115.6	+1	0	0	0	-1	2.6×10^{-10}	pπ ⁻ , nπ ⁰
		Sigma	Σ^+	$\overline{\Sigma}^{-}$	1.189.4	+1	0	0	0	-1	0.80×10^{-10}	pπ ⁰ , nπ ⁺
			Σ^{0}	Σ^{0}	1.192.5	+1	0	θ	0	-1	6×10^{-20}	$\Lambda^0 \gamma$
			Σ^{-}	$\overline{\Sigma}^{+}$	1 197.3	+1	0	0	0	-1	1.5×10^{-10}	$n\pi^{-}$
		Delta	Δ^{++}	$\overline{\Delta}$	1 230	+1	0	0	0	0	6×10^{-24}	$p\pi^+$
			Δ^+	$\overline{\Delta}$ -	1 231	+1	0	0	0	0	6×10^{-24}	$p\pi^0$, $n\pi^+$
			Δ^{0}	$\overline{\Delta}{}^{0}$	1 232	+1	0	0	0	0	6×10^{-24}	nπ ⁰ , pπ ⁻
			Δ-	$\overline{\Delta}^+$	1 234	+1	0	0	0	0	6×10^{-24}	$n\pi$
		Xi	Ξ 0	20	1 315	+1	0	0	0	-2	2.9×10^{-10}	$\Lambda^0 \pi^0$
			Ξ-	₫+	1 321	+1	0	0	0	-2	1.64×10^{-10}	$\Lambda^0 \pi^-$
		Omega	Ω-	Ω^+	1 672	+1	0	0	0	-3	0.82×10^{-10}	$\Xi^{-}\pi^{0}, \Xi^{0}\pi^{-}, \Lambda^{0}K^{-}$

⁴ Notations in this column such as $p\pi \rightarrow n + \pi^0$ mean two possible decay modes. In this case, the two possible decays are $\Lambda^0 \rightarrow p + \pi^+$ and $\Lambda^0 \rightarrow n + \pi^0$.

2019-01-24

©2004 Thomson - Brooks/Cole

Cząstki elementarne - kwarki

The Nobel Prize in Physics 1969

Murray Gell-Mann

The Nobel Prize in Physics 1969

Murray Gell-Mann

The Nobel Prize in Physics 1969 was awarded to Murray Gell-Mann *"for his contributions and discoveries concerning the classification of elementary particles and their interactions"*.

Zweig,	George
43 - M &	

George Zweig [edytuj]

George Zweig (ur. w roku 1937 w Moskwie, w rodzinie żydowskiej) - fizyk, był początkowo uczniem Richarda Feynmana, lecz z czasem poświęcił się neurobiologii. W roku 1959 ukończył Uniwersytet Michigan, a w roku 1964 Politechnikę Kalifornijską. Wiele lat spędził jako pracownik naukowy prowadząc badania naukowe w amerykańskim Narodowym Laboratorium Los Alamos i Politechnice w Massachusetts. Od roku 2004 zajął się pracą w przemyśle finansowym.

George Zweig

W roku 1964 Zweig, będąc studentem ostatniego roku Politechniki Kalifornijskiej, (niezależnie od M. Gell-Manna) wysunął hipotezę istnienia kwarków. Zweig początkowo nazywał je "asami", posługując się analogią do czterech asów w tali kart, gdyż podejrzewał on, iż kwarków jest cztery.

Strona główna Losuj artykuł Kategorie artykułów Najlepsze artykuły Częste pytania (FAQ) Dla czytelników O Wikipedii

WIKIPEDIA Wolna encyklopedia

Zgłoś błąd Kontakt Wspomóż Wikipedię Dla wikipedystów Pierwsze kroki Portal wikipedystów Ogłoszenia Zasady

Pomoc

Narzedzia

Ostatnie zmiany

Cząstki elementarne

Energia kinetyczna $E(\vec{p})$

 $=\frac{mv^2}{2}$ $E(\vec{v})$ $=\frac{p^2}{2m}$ $E(\vec{p})$

Energia kinetyczna $E(\vec{p})$

Oddzialywania wielociałowe

Many-body interactions

Oddzialywania wielociałowe

Struktura elektronowa ciała stałego

Fig. 2.3 Development of the diamond band gap

W. R. Fahrner (Editor) Nanotechnology and Nanoelectronics
Struktura pasmowa ciał stałych

Make things as simple as possible, but not simpler.

Przybliżenie masy efektywnej

Układ wielociałowy:

Tworzymy kwazi-cząstki, które nie oddziaływują (albo przynajmniej niezbyt silnie), np. "swobodne elektrony" – to samo dla fononów, polaronów, plazmonów, ekscytonów, trionów, bieekscytonów....

Przybliżenie masy efektywnej

Kwazicząstki kwaziwszechświata

Foton E = hv

Bozony

Fonon $E = \hbar \omega$

Magnon $E = \hbar \omega$

Fonon $E = \hbar \omega$

Magnon $E = \hbar \omega$

Cząstki elementarne

3D

Cząstki elementarne

3D

0.0-1000 <i>m</i> ₀	0.0-1 <i>m</i> ₀	0.1-1000 <i>m</i> ₀	0
-1 ½ e	1 1/2 <i>lh</i>	¹ 3/2 <i>hh</i>	ο γ 1
electron	light hole	heavy hole	photon

FIRST:

Coulomb potential in 3D in the semiconductor of dielectric constant ε_r , effective mass m^* :

Cząstki elementarne

Kwazi-cząstki elementarne

(...) 120 fs, spectral width of 5 meV to cover the UP and LP resonances (...) (...) Ti-Sa laser, pulsing with 78MHz, $150\mu m$ spot size (...)

Przybliżenie masy efektywnej

Układ wielociałowy:

Tworzymy kwazi-cząstki, które nie oddziaływują (albo przynajmniej niezbyt silnie), np. "swobodne elektrony" – to samo dla fononów, polaronów, plazmonów, ekscytonów, trionów, bieekscytonów....

Przybliżenie masy efektywnej

Mikrownęki

A. Kavokin, Microcavities, Oxford University Press (2017).

Mikrownęki

A. Kavokin, Microcavities, Oxford University Press (2017).

Mikrownęki

Electromagnetic field distribution inside a cavity

Hamiltonian matrix form

$$H = \begin{pmatrix} E_{ph}(k_{\parallel}) & \frac{\hbar\Omega}{2} \\ \frac{\hbar\Omega}{2} & E_{exc}(k_{\parallel}) \end{pmatrix}$$

vacuum field Rabi splitting i.e. exciton-photon coupling Ω , determines exciton polariton modes:

$$\Omega \propto \sqrt{\frac{f_{osc}N_{QW}}{L_C}}$$

Photon recycling ⇒ coherence

Non-linear behavior vs excitation power

Polariton advantages

- Very light: mass $10^{-4} m_0 10^{-5} m_0$
- Interact via excitonic component
- ! Particles with spin !

Main systems

- GaAs-based
- CdTe-based
- GaN-based
- Organic

A. Amo, et al. Nature Physics 5, 805 (2009)

Polariton coherence

- condensed BEC state
- superfluidity
- quantum vortices

K.G.Lagoudakis, et al. *Nature Phys.* **4**, 706 (2008) K.G.Lagoudakis, et al. *Science* **326**, 974 (2009)

Share this: f 📴 🗾 🛨 🔤 35

The Nobel Prize in Physics 2001

Prize share: 1/3

Eric A. Cornell Prize share: 1/3

Wolfgang Ketterle Carl E. Wieman Prize share: 1/3

The Nobel Prize in Physics 2001 was awarded jointly to Eric A. Cornell, Wolfgang Ketterle and Carl E. Wieman "for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates".

Photos: Copyright © The Nobel Foundation

Credit: NIST/JILA/CU-Boulder

Cold atoms BEC

J. Ka	sprz	ak et al. N	ature 4	43, 409	9 (2006	5)	T =	4 K
	a							
>	ь	-20 -10 0	Emis 10 20 -20	sion angle,	0 (degree 10 20) -20 -10 0	10 20	
(Van	1,680							
Energy (t	1,678							
	1,676	-3-2-101	2 3 -3 In-plan	-2 -1 0 e wavevect	1 2 3 tor (10 ⁴ cm	-3 -2 -1 0 m ⁻¹)	1 2 3	

Exciton-polaryton BEC

	Atoms	Polaritons
m	Rb: 10 ⁴ m _e	10 ⁻⁴ m _e
Т	10 ⁻⁷ K	>100 K
Ν	10 ¹⁴ /cm ³	< 10 ¹¹ /cm ²
t	∞	1 ps

Manganese only in QWs

DBR 20x

Cd_{0.77}Zn_{0.13}Mg_{0.1}Te 63 nm Cd_{0.43}Zn_{0.07}Mg_{0.5}Te 73 nm FACULTY OF - PHYS

OF WARSAW

nonmagnetic DBR

DBR 23x

Cd_{0.77}Zn_{0.13}Mg_{0.1}Te 63 nm

Cd_{0.43}Zn_{0.07}Mg_{0.5}Te 73 nm

1 µm

Strong s, p - d exchange between localized magnetic moment of Mn²⁺ (3d⁵) and band electrons and holes in Cd_{1-v}Mn_vTe

$$E_{exc} = E_{exc}(0) + \Delta E_{exc}(T, B)$$

Cd_{0.83}Zn_{0.16}Mn_{0.01}Te Cd_{0.43}Zn_{0.07}Mg_{0.5}Te

Cd_{0.77}Zn_{0.13}Mg_{0.1}Te

Cd_{0.84}Zn_{0.16}Te 780 nm

Giant Zeeman splitting

GaAs

nonmagnetic DBR

$$\Delta E_{exc} = N_0(\alpha - \beta) x \langle S_z \rangle \propto N_0(\alpha - \beta) M(T, B)$$

R. Mirek, B. Pietka, J.Sz., et al. Phys. Rev. B 95, 085429 (2017)

CdTe 2 µm MBE sample growth & design: W. Pacuski, J.-G. Rousset J.-G. Rousset et al. (J.Sz.) Appl. Phys. Lett. 107, 201109 (2015) J.-G. Rousset et al. (J.Sz.) Phys. Rev. B 96, 125403 (2017)

sample growth & design: W. Pacuski, J.-G. Rousset, FUW J.-G. Rousset et al. (J.Sz.) Appl. Phys. Lett. **107**, 201109 (2015)

RSZAWST

M. Król, B. Piętka, J.Sz. et al. SCIENTIFIC REPORTS 8, 6694 (2018)
Polarytony ekscytonowe w mikrownękach

Electromagnetic field distribution inside a cavity

Hamiltonian matrix form

$$H = \begin{pmatrix} E_{ph}(k_{\parallel}) & \frac{\hbar\Omega}{2} \\ \frac{\hbar\Omega}{2} & E_{exc}(k_{\parallel}) \end{pmatrix}$$

vacuum field Rabi splitting i.e. exciton-photon coupling Ω , determines exciton polariton modes:

$$\Omega \propto \sqrt{\frac{f_{osc}N_{QW}}{L_C}}$$

Optical Spin Hall Effect (OSHE)

K. Lekenta

Optical Spin Hall Effect (OSHE)

K. Lekenta

1.66

1.64

Energy (eV)

1.60

1.58

1.56

-20

0

Angle (°)

20

0.0 V

Light: Science & Applications 7, Article number: 74 (październik 2018)

https://www.nature.com/articles/s41377-018-0076-z

