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Traditional Bell’s argument shows that freedom of choice is inconsistent with quantum realism if lack of
signaling and sufficiently fast choices and readouts are assumed. While no-signaling alone is a
consequence of special relativity, this is not the case of spacetime location of choice and readout.
Here we attempt to incorporate freedom of choice into quantum objective realism relying solely on
relativistic quantum field theory. We conclude that this is impossible without breaking relativistic
invariance and put forward the possibility of signaling faster than light, which cannot be excluded if an
ultimate theory violates relativity.
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I. INTRODUCTION

Objective realism means that all physical quantities (e.g.,
field and currents) have well-defined values at all times and
positions, although they may be random. The values are
independent of the fact of being observed. Objective
realism in the macroscopic world is obvious, but in the
microworld it is at best ambiguous due to conceptual
problems of the quantum description. Moreover, practical
and useful physics relies on free choice—an ability to affect
the system in real time. Freedom of choice means that we
are not mere spectators of the world’s evolution but can
actively change its fate. Free choice localized in time and
space is important in the interpretation of tests of local
realism [1–3]. Incorporating free choice into theory is done
by adding some variable parameters (usually localized),
meaning a variety of choices. However, observations for
different choices are not always compatible in quantum
realism, as shown by Bell theorem (for a particular state and
choices) [1]. The Bell’s argument relies on several impor-
tant assumptions, depicted in Fig. 1:

(i) Entanglement: existence and stability of a special,
nonlocal entangled state, that can be observed by
two (or more) separate parties

(ii) No-signaling: observations are freely chosen and are
completed (become sufficiently sharp, with negli-
gible error) before a signal about the other party’s
choice reaches the observation point

Bell’s conclusion is that it is impossible to find a common
probability distribution (equivalent to quantum realism) of
all outcomes depending only on those choices that can be
signaled to them. Both assumptions cannot be directly
derived from fully relativistic quantum field theory because
the Bell argument works in simplified Hilbert space and
reduces to a few basis states. No-signaling could indeed
follow from at least axiomatic quantum field theory [4] but
the point of choice and readout is arbitrary in general. One

can easily invalidate the Bell’s conclusion by delaying
actual observation (or its sharpening) until signals reach its
point. Bell theorem has been recently confirmed exper-
imentally [5–7] but of course for no-signaling one assumes
special relativity combined with the trust in the times of
choices and readouts.
Here we try to assign joint objective realism for all

choices by asking if a common joint positive probability
exists and basing it directly on relativistic quantum field
theory [8], not Bell’s assumptions (so we, e.g., do not need
to trust the time of choice and readout). We will show that
indeed objective realism with free choice cannot stand with
both relativistic invariance and quantum theory. It will turn
out that it is possible but violating relativistic invariance. If
relativity is to drop, then binding the assumption of the Bell
theorem about compatibility with relativistic no-signaling
may be false and there might be signaling faster than light.
We show that trying to preserve the speed of light as the
signaling speed in a relativity violating theory is misleading
if one tries to do it perturbatively. The relativistic signaling
limit is simply a nonperturbative property of quantum field
theory, and may get falsified in future experiments.
The paper is organized as follows. We start with the

general construction of quantum mechanics and field
theory with free choice. Next, we state the problem of
realism and attempts of quantum construction, insisting on
agreement with relativity. Finally, we show that relativistic
invariance must be broken, by a perturbative example, and
discuss possible consequences, including superluminal
signaling. We close the paper with conclusions.

II. QUANTUM FREEDOM OF CHOICE

A general construction of quantum observations, satisfy-
ing the principle of objective realism, will be completed if
the observations depend on free-to-choose options; read-
outs for all options simultaneously are represented by a
positive probability. All events, free choices, and measure-
ments will be referred to by time position x ¼ ðx0 ¼ t;*Adam.Bednorz@fuw.edu.pl
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~x ¼ ðx1; x2; x3ÞÞ (time t, spatial coordinates ~x). Speed of
light c and Planck constant ℏ are 1 in our units. Given the
initial state of the system (the Universe) and it dynamics,
Hermitian Hamiltonian Ĥ, the free choice a means a
parametric decision to modify the dynamics by an extra
term in the Hamiltonian ĤaðxÞ. If this term is nonzero only
around a specific point in spacetime, then we can claim it as
localized, which is important, e.g., in the Bell theorem.
However, for our considerations ĤaðxÞ will be completely
general. There can be many such defined choices,
a; b; c;… We denote ÔðxÞ an observable (Hermitian) in
the Heisenberg picture with respect to the original
Hamiltonian, while for ÔaðxÞ, ÔbðxÞ, ÔabðxÞ we add the
choice-dependent Hamiltonian Ĥa, Ĥb, or Ĥa þ Ĥb,
respectively.
We can assign a ¼ 0 for the null passive choice, Ĥa ¼ 0,

meaning only an internal system’s dynamics without
changes due to active choices, a ≠ 0. In field theory, it
is convenient to define an auxiliary field, e.g., aðxÞ
controlling free choice. The choice is realized by adding
to the Hamiltonian Ĥa ¼

R
d3xaðx0; ~xÞV̂ðxÞ, where V̂ is

some local operator. Quantum field theory works equiv-
alently in the Lagrangian path integral framework, where
we deal with integrals

Z
Dϕ exp

Z
d4xiLðϕðxÞ; ∂ϕðxÞ;…Þ ð1Þ

with the local form of L and field ϕ. Then the local choice
can be realized by adding L → Lþ aðxÞVðϕðxÞÞ.
Relativistic invariant choice means no changes of
choice-dependentL under Lorentz transformations, applied
to both a and V. We can take V ¼ ϕ for a scalar field and
a → aμ, V → jμ or Aμ in the case of quantum electrody-
namics, with current j and potential A.

A. Operational invariance

According to the Wightman axiom [4], a relativistic-
invariant Lagrangian should imply invariant quantum
correlations of the form

hÔ1ðxÞÔ2ðyÞÔ3ðzÞ � � �i; ð2Þ

where the average is defined as hX̂i ¼ TrX̂ ρ̂, in the
normalized, Hermitian, and positive definite state ρ̂
(¼ jψihψ j for a pure state). Invariance requires Lorentz
transformation of all Ô’s and ρ̂. For free choices the
invariance axiom extends to

hÔ1aðxÞÔ2bðyÞÔ3cðzÞ � � �i: ð3Þ
The axiom of invariance is not straightforward to prove in
general, except free theories. For interacting theories only
in vacuum at zero temperature and perturbatively it has
been shown in detail elsewhere [9]. Finite temperature

states are certainly not invariant themselves which makes
the analysis quite hard. Nevertheless, for our purposes the
perturbative case of zero temperature is sufficient so we can
take the operational invariance for granted.

III. REALISM AND RELATIVITY

Realism means a construction of observations described
by a set of random functions oiðxÞ. In the usual quantum
mechanics the probability is given by positive operator-
valued measure (POVM) [10], as hK̂†K̂i with the set of
Kraus operators K̂ [11]. The use of POVM is here both
ambiguous and obscure, because no single POVM can be
reliably distinguished and even if we determine one any
calculations will be tedious. Even worse, every POVM
(even apparently those that are invariant with respect to
relativity) makes the dynamics disturbed and is irreversible,
which is a common problem of objective collapse theories
[12,13]. Here we do not accept such a disturbance in
objective realism and demand strict noninvasiveness of
observations. Irreversibility is still possible due to largeness
and openness of the system but not the observations
themselves. A better approach requires the framework of
weak measurements [14], which are a special limit of a
POVM corresponding to a weakly disturbing observation,
so that invasiveness disappears in the limit [15–17]. The
price to pay is a large additional Gaussian noise convoluted
with the internal statistics. The latter alone must be
described by quasiprobability Q (sometimes negative, like
theWigner function [18], in contrast to normal probability),
so it is alone insufficient for realism. In standard quantum
measurement theory [10], any measurement of finite
strength, even weak, leads to some (although tiny) dis-
turbance. On the other hand, the only perfectly nondisturb-
ing standard quantum measurement is trivial—not
measuring anything at all. Therefore, to define noninvasive
observations and realism, we have to make a step beyond
standard measurement. Namely, we take Q obtained from
the noninvasive limit and convolute some extra noise N
(but finite) to lift the negativity, which is possible within the
experimental regime, discussed in detail in [19]. The
advantage of such a step is that no collapse is necessary
at all, while the noise N reduces the observations to
standard projections for sufficiently macroscopic observa-
tion (when the noise N becomes irrelevant). In this way we
stay as close to standard measurement as possible, yet
preserve noninvasiveness. This is consistent, e.g., with the
condensed matter approach to quantum noise [20]. The real
probability P of an observable o localized in spacetime and
choice dependent is expected in the form

P½o� ¼ N �Q ¼
Z

Do0N½o0�Qðo − o0Þ; ð4Þ

where N is an external noise (positive probability) and Q is
an internal quasiprobability. The main point of this work is
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to check if such a construction is possible to include free
choice. Namely, all readouts will be choice conditioned,
e.g., o → oa; oab. This means that readouts for all choices,
also those not just realized, are measurable. One can extend
this idea naturally to continuous fields and choices, and
then α½x; a� is a function of x and functional of a. We
assume that N is an independent choice and state of the
system. Otherwise we would have additional choice-
controlled dynamics. In that case we will rather incorporate
all such dependence in the quantum description alone. This
is a reasonable minimalist approach, where quantum
mechanics essentially captures all the dynamics.
The quasiprobability statistics can be conveniently writ-

ten in the form for correlations [17,21],

ho1ðx1Þ � � � onðxnÞiQ
¼

Z
dnx0ThǑxn−x0n

n ðx0nÞ � � � Ǒx1−x01
1 ðx01Þi; ð5Þ

where T denotes time ordering, with respect to x00, and

Ǒx−x0 ðx0Þ ¼ δðx − x0ÞǑcðx0Þ þ fðx − x0ÞǑqðx0Þ=2: ð6Þ

The superoperators Ǒc=q [22] act on any operator X̂ as an
anticommutator/commutator: ǑcX̂ ¼ fÔ; X̂g=2 and
iǑqX̂ ¼ ½Ô; X̂�. Alternatively 2Ǒc ¼ Ǒþ þ Ǒ− and iǑq ¼
Ǒþ − Ǒ− with ǑþX̂ ¼ Ô X̂ and Ǒ−X̂ ¼ X̂ Ô. The function
f is in principle arbitrary but it turns out that only two
choices are reasonable, in particular f ¼ 0 (no memory)
[15,17] or fðxÞ ¼ δ3ð~xÞ=πx0 (no correlations in zero
temperature equilibrium) [21]. The operators Ô are given
in the Heisenberg picture including the free part governed
by the field a. In principle in (5) one could define
correlations for different a and a0 (or more) but they are
not directly measurable. For our goal it is sufficient to
consider a single a.

In quantum field theory, the above can be written in
terms of path integrals, namely,

hXi
Z

Dϕ exp
Z

id4xLðϕ; ∂ϕÞ

¼
Z

Dϕ exp
Z

id4xLðϕ; ∂ϕÞX; ð7Þ

with Lagrangian density L and integration over x0 along
the Schwinger-Keldysh-Kadanoff-Baym contour [23,24],
shown in Fig. 2(a), where the state is described by properly
defining L and the path of x0 before the earliest x0 with an
active choice or observation. For instance a thermal state of
temperature T means simply extending x0 to complex
values with a jump of iβ (β ¼ 1=kBT, becomes i∞ at
T → 0þ) as shown in Fig. 2(b). It is important to discrimi-
nate between forward, þiϵ, and backward, −iϵ, times x0�,
respectively, with ϵ → 0þ (the spatial position is unaf-
fected). In such a description Ǒ�ðxÞ → Oðx�Þ and time
order is dropped (except for the fact that fermion fields are
anticommuting Grassmann numbers). Free field aðx�Þ ¼
aðxÞ is the same for forward and backward time.
To proceed with the problem of relativistic invariant

realism, we have to recall the relativistic framework. We
shall use standard relativistic quantum field notation with
four-vectors Aμ (e.g., field); xμ (position in spacetime); a
flat metric gμν ¼ gμν ¼ diagð1;−1;−1;−1Þ; summation
convention and index shifting X · Y ¼ XμYμ ¼P

μX
μYμ ¼ XμgμνYν ¼ XμgμνYν, Xμ ¼ gμνXν, Xμ ¼

gμνXν, with derivatives ∂μ ¼ ∂=∂xμ. Along the
Schwinger-Keldysh contour we parametrize x0ðsÞ by real
s with dx0 ¼ ðdx0=dsÞds and ∂0 ¼ ðdx0=dsÞ−1∂s. We shall
often switch to momentum or Fourier space with
XðpÞ ¼ R

d4xeip·xXðxÞ, which needs us to specify x along
either theþ or − part. Then the equilibrium f gives Fourier
transform fðpÞ ¼ i sgnp0 [21]. However, if we want
relativistic invariance, the proper choice is fðpÞ ¼
i sgnp0θðp · pÞ [19]. In any reasonable choice we have
fðpÞ ¼ 0 for spacelike p, p · p < 0. It essentially means
ǑðpÞ → ðOþðpÞ þO−ðpÞÞ=2 for spacelike p or f ¼ 0 and
ǑðpÞ → O�ðpÞ for the other f and timelike p, p · p > 0,
with �p0 > 0. The invariance of Q follows then from
the Wightman axiom (3), so it remains to check if N also
can be invariant.

choice
position

Alice Bob

time

state

observation

FIG. 1. Spacetime picture of Bell’s assumption. If the two
parties, here Alice and Bob, share an entangled state the
observation must be completed, before the reach of the signal
about the other party’s choice (color cones bound by signaling
speed—light in special relativity).

(a) (b)

FIG. 2. Schwinger-Keldysh time contour (a) in general with the
left part unspecified and (b) for a thermal state with β ¼ 1=kBT.
The shape of the left line is arbitrary. The time window for
observations is bounded by the horizontal part.
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IV. AN ATTEMPT OF INVARIANT REALISM

A simple convolution with positive N makes it impos-
sible to construct relativistic invariant realism even without
free choice, because of zero-temperature counterexamples
[19]. However we can avoid the zero-temperature problems
by simply subtracting zero-temperature statistics. It can be
achieved in the following way. The convolution (4) is
equivalent to a simple sum of generating functions, namely,

SP½χ� ¼ SN ½χ� þ SQ½χ�;

eSX ½χ� ¼
Z

DoX½o� exp
Z

id4xoðxÞχðxÞ: ð8Þ

Generating functions can be used as a formal series with
cumulant expansion in χ, e.g.,

Sðχ1; χ2Þ ¼ iχ1C10 þ iχ2C01

− χ21C20=2 − χ1χ2C11 − χ22C02=2þ � � � ð9Þ
with cumulants C10 ¼ ho1i, C01 ¼ hχ2i, C20 ¼ hðδo1Þ2i,
C02 ¼ hðδo2Þ2i, C11 ¼ hδo1δo2i, δo ¼ o − hoi, etc. There
is a one-to-one correspondence between cumulants, e.g.,
Cijk and momentsMijk ¼ hoi1oj2ok3i up to a given iþ jþ k,
the order of cumulants/moments.
We assume that only cumulants/moments up to a given

order are interesting. It is reasonable because (a) high order
cumulants/moments correspond to low experimental accu-
racy and complicated unreliable theoretical predictions and
(b) for almost all practical purposes (both high and low
energy physics) it is sufficient to consider only low order
moments (also in tests of locality or contextuality [25]).
Instead of the full form of N we can only take SN and even
split into some pieces, e.g.,

P
kSNk

. For any positive
probability the second cumulant C20 must be positive.
However, this is only necessary only for the sum of all
pieces, including SQ. For sufficiently large second order
cumulants (correlations), a real positive probability P can
be constructed when the cumulants are known up to a given
order [19]. Therefore we can postulate the arbitrary forms
of SNk

, as long as the overall S corresponds to a positive
probability, in particular second order correlations.

A. Problem of zero-point correlations

To show that the construction of objective realism cannot
be at all straightforward, let us repeat the conflict caused by
zero-point correlations [19]. In quantum electrodynamics
vacuum current-current correlation must take the form
hjμðpÞjνðqÞi ¼ ð2πÞ4δ4ðpþ qÞGμνðpÞ, where the function
G must be positive and invariant so it must be of the form
pμpνξþ gμνη and both ξ and η depend only on p · p.
Positivity leads to 0 > ðp · pÞη > −ξ for p · p > 0
and η ¼ 0, ξ > 0 for p · p < 0. However, one can find
nonzero correlations involving jðpÞ for p · p < 0, while
j · p ¼ 0 and the other product of observables A, violating

the Cauchy-Schwarz inequality hjðpÞjð−pÞihjAj2i ≥
jhjðpÞAij2. Even the scalar field correlation hϕðpÞϕðqÞi ¼
ð2πÞ2δðpþ qÞGðpÞ must be zero if we apply the
fluctuation-dissipation theorem 3, leading to analogous
violation. To resolve this conflict we take one particular
piece SN0

¼ −SQ;vac, where SQ;vac is the quantum generat-
ing function of the zero-temperature vacuum. This will get
rid of any zero-temperature counterexamples because we
get null statistics o ¼ 0 at T ¼ 0. We shall see later,
however, that the vanishing of correlations for spacelike
p cannot be resolved if we include freedom of choice.

B. Nonzero temperatures

Certain problems arise at nonzero temperature, since the
correlation function G must be positive. It will be indeed
true for p · p < 0 (spacelike), because the vacuum con-
tribution vanishes and the nonzero-temperature one must be
positive. However, for an electron of the mass m and
p · p > m2 (timelike) we shall find a negative contribution.
We have jμðpÞjνðqÞ → jμþðpÞjν−ðqÞ for p0 > 0 in the case
of f ¼ i sgnp0θðp · pÞ and jμðpÞjνðqÞ → ðjμþðpÞ þ
jμ−ðpÞÞðjνþðqÞ þ jν−ðqÞÞ=4 for f ¼ 0. Due to unitarity, we
have hX̌qY̌qi ¼ 0 for every X and Y which means that we
can subtract ðjμþðpÞ − jμ−ðpÞÞðjμþðqÞ − jν−ðqÞÞ=4 to get
ðjμþðpÞjν−ðqÞ þ jμ−ðpÞjνþðqÞÞ=2 for f ¼ 0. In terms of fields
jμ ¼ ψγμψ with 4 × 4 Dirac matrix γ (γμγν þ γνγμ ¼ 2gμν)
and Grassmann (anticommuting) fields ψ and ψ ¼ ψ†γ0.
By the standard methods [8,9,24]

hjμþðpÞjν−ðqÞi
¼ −ð2πÞ6δðpþ qÞ

×
Z

d4kδððkþ p=2Þ · ðkþ p=2Þ −m2Þ

× δððk − p=2Þ · ðk − p=2Þ −m2Þ

×

�
θð−k0 − p0=2Þ
1þ e−βjk0þp0=2j −

θðk0 þ p0=2Þ
1þ eβjk0þp0=2j

�

×

�
θðk0 − p0=2Þ
1þ e−βjk0−p0=2j −

θðp0=2 − k0Þ
1þ eβjk0−p0=2j

�

× Trγμðγ · ðkþ p=2Þ þmÞγνðγ · ðk − p=2Þ þmÞ:
ð10Þ

Evaluating the trace (last line) gives 8kμkν−2pμpν−
gμνð4k·k−p·p−4m2Þ. Combining ðk�p=2Þ·ðk�p=2Þ¼
m2 we get additionally k·p¼0 and k·kþp·p=4¼m2,
so the trace becomes 8kμkν þ 2ðgμνp · p − pμpνÞ.
The difference between finite and zero temperature has
the form
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hjμþðpÞjν−ðqÞiT−0 ¼ ð2πÞ6
Z

d4k

× δðk · pÞδðk · kþ p · p=4 −m2Þ

×

�
ð1þ eβjk0þp0=2jÞ−1ð1þ eβjk0−p0=2jÞ−1

−
θð−k0 − p0=2Þ
1þ eβjk0−p0=2j −

θðk0 − p0=2Þ
1þ eβjk0þp0=2j

�

× ð2ðpμpν − gμνp · pÞ − 8kμkνÞ: ð11Þ

The last line is positive definite for timelike p and negative
definite for spacelike p. For the timelike case, let us take the
frame where p ¼ ðP; 0; 0; 0Þ and then k ¼ ð0; K; 0; 0Þ, and
K2 ¼ P2=4 −m2. Then we get only nonzero elements 8m2

for μ ¼ ν ¼ 1 and 2P2 for μ ¼ ν ¼ 2, 3. For the spacelike
case we take p ¼ ð0; P; 0; 0Þ so k ¼ ðK0; 0; K; 0Þ with
K2

0 ¼ m2 þ P2=4þ K2. The only nonzero elements are
−8ðK2 þm2Þ for μ ¼ ν ¼ 0, −2P2 − 8K2 for μ ¼ ν ¼ 2,
−8K0K for μν ¼ 20, 02 and −2P2 for μ ¼ ν ¼ 3. The
negativity is confirmed by the Cauchy-Schwarz inequal-
ity ðP2 þ 4K2ÞðK2 þm2Þ − 4K2

0K
2 ¼ P2m2 ≥ 0.

Now, the middle line in (11) is always negative. This is
because either p0 > 0 which leaves only one θ while all
Fermi factors ð1þ eβqÞ−1 < 1 or we symmetrize contribu-
tions from p and q ¼ −p, which turns both θ into 1=2 and
the same argument applies. Therefore G is positive definite
for spacelike p but negative definite for timelike p with
p · p > 4m2 and zero for 4m2 > p · p > 0. To fix the
problem of positivity we need to add another SN1

with
positive definite correlation for p · p > 0. To this end, we
can take, e.g., the bosonic Proca field BμðxÞ with the
Lagrangian 2L ¼ BμνBνμ þM2B · Bþ ξð∂ · BÞ2 with
Bμν ¼ ∂μBν − ∂νBμ and ξ → þ∞ (Lorentz gauge fixing
∂ · B ¼ 0). Then

hBμ
þðpÞBν

−ðqÞi
¼ ð2πÞ5δðpþ qÞðpμpν − gμνp · pÞδðp · p −M2Þ

×

�
θð−p0Þ
eβjp0j − 1

þ θðp0Þ
1 − e−βjp0j

�
: ð12Þ

We can now redefine the observable current jμ → jμ þR
dMηMB

μ
M with some form factor η. Alternatively, we can

take an abstract field Bμ with the correlation
hBμðpÞBνðqÞi ¼ ð2πÞ4δðpþ qÞðpμpν − gμνp · pÞXðp · pÞ
with some positive function X, which is zero for negative
arguments.
For a maximally spacelike case in (11), p0 ¼ 0,

the middle line reads −ð2 coshðβjK0j=2Þ−2, while K2
0 >

m2 þ P2=4. At low temperatures (large β) it vanishes
exponentially at least ∼e−βm, but the same behavior applies
to all correlation functions. Therefore we cannot construct
(at least easily) an example against realism in this case,

because of the positivity of second order correlations,
without freedom of choice.

V. FAILURE OF INVARIANT FREE CHOICE

Now we will show that relativistic invariant realism
breaks down when we introduce freedom of choice. Let us
add a free part to the Lagrangian density (at some point x)
of either the scalar field ϕ or electron spinor ψ,

2L ¼ ð∂ϕÞ · ð∂ϕÞ −m2ϕ2 þ λϕ4=12þ 2aϕ;

L ¼ ψðiγ · ∂ −mþ γ · AÞψ ; ð13Þ

where a and A are freely chosen external fields. Here λ
introduces nonlinear interaction because the linear scalar
case is trivial and agrees with realism, so the distribution at
a ¼ 0will be simply shifted by ϕ → ϕþ a. All correlations
in SQ start to depend on a or A but not those in SN in (8), as
the choice applies only to the standard quantum part. The
invariance condition is that, in the limit of zero temperature,
they stay invariant under simultaneous change of the frame
for ϕ, a, j ¼ ψγψ and A, according to Lorentz rules. To
show that this is impossible, we take a and A as small
parameters and expand all correlations in their powers, e.g.,

hϕðxÞϕðyÞi ¼G0ðx;yÞþ
Z

d4zG1ðx;y;−zÞaðzÞ

þ
Z

d4zd4wG2ðx;y;−z;−wÞaðzÞaðwÞþ � � �

ð14Þ

Certainly G0 corresponds to the zero-temperature vacuum
limit of the previous case. We have already learned that
G0ðp; qÞ ¼ 0 for spacelike p (or q). We assume that a is
sufficiently small so that we can perform perturbative
analysis, comparing correlations expanded to the same
maximal power of a. Let us consider the function
hϕðpÞϕðqÞϕðkÞi in equilibrium vacuum for spacelike p,
q, k and any sum of them. Then 2ϕ → ϕþ þ ϕ− and

hϕðpÞϕðqÞϕðkÞi ¼
Z

d4shϕcðpÞϕcðqÞϕcðkÞϕqðsÞibðsÞ:

ð15Þ

We shall focus on the expression hϕcðpÞϕcðqÞϕcðkÞϕqðsÞi
(also called susceptibility). From unitarity we can add
hϕqðpÞϕqðqÞϕqðkÞϕqðsÞi=8i (which is zero). We shall
obtain various combinations of the Schwinger-Keldysh
parts of the contour (þ or −), but in particular there will
be þþþþ but not − − −− [because crossings þ− or −þ
must be timelike; see also (19) and the discussion below].
The expectations will also contain δðpþ qþ kþ sÞ. We
can take, e.g., vertices of the regular tetrahedron, p0 ¼
q0 ¼ k0 ¼ s0 ¼ 0 and ~p ¼ Cð1; 1; 1Þ, ~q ¼ Cð1;−1;−1Þ,
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~k ¼ Cð−1; 1;−1Þ, and ~s ¼ ð−1;−1; 1Þ. Then only the
term þþþþ will contribute, which is at zero temperature

λ½ðp · p −m2Þðq · q −m2Þðk · k2 −m2Þðs · s −m2Þ�−1;
ð16Þ

which is λ=ðm2 þ 3C2Þ4 for the tetrahedron. On the other
hand, realism requires the Cauchy-Schwarz inequality

jhϕðpÞϕðqÞϕðkÞij2 ≤ hjϕðpÞj2ihjϕðqÞϕðkÞj2i; ð17Þ

with regularizationϕðwÞ → R
d4vδϵðv − wÞϕðvÞ. However,

the left-hand side is nonzero and proportional to λ2jbðsÞj2
while on the right-hand side hjϕðpÞj2i disappears if,
for aðsÞ, pþ ns is spacelike for all integer n and the
inequality is obviously violated in zero temperature
vacuum. Note that the example has no proper classical
limit, at least at zero temperature. This is because time-
resolved observation is burdened with time-frequency
uncertainty and even the simple vacuum fluctuations
(zero-point quantum noise) do not contain the Planck
constant (tracing back the dimension) and the only com-
parison scale is the mass of a (charged) particle, which is
combined with the Planck constant and speed of light to get
the frequency dimension.
It is interesting to understand why there is no contribu-

tion from aðsÞ. Let us expand

hϕðpÞϕðp0Þi ¼
Z

d4sd4s0G2ðp; p0; s; s0ÞaðsÞaðs0Þ þ � � �

ð18Þ

The zero order term vanishes because p, p0 are spacelike
and because of arguments analogous to those in [19],
repeated here in Sec. IVA, and the first order one
from parity. The remaining G2 corresponds to
hϕcðpÞϕcðp0ÞϕqðsÞϕqðs0Þi. From unitarity we add
hϕqϕqϕqϕqi=4, which leaves only the terms þ − �� and
−þ ��, so p and p0 lie on the opposite branches of the
Schwinger-Keldysh contour. They are spacelike and also
with added s, s0, so there is no possibility to go between
branches—there is always δþðw · w −m2Þ from þ to −, so
the sum of all transfer variables w’s must be timelike but
also equal to p, pþ s, or pþ s0, which is a contradiction.
The argument extends analogously to higher orders with
the restriction that the sum pþP

isi cannot become
timelike. However, instead of showing that (18) vanishes,
it is sufficient to show that it is at least ∼jaj4.
Alternatively, we can use a generalized form of quantum

fluctuation theorem for thermal states [26], namely,

�Y
i

Oi−ðpiÞ
Y
j

OjþðpjÞ
�
exp

X
j

βp0
j

¼
�Y

j

Oj−ðpjÞ
Y
i

OiþðpiÞ
��

r

; ð19Þ

where r denotes the time reversal of fields and of the
Lagrangian. Here ϕr ¼ ϕ, Xμ

r ¼ ð−1ÞμXμ, with ð−1Þ0 ¼ 1

and ð−1Þ1;2;3 ¼ −1 for X ¼ A, B, p, j. It can be easily
proved by modifying the Schwinger-Keldysh-Kadanoff-
Baym contour as shown in Fig. 3, where we separate the
horizontal part by iβ, which results in additional factors

eβp
0
j . Note also that

P
ip

0
i þ

P
jp

0
j ¼ 0 because of time

shift invariance. In the last step we have to reverse time,
which is accompanied by conjugation because time reversal
is antiunitary. Now, in the zero-temperature limit averages
are relativistic invariant but also the exponent

P
jβp

0
j

diverges unless
P

jp
0
j ¼ 0. Therefore these averages must

vanish if
P

jpj is spacelike because we can find a frame
where

P
jp

0
j ∼ 0; i.e., minimal changes will reverse the

sign. For timelike
P

jpj the average on the right-hand side
of (19) must vanish if

P
jp

0
j < 0.

An analogous example involves current, namely,
hjμðpÞjνðqÞjσðkÞi at free choice AτðsÞ. Then (15) for
spacelike p, q, k, s takes the form

Z
d4shjμþðpÞjνþðqÞjσþðkÞjτþðsÞiAτðsÞ ð20Þ

which is a four-point Green function discussed a long time
ago [27]. We recall the calculation in the Appendix with the

FIG. 3. Transformation of the Schwinger-Keldysh-Kadanoff-
Baym contour leading to the generalized fluctuation-
dissipation theorem (19). In the first stage the flat parts are
moved away; in the second stage the contour is cut on the
right and glued on the left.
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lowest order limit, for p; q; k; s ≪ m. Let us take μ ¼ ν ¼
σ ¼ τ ¼ 0 and again vertices of regular tetrahedron. Then

Z
d4shj0þðpÞj0þðqÞj0þðkÞj0þðsÞi

¼ −ð2πÞ4δðpþ qþ kþ sÞ16π2C4=15m4; ð21Þ

which is clearly nonzero, contradicting an analogue of (17)
with ϕ → j0 because hjμðpÞjνð−pÞi will be zero (or ∼jAj4;
the zeroth order vanishes as shown in [19] and Sec. IVA).
We have shown that an attempt to build free choice into

quantum mechanics fails when trying to reconcile with
relativity. If we abandon relativistic invariance we can make
hjϕðpÞj2i positive for every p, not only timelike. The
failure is generic as it occurs both for scalar and vector
(spinor) fields.

VI. RELATIVISTIC INVARIANCE AND
NO-SIGNALING

One of the consequences of relativistic invariance is the
principle of no-signaling. It states that the correlations
hQjϕiðxiÞi cannot depend on free choices aj localized at yj
so that xi − yj is spacelike for all i, j. Plainly, it forbids
superluminal, faster than light, communication. It is jus-
tified by the relativistic invariance of correlations because
the influence associated with aðyÞ is associated with ϕ̌qðyÞ.
Because x − y is spacelike, we can find a frame where y0 ¼
x0 when ϕ̂0ðxÞϕ̂ðyÞ ¼ ϕ̂ðyÞϕ̂0ðxÞ, so ϕ̌qðyÞ gets eliminated.
As already stressed, the invariance itself can be proved at
least perturbatively [9] but it is rather accepted as part of
Wightman axioms (3), which in fact state both invariance
(of the vacuum ground state) and no-signaling, also called
microcausality [4]. However, once relativistic invariance is
put in doubt, no-signaling loses its obvious justification.
One can still ask if adding noninvariant corrections to an

invariant theory may lead to the violation of no-signaling.
We shall demonstrate that indeed it can be violated, but
nonperturbatively, while the perturbative approach is mis-
leading. Let us look at a counterexample, depicted in Fig. 4.
Let us take a real scalar field ϕ with the Lagrangian density
analogous to (13):

2L ¼ ð∂0ϕÞ2 − c2ð∇ϕÞ2=2 −m2ϕ2 þ 2bðxÞϕðxÞ: ð22Þ

It is clear that the signaling speed is c and the causal Green
function (commutator) Gðx − yÞ ¼ hϕqðxÞϕcðyÞi can be
written as [8]

GðxÞ ¼ Re
Z

2d4q
ð2πÞ4

eiq0x
0−i~q·~x

ðq0 þ iϵÞ2 − c2j~qj2 −m2
ð23Þ

with ϵ → 0þ and can be evaluated exactly as

mθðcjx0j − j~xjÞ
4πc2

J1ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx0j2 − j~x=cj2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jcx0j2 − j~xj2
p

− δðjcx0j2 − j~xj2Þ sgnx
0

2πc
; ð24Þ

where J is the Bessel function. In quantum field theory we
need to subtract the renormalizing Green function with a
large mass M2 ≫ m2, giving effectively

GrðxÞ ¼
θðjcx0j − j~xjÞ

4πc2
J1ðmc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx0j2 − j~x=cj2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jcx0j2 − j~xj2
p

=m
−m → M:

ð25Þ

The Green function is not zero only inside the causal cone
given by j~xj < cjx0j, defining the signaling speed as c.
Now, let us solve the problem perturbatively, rewriting

c2ð∇ϕÞ2 ¼ ð∇ϕÞ2 þ λð∇ϕÞ2; ð26Þ

where λ ¼ c2 − 1 is a (small) perturbative parameter. The
perturbative solution leads to changing c at constant x and
reads

Gp
r ðxÞ ¼ θðjx0j − j~xjÞ

4πc2
J1ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx0j2 − j~x=cj2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jcx0j2 − j~xj2

p
=m

−m → M;

ð27Þ

while for negative λ and jx0j > j~xj > cjx0j we substitute
J1ðisÞ ¼ iI1ðsÞ, an analytic continuation at s ¼ 0. This is
of course different from the exact solution and the reason is
that the boundary of the signaling cone limits the validity of
perturbative expansion. The root of the problem is the
Fourier representation:

x1

cx  =x0 1

x  =x0      1

x  =t0

FIG. 4. Problem of perturbative no-signaling. The exact result
gives the signaling speed c, bounding the blue area. Starting from
a field with signaling velocity 1 (bounding the red area) with
perturbative expansion the boundary of signaling remains the
same (red area).
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½ðq0 þ iϵÞ2 − c2Q2 −m2�−1
¼ ½ðq0 þ iϵÞ2 −Q2 −m2 − λQ2�−1
¼ ½ðq0 þ iϵÞ2 −Q2 −m2�−1
þ λQ2½ðq0 þ iϵÞ2 −Q2 −m2�−2
þ λ2Q4½ðq0 þ iϵÞ2 −Q2 −m2�−3 þ � � � ð28Þ

for Q ¼ j~qj. Due to the pole, the geometric series is
convergent only at λQ2 < q20 −m2, despite leading to a
finite contribution at each order of λ. Beyond the con-
vergence region, summation is only formal and interpreted
rather as an analytic continuation. Therefore, this reasoning
is certainly nonperturbative. In principle one could include
the analytic continuation of such a series in one of the rules
of quantum field theory; all dangerous examples in inter-
acting theories, e.g., bound states and higher order corre-
lation functions, are impossible to check.
We conclude that no-signaling is a nonperturbative

principle inherently related to relativistic invariance. This
means that relativistic invariance may be renounced either
by a direct experiment in different frames [28] or indirectly
by testing no-signaling.
No-signaling can be simply tested by checking if a free

choice can change a spacelike readout. It a necessary
assumption of every Bell test [1–3] and therefore it is tested
there simultaneously. Although in recent experiments [5–7]
the signature of superluminal signaling based on the
reported data seems to be yet insignificant, in all of them
both random choices and readouts are machine made so fair
time tagging and choice is a matter of trust in electronics,
not humans—the choice is not free in the human sense [29].
Further and improved experiments should be continued to
resolve the question of possible superluminal signaling.

VII. CONCLUSIONS

The presented direct conflicts of freedom of choice in
quantum realism with relativity demonstrates incomplete-
ness of the present quantum framework without using the
assumption of the Bell theorem. The easiest way seems to
abandon relativistic invariance. This can be tested exper-
imentally, especially by no-signaling in the test of local
realism, which is different from the direct search for
violations of relativistic invariance [28]. Theoretical and
experimental development of such tests is critical for
finding a way to reconcile quantum realism with free
choices. Finally, the freedom of choice remains a matter of
trust in electronics, with human choice yet to be consid-
ered [29].
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APPENDIX FOUR-POINT GREEN FUNCTION

We shall recall the calculation of the four-point electron
Green function [27] defined as follows:

GαβγδðxaxbxcxdÞ ¼ hjαþðxaÞjβþðxbÞjγþðxcÞjδþðxdÞi: ðA1Þ

Wewill rather refer to the Fourier transform ofGða; b; c; dÞ
equal to hjþðaÞjþðbÞjþðcÞjþðdÞi with the Fourier
transform jðaÞ ¼ R

d4xjðxaÞeixa·a. Thanks to translational
invariance, G¼δðaþbþcþdÞ ~G. The calculation of ~G by
standard methods (Wick decomposition into propagators—
two-point Green functions) reduces to three integrals
(differing by permutation), corresponding to the box
Feynman diagram depicted in Fig. 5:

~GαβγδðabcdÞ ¼ TαβγδðabcdÞ þ TβαγδðbacdÞTδβγαðdbcaÞ;
ðA2Þ

with

TαβγδðabcdÞ¼−2
Z

d4pTrðp−mþ iϵÞ−1γα

×ðpþa−mþ iϵÞ−1γβðpþaþb−mþ iϵÞ−1
×γγðp−d−mþ iϵÞγδ; ðA3Þ

where the minus is due to anticommuting, p ¼ γ · p, the
factor 2 due to opposite directions and ϵ → 0þ due to the
limits of x0. It is important that G (not T) be invariant with
respect to the permutation of pairs ða; αÞ, ðb; βÞ, ðc; γÞ,
ðd; δÞ; relativistically invariant; and gauge invariant,
namely, aαGαβγδðabcdÞ ¼ 0 (and analogously for other
pairs). It is easily proved by the identity

ðp −mþ iϵÞ−1 − ðpþ a −mþ iϵÞ−1
¼ ðp −mþ iϵÞ−1aðpþ a −mþ iϵÞ−1; ðA4Þ

used at every occurrence of a, and by telescoping the
cancellation of the left-hand sides from all parts of the
integral, with a shift of p when appropriate.
From relativistic invarianceGmust consist of three types

of terms, kαqβrγsδ (heads), gαβrγsδ (and permutations), and

a b

cd

FIG. 5. One of three (or six when directions are counted)
diagrams T contributing to G. Gamma matrices are inserted in
vertices and propagators in lines.
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gαβgγδ (and two other permutations) multiplied by scalar
functions of abcd. Here kqrs are equal to some of abcd but
from the condition aþ bþ cþ d ¼ 0 we can exclude a
from k, b from q, c from r, and d from s (by substituting
a ¼ −b − c − d, etc.). From gauge invariance the heads
determine all other terms, because the terms with g cannot
exist without heads. It is clear when, e.g., we combine
gαβrγsδ with aα, which gives aβrγsδ. Without heads this
term can be canceled only by gαγqβsδ or gαδqβrγ. This is
impossible if r; s ≠ a. By interchanging α ↔ β we find that
rs must correspond to ab or ba. However, then gαγqβsδ

implies q ¼ c and gαδqβrγ implies q ¼ d, which again
makes the cancellation impossible. Terms gαβgγδ left alone
have nothing to cancel with. Heads can be classified into
six types:

1∶ bαaβdγcδ; 2∶ dαaβbγcδ; 3∶ bαaβaγaδ;

4∶ bαaβbγaδ; 5∶ bαcβaγaδ; 6∶ bαaβdγaδ; ðA5Þ

depicted in Fig. 6.
Gauge invariance should allow us to write H ¼

AαBβCγDδGαβγδ in terms of fields Aμν ¼ ∂μAν − ∂νAμ or
in the Fourier representation iðaνAμ − aμAνÞ (similarly for
BCD). In each combination we get some heads. There are
plenty of possible types and combinations of fields that
may contribute to H, but we shall classify five of them (the
only relevant ones, as we shall see in the end) with
corresponding heads in G. We shall use compact notation,
k · F · q ¼ kμFμνqν and ð·X·Þ ¼ Xμ

μ. The list is

1∶ ð·A · B·Þð·C ·D·Þ → bαaβdγcδ;

2∶ ð·A · B · C ·D·Þ → dαaβbγcδ þ bαcβdγaδ;

3∶ ð·A · B·Þða · C ·D · aÞ → 2bαaβðða · cÞdγaδ
þ ða · dÞaγcδ − ðc · dÞaγaδÞ;

4∶ ð·A · B·Þðb · C ·D · aÞ → 2bαaβððb · cÞdγaδ
þ ða · dÞbγcδ − ðc · dÞbγaδÞ;

5∶ ðb ·D · aÞð·A · B · C·Þ →
ðbαcβaγ − cαaβbγÞððb · dÞaδ − ða · dÞbδÞ: ðA6Þ

It is clear that the type number matches the head type
except for head type 6, which contributes to 3 and 4 here.
The tensor 5 is a simplified form of that of [27] due to the
Bianchi identity cμCντ þ cνCτμ þ cτCμτ ¼ 0.
To continue the calculation, we rewrite in (A3)

ðp −mþ iϵÞ−1 ¼ pþm
p · p −m2 þ iϵ

ðA7Þ

and analogously other factors. Then we use the Feynman
identity

ðXabXbcXcdXdaÞ−1 ¼
Z

1

0

6d4λ

× δð1 − λab − λbc − λcd − λdaÞ
× ðλabXab þ λbcXbc þ λcdXcd þ λdaXdaÞ−4 ðA8Þ

applied to Xda¼p ·p−m2þ iϵ, Xab ¼ ðpþ aÞ · ðpþ aÞ−
m2 þ iϵ, Xbc ¼ ðpþ aþ bÞ · ðpþ aþ bÞ −m2 þ iϵ, and
Xcd ¼ ðp − dÞ · ðp − dÞ −m2 þ iϵ. Moreover, we make
the shift p → p − λaba − λbcðaþ bÞ þ λcdd. Using the fact
that aþ bþ cþ d ¼ 0 and

P
λ ¼ 1, we can rewrite (A3)

in the form

− 12

Z
d4pd4λδð1 − λab − λbc − λcd − λdaÞ

× ðp · p −m2 þQþ iϵÞ−4
× Trðp − pda þmÞγαðp − pab þmÞγβðp − pbc þmÞ
× γγðp − pcd þmÞγδ; ðA9Þ

where Q is equal to

ða · aÞλdaλab þ ðb · bÞλabλbc
þ ðc · cÞλbcλcd þ ðd · dÞλcdλda
− ðaþ bÞ · ðcþ dÞλbcλda − ðdþ aÞ · ðbþ cÞλabλcd

ðA10Þ
and

pda ¼ λabaþ λbcðaþ bÞ − λcdd;

pab ¼ λbcbþ λcdðbþ cÞ − λdaa;

pbc ¼ λcdcþ λdaðcþ dÞ − λabb;

pcd ¼ λdadþ λabðdþ aÞ − λbcc: ðA11Þ
In heads we need four factors of abcd so, for their
determination, we can drop p and m in the numerator.
Then we can perform the trace in the numerator,
leaving only heads. We can drop p because it cannot
appear in heads as from relativistic invariance we have
4pαpβ → ðp · pÞgαβ and 24pαpβpγpδ → ðp · pÞ2ðgαβgγδþ
gαγgβδ þ gαδgβγÞ. We get the head part of the trace in (A9) in
the form 4×

FIG. 6. All types of heads described in (A5). The arrow points
from the greek index αβγδ to the latin one, abcd.
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ðpα
abp

β
bc þ pα

bcp
β
abÞðpγ

cdp
δ
da þ pγ

dap
δ
cdÞ

þ ðpα
abp

β
cd þ pα

cdp
β
abÞðpγ

bcp
δ
da − pγ

dap
δ
bcÞ

þ ðpα
abp

β
da þ pα

dap
β
abÞðpγ

bcp
δ
cd þ pγ

cdp
δ
bcÞ

þ ðpα
bcp

β
cd − pα

cdp
β
bcÞðpγ

dap
δ
ab − pγ

abp
δ
daÞ

þ ðpα
dap

β
bc − pα

bcp
β
daÞðpγ

abp
δ
cd þ pγ

cdp
δ
abÞ

þ ðpα
cdp

β
da − pα

dap
β
cdÞðpγ

abp
δ
bc − pγ

bcp
δ
abÞ: ðA12Þ

Expanding the above expression we can find all heads. We
shall only find heads of type 1 and 2. Type 1 is

32bαaβdγcδλabλcdð1 − λabð1 − λcdÞ; 32dαcβbγaδλbcλdað1 − λbcÞð1 − λdaÞ;
32cαdβaγbδðλab þ λbcÞðλbc þ λcdÞðλcd þ λdaÞðλda þ λabÞ; ðA13Þ

and type 2 is

4ðbαcβdγaδ þ dαaβbγcδÞ × ððð1 − λdaÞð1 − λcdÞ þ λcdλdaÞ × ðð1 − λabÞð1 − λbcÞ þ λabλbcÞ
þ ðð1 − λdaÞλcd þ ð1 − λcdÞλdaÞ × ðð1 − λbcÞλab þ ð1 − λabÞλbcÞÞ − 4ðcαaβdγbδ þ bαdβaγcδÞðððλbc þ λcdÞðλcd þ λdaÞ
þ ðλda þ λabÞðλab þ λbcÞÞðλabλcd þ ð1 − λabÞð1 − λcdÞÞ þ ððλcd þ λdaÞðλda þ λabÞ þ ðλab þ λbcÞðλbc þ λcdÞÞ
× ðλabð1 − λcdÞ þ λcdð1 − λabÞÞÞ;
− 4ðdαcβaγbδ þ cαdβbγaδÞðððλcd þ λdaÞðλda þ λabÞ þ ðλab þ λbcÞðλbc þ λcdÞÞðλbcλda þ ð1 − λbcÞð1 − λdaÞÞ
þ ððλbc þ λcdÞðλcd þ λdaÞ þ ðλda þ λabÞðλab þ λbcÞÞ × ðλbcð1 − λdaÞ þ λdað1 − λbcÞÞÞ; ðA14Þ

depicted in Fig. 7. We also find that heads 5 appear in
antisymmetric pairs, e.g., ðbαcβaγ − cαaβbγÞaδ and
ðbαdβaδ − dαaβbδÞaγ, depicted in Fig. 7.
To show that only tensors in (A6) appear in H, note that

(a) we can take away heads 1 and 2 by tensors 1 and 2
leaving the rest invariant, (b) heads 3 and 4 can be taken
away by tensors 3 and 4 leaving only heads 5 and 6,
(c) heads 6, e.g., bαaβbγcδ, must get canceled when
multiplied by dδ, which cannot be achieved either by terms
with g (they will contain d) or by other heads 6 or 5 (they
give different terms). Therefore we only have to show that
heads 5 alone must combine to the tensor 5. Let us first
focus on a subgroup of these heads, ðRaδ þ Sbδ þ TcδÞ×
ðbαcβaγ − cαaβbγÞ. Multiplied by d cycles bαcβaγ −
cαaβbγ must get canceled from gauge invariance, which
cannot be done by terms with g (d will appear) or other
groups (we cannot get the same cycles). Hence Rða · dÞ þ
Sðb · dÞ þ Tðc · dÞ ¼ 0 and we can rewrite the group
multiplied by ðc · dÞ in the form ðRððc · dÞaδ − ða · dÞcδÞþ
Sððc · dÞbδ − ðb · dÞcδÞÞðbαcβaγ − cαaβbγÞ. which corre-
sponds to a combination of tensors 5.

Making the Wick rotation p0 → ip0, we can also
integrate (A9) over p,

Z
d4p

ðp ·p−m2þQþ iϵÞ4 ¼
Z

∞

0

2π2iP3dP
ðP2þm2−Q− iϵÞ4

¼
Z

∞

0

π2iudu
ðuþm2 −Q− iϵÞ4 ¼

iπ2

6ðm2−Q− iϵÞ2 : ðA15Þ

At small values of abcd we can neglect Q in the
denominator of (A15). It remains to integrate (A13) and
(A14) (the other tensors appear only at large values as they
must contain additional Fourier variables abcd from Q)
over λ, and the final result is

H ¼ −
8iπ2

9m4
ðð·A · B·Þð·C ·D·Þ þ ð·A · C·Þð·B ·D·Þ

þ ð·A ·D·Þð·C · B·ÞÞ þ 28iπ2

45m4
ðð·A · B · C ·D·Þ

þ ð·A · C · B ·D·Þ þ ð·A · B ·D · C·ÞÞ: ðA16Þ

1

2

1 1

2 2

5

5

FIG. 7. Three contributions to the head types 1 and 2 and two to
type 5, as in Fig. 6, inscribed in the box diagram, Fig. 5.
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