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Abstract Relativistic invariance of the vacuum is (or fol-
lows from) one of the Wightman axioms, which is com-
monly believed to be true. Without these axioms, here we
present a direct and general proof of continuous relativistic
invariance of all real-time vacuum correlations of fields, not
only scattering (forward in time), based on closed time path
formalism. The only assumptions are basic principles of rel-
ativistic quantum field theories: the relativistic invariance of
the Lagrangian, of the form including known interactions
(electromagnetic, weak and strong), and standard rules of
quantization. The proof is in principle perturbative leaving
a possibility of spontaneous violation of invariance. Time
symmetry is, however, manifestly violated.

1 Introduction

Relativistic invariance of the vacuum is a basic property of
all quantum field theories based on relativistically invari-
ant dynamics, directly following from one of Wightman ax-
ioms [1]. The (third) Wightman postulate assumes the exis-
tence of a single ground state with zero energy-momentum
eigenvalue [2]. The postulate is generally accepted by high
energy community [3] although the problem is more sophis-
ticated than it looks and the validity of the axiom itself has
been questioned [4, 5]. However, to postulate zero energy
is in conflict with renormalization which may add indefinite
contribution. Moreover, this postulate should be redundant
since the vacuum is already determined by the Lagrangian
and the rules of quantization. Indeed, without the Wight-
man axiom, the invariance has been already proved for spe-
cial cases of relativistic quantum field theories: single fields
(electromagnetic, current, etc.), free theories, Feynman (for-
ward) time-ordered (in–out) correlations of fields, scatter-
ing processes, second order and some other classes of cor-
relations [6–11], but never in general (for arbitrarily time-
ordered correlations). A large part of high energy commu-
nity wrongly claim it is already proved in general [12]. For
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instance, a naive proof by reconstruction of vacuum wave-
function out of Feynman correlations fails because such a re-
construction is incomplete and not unique. A general proof
requires to show Lorentz invariance of all arbitrarily ordered
correlations at real spacetime points. The invariance could
be certainly proved only if the underlying dynamics is in-
variant and conserved charges are zero. It has been sug-
gested that Nature may violate the invariance directly (by
non-invariant dynamics) or spontaneously (by a Higgs-like
mechanism) [13]. We do not discuss these two last possibil-
ities here.

In this paper, we confirm the common intuition by a di-
rect proof, not relying on Wightman axioms. Although for-
mally general, it is better to understand it as perturbative. We
show that zero-temperature vacuum correlations of fields at
real spacetime points are invariant under continuous trans-
formations of a reference frame. We shall use the framework
of the closed time path formalism (CTP) [14–16] where cor-
relations are defined on the complex path (going downwards
with respect to imaginary part). It is defined in a particular
reference frame, hence the invariance is not manifest. We
only assume basic, accepted principles of relativistic quan-
tum field theories: (i) relativistically invariant Lagrangian,
including known interactions (electromagnetic, weak and
strong, specified in detail later in the paper) and (ii) rules
of quantization (standard construction of field expectation
values, consistent with CTP). However, the discrete transfor-
mations like time reversal and parity have to be treated sep-
arately. If the underlying dynamics is invariant under charge
conjugation or parity reflection then the proof remains valid
for these transformations [1]. Unfortunately, even if the dy-
namics is symmetric with respect to time reversal, then CTP
is not (except special cases, e.g. at space-like points or in
scattering problems). In the same way, CTP is in general not
invariant under joint charge–parity–time reversal in contrast
to dynamics. It closely related to violation of time symmetry
in quantum noninvasive measurements [17].

The paper is organized as follows. We first recall the
construction of the complex-time path correlations, defin-
ing relevant correlations of fields. Next, we show that the
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correlations are independent of the particular shape of the
path. Then we prove the Lorentz invariance of the zero-
temperature no-charge vacuum for continuous transforma-
tions. Then we discuss possible pitfalls in other attempts of
the proof based e.g. on momentum representation, which is
dedicated to all who claim that the invariance is trivial or
easy extension of existing proofs [12]. Finally, we will see
that time symmetry is absent in CTP. Throughout the paper,
we use the convention � = c = 1 and β = 1/kBT (inverse
temperature).

2 Closed time path formalism and definitions

The complex closed time path C is a specially chosen curve
of time t in the complex plane as a function of a real pa-
rameter s. The curve is continuous with nonincreasing Im t

(important for convergence of integrals, involving energies
bounded from below and open from above) except a jump of
iβ , which becomes imaginary infinity at zero temperature,
see Fig. 1. The physical part of the contour is located on the
real axis (both upper and lower). In particular, the curve in
Fig. 1a is parametrized by real s ∈ [si , sf ] → t (s) with

Im(dt/ds) ≤ 0, t (sf ) = t (si) − iβ,

Im t → 0+ and Re dt/ds > 0 for s ∈ [s+, s0],
Im t → 0− and Re dt/ds < 0 for s ∈ [s0, s−],
t (s±) = 0±, t (s0) = t0, si < s+ < s0 < s− < sf .

(1)

The generalized contour in Fig. 1b contains multiple real
parts.

Fig. 1 The closed time path in the complex-time plane. All the path
cannot go upwards in the imaginary direction. The finite temperature
implies the jump iβ , which extends to infinity at zero temperature.
Apart from the above conditions, the shape of the path is arbitrary. We
stress that the path is ordered by the real parameter s. All the impor-
tant times have been marked. The shift between real parts is infinites-
imal only for better visibility but in fact can be zero. (a) The simple
in–out–in (shortly in–in) contour with a single pair of real parts (be-
tween 0 and t0). (b) The generalized contour for arbitrarily ordered
correlations

To facilitate an easier notation throughout the paper we
define Heaviside and Dirac functions for complex-time ar-
guments t ,

θ
(
t − t ′

) = θ
(
s − s′),

δ
(
t − t ′

) = δ
(
s − s′)/(dt/ds),

∂t = (dt/ds)−1∂s, dt = (dt/ds)ds

(2)

where, as usual, θ(s − s′) = 1 for s > s′ and 0 otherwise
while

∫
dsδ(s − s′) = 1 and δ(s − s′) = 0 for s �= s′. There-

fore θ defines a special order of times along the path, and it
may be converse to the usual order. This is important since
only s is the real, ordering parameter, while t is complex
and thus has no natural ordering. Note that in all contour
time-integrals we essentially integrate over s.

Let us take the generating functional for quantum corre-
lations (often referred to as Green functions) with respect to
the action, making use of the Lagrangian approach, namely
[11, 15, 18–31]

G ≡
〈∏

k

Ak(tk)
∏

l

φl(tl)

〉

=
∏

k

δ

δiχk(tk)

∏

l

δ

δiηl(tl)
eS[χ,η]

∣∣∣∣
χ=0,η=0

(3)

where

eS[χ,η] =
∫

DADφ e
∫
C i dt (L+∑

k(χk(t)Ak(t)+ηk(t)φk(t))

∫
DADφ e

∫
C i dt L

(4)

with auxiliary commuting (c-) field χ (χχ ′ = χ ′χ ) and anti-
commuting Grassmann field η (ηη′ = −η′η). Here tk can be
located everywhere on the path (upper real, lower real, left
complex part). In the above, A and φ are generic bosonic
and fermionic (Grassmann) fields, respectively, and the La-
grangian is a time-local function of fields and their time
derivatives, namely L = L[A, Ȧ,φ, φ̇]. The integral

∫
C

dt

is over the just defined time path, and should be read as an
integral over real s,

∫
ds(dt/ds). The boundary conditions

for fields are A(ti) = A(tf ) and φ(ti) = −φ(tf ), for bosonic
and fermionic field, respectively (Kubo–Martin–Schwinger
condition [32–34]). Standard (in–out) correlations are ob-
tained for the auxiliary fields nonzero only on the upper real
part of the contour. General correlations involve both parts
of the contour (in–out–in or in–in) or even more (in–in–in,
etc.). The path-integral formulation of CTP is equivalent to
Hamiltonian formulation, as we show in Appendix A. The
standard issues such as Wick theorem, conservation laws
and renormalization are resolved in CTP analogously to in–
out correlations, see Appendix B.
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3 Contour shape independence

The fact that we can freely wiggle the contour is reasonably
believed for CTP [24, 35–37], but a direct proof is very in-
structive [38, 39]. Let us prove that (4) is independent of a
particular shape of CTP, because the proof of Lorentz in-
variance will be analogous. It follows from the invariance
of DA and Dφ under infinitesimal transformation δt (s)

parametrized by real s (the variation may change endpoints
but the jump must be kept constant)

A(t) → eδt∂t A(t) = A(t) + δt∂tA(t) + · · · ,

φ(t) → eδt∂t φ(t) = φ(t) + δt∂tφ(t) + · · ·
(5)

which gives L(t + δt) = exp(δt∂t )L(t). This means that the
effect of the contour changes can be absorbed into a shift
under time integral and a such it disappears (analogously to
an integral over a total derivative). We stress that this proof
is valid only if do not change the shape of the real part of the
contour, except shifting t0 if it lies beyond all relevant times.
It is essential that the fields are smooth.

An alternative, more explicit proof relies on perturba-
tive approach. One starts with Gaussian, diagonalized La-
grangian

L0 =
∑

k

[
ψ∗

k (i∂t − Ek)ψk + A∗
k(i∂t − Ek)Ak

+ Ḃ2
k /2 − E2

kB
2
k /2

]
. (6)

In the above, we have denoted complex ψ instead of real φ

and distinguished the linear time derivative bosonic field A

from the quadratic B . The two-point Green function for B

reads

〈
Bk(t)Bl

(
t ′
)〉

0 = δkl

2Ek

∑

±
∓ e±i|t ′−t |Ek

1 − e±βEk
, (7)

where |t ′ − t | = (t − t ′)θ(t − t ′) + (t ′ − t)θ(t ′ − t). For A

we get (A.7) and for ψ (A.8).
If we add interaction term, L = L0 +LI , and LI depends

on fields appearing in L0, the generating function (4)—by
virtue of the Wick theorem (B.1)—will be a sum of integrals
represented by Feynman diagrams, with lines (propagators)
corresponding to free Green functions (A.7), (A.8) and (7)
and vertices corresponding to LI . Suppose that t (s) is varied
by infinitesimal δt . Let us consider the variation of Green
functions. Note that

δ
〈
X(t)X∗(t ′

)〉
0 = (

δt∂t + δt ′∂t ′
)〈
X(t)X∗(t ′

)〉
0 (8)

where X = A,B,ψ and subscript 0 denotes averaging (3)
with respect to L0. The free Green function depends only
on endpoint times t , t ′, not the shape of CTP between them.

Now, each physical diagram corresponds to average of
the type

∫

C

dt1 · · ·dtN

〈 ∏

n≤N

LI (tn)
∏

k>N

Xk(tk)

〉

0
, (9)

where X = ψ,A,B and tk lie in the real (right hand) part of
the contour for k > N . So we get

δ

∫

C

dt1 · · ·dtN

〈∏

n

LI (tn)
∏

k

Xk(tk)

〉

0

=
∫

ds1 · · ·dsN
∑

m≤N

∂

∂sm

〈
δtn

∏

n≤N

LI (tn)
∏

k>N

Xk(tk)

〉

0
,

(10)

where we used Wick-decoupling into products of free Green
functions, Leibniz rule δ(AB) = BδA + AδB , δ dt = dδt =
ds∂sδt , (8), inverse Leibniz rule applied to ∂s and back
Wick-coupling. The final result of the shape variation in-
tegral is zero, which completes the proof.

4 Lorentz invariance

It is natural to expect that Green functions are invariant
under relativistic Lorentz transformations at zero tempera-
ture if the Lagrangian is Lorentz-invariant. However, start-
ing from CTP makes it not obvious because the contour
prefers some time direction. Intuitively, we expect that this
should not bring about any problem but the warning light
comes already from the non-invariance due to finite tem-
peratures, which enters only as a jump in the contour. Be-
low, we show that the Green functions at real times in zero-
temperature vacuum are indeed invariant under continuous
Lorentz transformations in Lorentz-invariant field theories
but not necessarily under time reversal.

4.1 Relativistic notation in CTP

Let us briefly recall relativistic notation. The components
of position four-vector are denoted xμ, μ = 0,1,2,3, with
time x0 = t and three spatial coordinates xk , k = 1,2,3.
Fields, functions of position will be denoted as f (x) where
x = (x0, x1, x2, x3). The derivatives are denoted by ∂μ =
∂/∂xμ. From now on, Greek indices are reserved for four-
vectors and higher Lorentz-like tensors and structures. It is
extremely important for the purpose of this paper that the
time x0(s) is here a complex function of the real parame-
ter s. In particular the time derivative ∂0 is translated into
the real derivative ∂s by

∂0 = (
dx0/ds

)−1
∂/∂s. (11)
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Similarly, we introduce Dirac four-delta, including complex
time,

δ4(x − x′) = δ(s − s′)
dx0/ds

δ
(
x1 − x′1)δ

(
x2 − x′2)δ

(
x3 − x′3)

(12)

and four-integral
∫
C

d4x with d4x = dx0 dx1 dx2 dx3 and
dx0 = (dt/ds)ds. For a compact notation of relative four
position including the complex-time component of the four-
vector on CTP we will denote |x − x′|μ with |x − x′|1,2,3 =
(x − x′)1,2,3 but

∣∣x − x′∣∣0 = θ
(
x0 − x′0)(x0 − x′0) + θ

(
x′0 − x0)(x′0 − x0),

(13)

where θ(x0 −x′0) = θ(s − s′) applies to complex x0 and x′0
along CTP.

The rest of conventions, including Lorentz generators J ,
spinors and Lagrangian density L (becomes Lagrangian L

when space-integrated) are consistent with textbooks [7, 8,
10, 40], which we recall in Appendix C for completeness.

The essential postulate of QFT is that the Lagrangian
density is a Lorentz-invariant. It means that the generating
functional (4) can be written now as

eS[χ,ξ,η] ∝
∫

DADBDψ̄Dψ

× exp
∫

C

i d4x

(
L+

∑

k

(χkAk + ξk · Bk

+ η̄kψk + ψ̄kηk)

)
(14)

where all fields are functions of spacetime, e.g. ηk(x) with
complex time x0 = t , L transforms as a scalar field and nor-
malization imposes constraint S[0,0,0] = 0. Here Ak de-
notes Lorentz scalars and B

μ
k —four-vectors with the dot ·

denoting Minkowski scalar product. In our convention, as-
suming that L is a scalar we also assumed that average
charge densities are zero. The first Minkowski coordinate
(time) has the jump x0

i − x0
f = iβ .

We stress that the charge conservation, Ward–Takahashi
identity, holds in CTP if the Lagrangian does not mix differ-
ent classes of fermions [10]

〈
∂μj

μ
N · · · 〉 = 0, j

μ
N =

∑

n∈N

ψ̄nγ
μψn. (15)

The great advantage of Lagrangian and path-integral for-
malism is that it seems to be perfectly Lorentz-invariant at
first sight. However, the possible caveats are hidden in the
shape of CTP, which is bent into imaginary time but not spa-
tial coordinates. The common sense intuition tells us that the

Lorentz invariance must be broken by finite temperatures,
which essentially dictate the contour jump. Moreover, even
at zero temperature, the contour retains preferred time direc-
tion so Lorentz invariance is not manifest and self-evident.

4.2 Formal proof of invariance

We shall now present a brief formal proof of Lorentz invari-
ance of vacuum generating function (4), with the auxiliary
field nonzero only for real times (right hand part of the con-
tour) at zero temperature kBT = 0 or β = +∞. Note that a
zero temperature makes the jump on CTP between ti and tf
infinite. Due to the freedom of choice of the shape, we as-
sume the contour in Fig. 1 with ti → i∞ and tf → −i∞,
see Fig. 2. Applying a boost Λ to the fields A → ΛA,
B → ΛB , ψ → Λψ we have the complex-time invariance
of Lagrangian
∫

C

d4xL[A,B,ψ] →
∫

d4xL(ΛA,ΛB,Λψ)

=
∫

C

d4xΛ0L[A,B,ψ] =
∫

C

d4xL[A,B,ψ] (16)

where we have used the fact that both the measure d4x and
the integration boundary is invariant under Lorentz trans-
formations and Λ0f (x) = f (Λ−1x). Moreover D(ΛA) =
DA, D(ΛB) = DB and D(Λψ) = Dψ . All the exponent
in the generating functional (14) is a Lorentz scalar so the
above reasoning remains valid. We write
∫

DADBDψ̄Dψ exp
∫

C

i d4x

(
L[A,B,ψ]

+
∑

k

(ΛχkAk + Λξk · Bk + Λη̄kψk + ψ̄kΛηk)

)

Fig. 2 Zero-temperature CTP. The boundary times ti and tf are sent
to imaginary infinity, i∞ and −i∞, respectively. Similarly to Fig. 1 we
can take the simple contour (a) and the generalized one (b)
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=
∫

D(ΛA)D(ΛB)D(Λψ̄)D(Λψ) exp
∫

C

i d4x

×
(
L[ΛA,ΛB,Λψ]

+
∑

k

(ΛχkAk + Λξk · Bk + Λη̄kΛψk + Λψ̄kΛηk)

)

=
∫

DADBDψ̄Dψ exp
∫

C

i d4x

×
(
L[A,B,ψ]

+
∑

k

(χkAk + ξk · Bk + η̄kψk + ψ̄kηk)

)
, (17)

which proves the invariance. However, we had to assume
that Λ acts on functions of complex arguments, not just real
domain, as time is complex. To be correct we should work
only in the real domain (s, x1, x2, x3) and define Λ by Tay-
lor expansion of generator exponential

Λ = eiωμνJμν =
∞∑

n=0

1

n!
(
iωμνJ

μν
)n

. (18)

This is equivalent to real Lorentz transformation for real
times, which is the case we need (Green functions at real
times). The above proof, although formally correct, is hardly
acceptable because one uses ill-defined mathematical oper-
ations. The vague issues are:

– Lorentz transformations are analytically continued to
complex spacetime.

– We ignored possible problems for x0 → ±i∞.
– Convergence and renormalization is not discussed.

To give more insight to the proof, dispel possible objec-
tions and make it robust, we will now reformulate it in terms
of perturbative diagrams showing that each diagram sepa-
rately is Lorentz-invariant.

It is enough to prove that JG = 0 for all Lorentz gener-
ators J and all Green functions G—defined by (3) at real
times, because every finite continuous transformation can
be written as Λ = expwJ and (d/dw)ΛG = JΛG = JGw

where ΛG = Gw is always some Green function at real
times.

4.3 Free theories

We shall first prove Lorentz invariance of vacuum zero-
temperature Green functions in free theories, where they can
be found exactly. The Lagrangian density for free scalar the-
ory reads

2L0 = ∂μA∂μA − m2A2, (19)

where m is the mass of the field. The Green function (prop-
agator) satisfies Klein–Gordon equation

(
∂μ∂μ + m2)〈A(x)A

(
x′)〉

0 = −iδ4(x − x′), (20)

where ∂ acts on x (we shall write ∂ ′ if acting on x′). The
solution reads

G0
(
x, x′) = 〈

A(x)A
(
x′)〉

0

=
∫

d3p

2p0(2π)3

∑

±
∓e±ipμ|x−x′|μ

1 − e±βp0 (21)

where pμ is the four momentum with p0 = √
p2 + m2. It is

important that (21) is valid for time components, x0 and x′0
along the CTP contour as defined in Fig. 1 and (13). For the
Dirac field,

L0 = X̄
(
iγ μ∂μ − m

)
X (22)

we have

(−iγ μ∂μ + m
)
bc

〈
Xc(x)X̄a

(
x′)〉

0 = −iδabδ
4(x − x′), (23)

with the summation over c and mab = mδab . Now, we get
two cases. If X = A (bosonic field, unphysical, usually ap-
pearing in renormalization) then A(ti) = A(tf ) but if X = ψ

(fermionic field) then ψ(ti) = −ψ(tf ). The general solution
reads

〈
Xa(x)X̄b

(
x′)〉

0 = (
iγ μ∂μ + m

)
ab

GX
0

(
x, x′), (24)

where

GA
0

(
x, x′) = G0

(
x, x′),

G
ψ

0

(
x, x′) =

∫
d3p

2p0(2π)3

∑

±
∓e±ipμ|x−x′|μ

1 + e±βp0 .
(25)

For vector fields Bμ, the internal Lorentz structure is simply
added by metric tensor 〈Bμ(x)Bν(x′)〉0 = agμνG0(x, x′).
Possible problems occur for expressions of the type ∂μ∂ ′

νG0

because the derivative produces unphysical contact terms ∼
δ(x0 − x′0) [40]. Fortunately, they appear always in pairs
with a renormalization field, which cancels the singularity.

Nonzero temperature β < ∞ will break Lorentz invari-
ance, which means that there is a four-vector related to tem-
perature. There is no unique choice. One can define βμ

[41, 42] with β0 = β and βk = 0, k = 1,2,3 in a particu-
lar reference frame. However, good alternatives are kBT μ =
βμ/β · β or uμ = βμ/

√
β · β , see also a general discussion

[43]. However, one has to remember that the zero tempera-
ture limit means infinitely time-like βμ. The zero four-vector
β limit, when Lorentz invariance might be obvious, corre-
sponds unfortunately to infinite temperature so this is not
what we are looking for.
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In the zero-temperature limit β → +∞, (21) and (25)
take the form

G
ψ

0

(
x, x′) = G0

(
x, x′) =

∫
d3p

2p0(2π)3
e−ipμ|x−x′|μ. (26)

Applying Lorentz generator

J0 = J0x + J0x′ , J
μν
0x = i

(
xμ∂ν − xν∂μ

)
(27)

acting on x and x′ by J0x and J0x′ , respectively, one can
check explicitly (a lengthy textbook exercise) that JG = 0
(so ΛG = G) when applied to (26), so the free theory is
indeed Lorentz-invariant (there are no additional problems
with transformation of internal vector or spinor structure).
Remember that the time derivative in J is always taken
along the contour, namely with complex-time derivative
∂0 (11).

4.4 Interaction

The rest of the proof is similar to the shape-independence
proof. Again, it is important that all time components be-
low, x0

k , run along the CTP contour as defined in Fig. 1 (in
particular Fig. 2 at zero temperature) and (13). The Green
functions
〈∏

k

Xk(xk)

〉
(28)

are, by virtue of the Wick theorem, represented by sums of
diagrams with external vertices k (not integrated), internal
vertices (integrated) corresponding to the interaction part of
the Lagrangian density LI and connecting lines correspond-
ing to free Green functions (21) and (25). We want to show
that J vanishes when applied to the whole diagram. Sup-
pose that the diagram has fixed number N of internal ver-
tices 1..N and K external ones N +1..N +K . then we have
to show that

∫
d4x1 · · ·d4xN

∑

l>N

J l

〈 ∏

n≤N

LI (xn)
∏

k>N

Xk(xk)

〉

0
= 0,

(29)

where Xk represent fields whose expectation value define
the Green function, Jm acts on all fields meeting at the ver-
tex m. The average is taken with respect to free Lagrangian
density L0. We decouple (29) into free Green functions us-
ing Wick theorem and use Leibniz rule. Since Lorentz trans-
formations do not affect free Green functions, we have

N+K∑

m=1

Jm

〈 ∏

n≤N

LI (xn)
∏

k>N

Xk(xk)

〉

0
= 0. (30)

Since LI is a Lorentz scalar we can change
∑

n J n →∑
n J n

0 . Finally, we perform integration

∫
d4x J

μν
0 · · · (31)

over each vertex n ≤ N (x = xn), which yields only bound-
ary values due to

∫
dt xk∂0 = ∫

ds xk∂s , see Eq. (C.7). How-
ever, free propagators vanish exponentially at large distances
and, at zero temperature, with x0 → ±i∞. Hence (31) van-
ishes along with the left hand side of (29), which completes
the proof.

This is our main result. The proof has been obtained in
the time domain, without stretching the real time to infini-
ties. Note the analogy to contour shape independence. The
heart of the proof is the fact that analytic continuation of
time does not hurt the generating function. It is quite intu-
itive but never before shown explicitly.

5 Incomplete proofs

It is tempting to ask: Why not to prove Lorentz invari-
ance using simply energy-momentum representation [44–
48]? This approach seems attractive and practical but it has
to be supplemented by arguments following from space-
time CTP representation. The main problems arise for off-
shell Green functions (not describing scattering processes)
and field mass/strength renormalization. They cannot be re-
solved without returning to spacetime representation.

The energy-momentum representation can be used only
on the real part of the contour stretched to the whole real axis
(t0 → +∞ and t (s±) → −∞), taking separately its upper
and lower branch, as Fourier transform is only defined in
real axis. The Green function gets additional indices to keep
track of the branch, Guv(x, x′) = G(xu, x

′
v) where u,v = ±

and x0± = x0 ± iε, ε → 0+. We have

G
(
x, x′) =

∫
d4p

(2π)4
G(p)e−ipμ(xμ−x′

μ), (32)

where, in the space (+,−),

G±(p) =
(

i(p2 − m2 + iε)−1 2πδ−(p2 − m2)

2πδ+(p2 − m2) −i(p2 − m2 − iε)−1

)

± 2πδ
(
p2 − m2)n±(∣∣p0

∣∣)
(

1 1
1 1

)
, (33)

where δ±(p2 − m2) = θ(±p0)δ(p2 − m2), the upper in-
dex +/− denotes bosonic/fermionic field with n±(q) =
(eβq ∓ 1)−1. We denoted ε → 0+ defined for momenta to
distinguish it from ε defined in spacetime.

In the zero-temperature limit n → 0 and the free Green
functions are manifestly Lorentz-invariant. The problems
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arise for interactions. Now, the interacting Green function
takes on renormalization corrections,

G0++(p) = i

p2 − m2 + iε
→ G++(p)

= iZ(p)

p2 − M2 + iε
, (34)

where Z(p) is regular at p2 = M2. The renormalization is
obtained by summation of Dyson series of self-energy con-
tributions. However, such step is ill-defined for p2 = M2

because ε dominates in this regime. This can be cured by a
slight tilt of the real-time contour as in Fig. 3 [10]. In fact,
the new contour contains the essential feature of Fig. 2—
the endpoints in ±i∞. However, for G±∓ the trick with the
contour does not help. We are forced to simply accept

δ±
(
p2 − m2) → Zδ±

(
p2 − M2) (35)

because this part is only defined for p2 = M2. One can cir-
cumvent the problem by ad hoc defining extrapolation of
G±± to G±∓ and the p2 = M2 case. Another argument is
the fluctuation dissipation theorem, which imposes relations
between elements of G [49, 50], or mass derivative [36].
However, this is only the case of elementary particles like
electron and photon. Composed bound states like nucleons,
atoms, and molecules get their renormalization corrections,
too, but they cannot be simply reduced to a single dressed
propagator line. In the time domain, bound states do not lead
to any problems because the poles/deltas in propagators ap-
pear only in the infinite time limit and we do not have to sum
infinite series of diagrams.

Further problems may arise from pinch singularities [51],
which may occur for products of propagators [(p2 − m2 +
iε)(p2 − m2 − iε)]−1. Fortunately, a careful analysis makes
them always cancel [46, 47]. Having the invariance of in–out
correlations, it would be easy to prove Lorentz invariance if
all the Green functions factorized at zero temperature [41,
48], namely

〈∏
Xk(pk)

〉
=

〈∏

k+
Xk(pk)

〉〈∏

k−
Xk(pk)

〉
(36)

where k± denotes fields defined on the upper(+)/
lower(−) branch by the Fourier transform X±(p) =

Fig. 3 The tilted contour which circumvents the problem of pole
renormalization p2 ∼ m2 → M2

∫
d4x±eipμxμ±X±(x±). An attempt to prove the factoriza-

tion requires generalization of CTP to the contours like that
in Fig. 4 with varying σ [41, 44, 45, 48]. If σ = β/2 then
the factorization occurs indeed for β → ∞. However, not
every Green function is σ -independent [52, 53]. From trans-
lational invariance the nonvanishing Green functions satisfy∑

p = 0. The new vertical part of the contour gives addi-

tional factors e±σp0
to each propagator from lower to upper

branch (+) or vice versa (−). These factors cancel only if

∑

k+
p0

k =
∑

k−
p0

k = 0, (37)

which means that the frequencies/energies of upper and
lower branch separately add up to zero as seen in Fig. 5.
This situation is common to scattering processes but not in
general. It holds e.g. for in–out correlations when all times
are on the upper real part due to time shift invariance but not
necessarily for in–in correlations when times are located on
both real parts (upper and lower).

Having presented above the complications in energy-
momentum space, we conclude that the proof is fully correct
in the spacetime domain, while in the momentum/Fourier
space it would require assuming at best several additional
technical rules and may not be general (for very compli-
cated diagrams). Still, most of practical calculations are eas-
ier performed in the latter case, with spacetime arguments
used only when the momentum rules are ambiguous.

Another attempt of proof requires reconstruction of vac-
uum wavefunction out of in–out Green functions. This is
possible in simple quantum models, including free theo-
ries, finite and harmonic systems but not in fully interacting
relativistic theory because renormalizing fields, especially

Fig. 4 The separated upper and lower real contour branches 0 ≤ σ ≤ β

Fig. 5 The particle view of factorization mechanism. The Green func-
tion is σ -independent only if p0

1+ + p0
2+ + p0

3+ + p0
4+ + p0

5+ = 0 and

p0
6− + p0

7− + p0
8− = 0
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for fermions, make the information in in–out functions in-
complete and insufficient to uniquely reconstruct vacuum
wavefunction. On the other hand, dimensional regulariza-
tion is useless when proving Lorentz invariance because
Lorentz transformations are defined only for integer dimen-
sions. Lastly, an often heard argument is analyticity of Green
functions [12], but how to define it on CTP? The condition
of nonincreasing imaginary part makes it impossible to de-
fine analytic conditions (Cauchy–Riemann) because for free
real times the middle one is pinched—the imaginary part
of the derivative is not allowed. One cannot allow the con-
tour to go upwards in imaginary direction because the en-
ergy spectrum is bounded from below and open form above,
making integrals nonrenormalizably divergent. On the other
hand analyticity with respect to real s is questionable be-
cause of turning points t0(s0) and crossings (tn � tm). Such
a proof will be restricted to a particular branch of CTP,
e.g. upper/lower real or vertical imaginary part, but not gen-
eral. One cannot also use Gell-Mann and Low theorem [54],
which could simply extend the proof from free theories to
interacting ones by adiabatic switching, because it works it-
self in a preferred frame. Any attempt to prove Lorentz in-
variance in general will ultimately fail or arrive at the proof
here presented.

6 Absence of time-reversal symmetry

The momentum representation hides the fact that the Lorentz
invariance is not necessarily valid for time reversal, which
is only true for second order correlations or if the factor-
ization (36) holds for higher order correlations. Note that
the reversal p0 → −p0 break the time symmetry because of
θ(±p0) factors in G±∓. Trying to reverse branches + ↔ −
does not help either, because then G±± gets conjugated, so
there is no way to restore original Green function. If we
both reverse p0 and make conjugation then we will return to
the original Green function but the time will be also twice
reversed which is again not what we wanted to have. The
time (generally charge–parity–time) symmetry is valid only
for scattering processes or space-like separated points. This
lack of symmetry is fundamental and especially surprising
in context of noninvasive measurements which are naturally
defined on CTP [17].

7 Conclusions

We have shown that the closed time path formalism is con-
sistent with relativistic invariance at zero temperature. The
presented picture path-integral Lagrangian fits well into co-
variant relativistic framework with the analytic continuation
of time as the only nontrivial extra element. It is remarkable

that complex time glues statistical mechanics, time evolu-
tion and relativistic symmetry without any problems. The
fact that CTP is invariant only under continuous transforma-
tions, not time reversal, shows that there the properties of
CTP still differ from scattering processes. An open issue is
whether the Lorentz symmetry can be shown nonperturba-
tively (what about spontaneous breaking?) and for quantum
gravity.
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Appendix A: Hamiltonian formulation of CTP

The traditional starting point of every quantum-mechanical
problem is the Hermitian Hamiltonian operator Ĥ in a
given Hilbert space. The physical quantities are described
by Hermitian operators X̂k corresponding to their classi-
cal counterparts Xk (numbers). Depending on the measure-
ment scheme, there exists a correspondence between opera-
tors and measurement outcomes, X̂k → Xk . Evolution and
state is described by Hamiltonian Ĥ (t) → Ĥ +Ĥ1(t), where
Ĥ1(t) is the time dependent part, due to changing external
forces, which are assumed to be absent for Re t < 0. We
shall assume that t lies on CTP as in Fig. 1. Every conserved
quantity can be incorporated into the definition of the Hamil-
tonian, Ĥ → Ĥ −μQQ̂. For the main purpose of this paper,
Ĥ1 and Q̂ can be omitted. However, the whole CTP formal-
ism works perfectly also for nonzero Ĥ1, which is neces-
sary in problems involving external (changing) forces and
charges [55].

The generating functional can be written in the form

eS[χ] = TrTCe
∫
C i dt (

∑
k χk(t)X̂k−Ĥ (t))

TrTCe− ∫
C i dtĤ (t)

, (A.1)

where the subscript C denotes integration over the CTP as
defined in Sect. 2 and the time order TC denotes ordering of
operators in the Taylor expansion according to CTP, namely

TCŶ1(t1) · · · Ŷn(tn) = sgn(σf )Ŷσ (1)(tσ (1)) · · · Ŷσ (n)(tσ (n)),

(A.2)

where σ is a permutation such that sσ(1) ≥ · · · ≥ sσ(n) (in the
case of X̂k we take the time of χ ). Here sgn(σf ) denotes the
sign of the sub-permutation fermionic operators. If Ŷk is a
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fermionic operator for k ∈ {1..nf }, then σf is defined as the
map between the ordered sequences (σ (k))

nf

k=1 and (σ (k)),
ordered according to k and σ(k), respectively.

The correlations (Green functions) are given by deriva-
tives of the generating functional,

〈∏

k

Xk(tk)

〉

q,ρ

=
∏

k

−iδ

δχk(tk)
eS[χ]

∣∣∣∣
χ=0

. (A.3)

Performing a Taylor expansion of exponentials in (A.1)
one can explicitly check that the result does not depend on
a particular shape of CTP [38, 39], as long as (1) is satisfied
and t0 is greater than all interesting times. In such a check
it is important to note that Ĥ is time-independent along the
wiggly part of the contour, so the ordering does not matter
there. On the other hand (A.1) is useful also for deriving the
thermodynamic functions and transport coefficients, e.g. the
Kubo formula [32–34].

Usually one separates free harmonic Hamiltonian Ĥ0

writing Ĥ (t) = Ĥ0 + ĤI (t). The remaining calculations are
usually performed perturbatively, with the help of the free
two-point Green’s functions and Wick’s theorem [56, 57],
which allows a decoupling of the free many-point Green
functions into products of two-point functions, see below.

A.1 Free Green functions

The most convenient free Hamiltonian is the quadratic form
of bosonic and fermionic operators

Ĥ0 =
∑

kl

(bkl x̂kx̂l + fklφ̂kφ̂l) (A.4)

where x̂ and φ̂ are Hermitian operators with bosonic and
fermionic commutation relations, respectively, [x̂k, x̂l] =
igkl 1̂, {φk,φl} = hkl 1̂, with real g and h.

One can always diagonalize Ĥ0 so that

Ĥ0 = Hvac +
∑

k

Ek

(
Â

†
kÂk + ψ̂

†
k ψ̂k

)
(A.5)

where Hvac is the vacuum energy (can be ignored), Â and
ψ̂ are linear combinations of x̂ and φ̂, respectively, with the
property

[Âk, Âl] = 0,
[
Âk, Â

†
l

] = δkl,

{ψ̂k, ψ̂l} = 0,
{
ψ̂k, ψ̂

†
l

} = δkl .
(A.6)

It is especially simple and instructive to find Green functions
for the above Hamiltonian, according to (A.3) and (A.1), ex-
tended to the whole CTP. In the case of bosonic operators,

〈A(t)〉0 = 〈A∗(t)〉0 = 0 and
〈
Ak(t)Al

(
t ′
)〉

0 = 〈
A∗

k(t)A
∗
l

(
t ′
)〉

0 = 0,

〈
Ak(t)A

∗
l

(
t ′
)〉

0

= δkle
i(t ′−t)Ek

[
θ(t − t ′)

1 − e−βEk
+ θ(t ′ − t)

eβEk − 1

]
.

(A.7)

For fermionic operators, it is important that φ (ψ , ψ∗) is
never a c-number but a Grassmann number with the prop-
erty φaφb = −φbφa , which follows from anticommutation
relations. The anticommutation makes it necessary to use
different boundary conditions, due to Kubo, Martin and
Schwinger [32–34], imposing the sign reversal on the jump
tf → ti , so the Green functions read 〈ψ(t)〉0 = 〈ψ∗(t)〉0 = 0
and
〈
ψk(t)ψl

(
t ′
)〉

0 = 〈
ψ∗(t)kψ∗

l

(
t ′
)〉

0 = 0,

〈
ψk(t)ψ

∗
l

(
t ′
)〉

0 = δkle
i(t ′−t)Ek

×
[

θ(t − t ′)
1 + e−βEk

− θ(t ′ − t)

eβEk + 1

]
.

(A.8)

In both cases, the Green functions satisfy the equation

δ
(
t − t ′

)
δkl = [∂t + iEk]

〈
Ak(t)A

∗
l

(
t ′
)〉

0

= [∂t + iEk]
〈
ψk(t)ψ

∗
l

(
t ′
)〉

0 (A.9)

with different boundary conditions, A(ti) = A(tf ) but
ψ(ti) = −ψ(tf ).

A.2 Wick theorem

The many-point Green functions are obtained from Wick
theorem [56, 57]. For products of odd number of operators,
Green function vanishes while for the even number 2n,
〈

2n∏

k=1

xk(tk)

〉

0

= 1

n!2n

∑

σ

n∏

k=1

〈
xσ(2k−1)(tσ (2k−1))xσ(2k)(tσ (2k))

〉
0,

〈
2n∏

k=1

φk(tk)

〉

0

= sgnσ

n!2n

∑

σ

n∏

k=1

〈
φσ(2k−1)(tσ (2k−1))φσ(2k)(tσ (2k))

〉
0.

(A.10)

The Wick theorem states essentially that every many-
point Green function for a quadratic Hamiltonian splits
into products of two-point functions. This fact is analo-
gous to the property of Fourier transforms of Gaussian func-
tions, which are again Gaussian. Wick theorem is useful for
interactions—one proceeds perturbatively, expanding (A.1)
in interaction strength.
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A.3 Hamiltonian–Lagrangian equivalence for bosonic
fields

Let us begin with the Lagrangian

L(q, q̇, t) =
∑

k

(
mkq̇

2
k /2 + fk(q)q̇k

) − g(q) (A.11)

for generalized coordinates q and q̇ = dq/dt . The classical
Hamiltonian is obtained by Legendre transformation, defin-
ing momenta,

pk = ∂L/∂q̇k = mkq̇k + fk(q) (A.12)

so that the Hamiltonian reads

H(q,p) =
∑

k

pkq̇k − L =
∑

k

(
pk − fk(q)

)2
/2mk + g(q).

(A.13)

We assume quantum evolution of the wavefunction Ψ (q)

given by the path integral

Ψ (q̃, t) =
∫ q(t)=q̃

q(0)=q ′
Dq e

∫
iL(q,q̇)dtΨ

(
q ′,0

)
, (A.14)

where Dq includes all necessary normalization factors. To
find the operator form of the Hamiltonian, we expand the
above equation for small times,

Ψ (q̃, t) =
∫ q(t)=q̃

Dq e
∫ t

0 i dt ′
∑

k mkq̇
2
k (t ′)/2

×
(

1 − g(q̃)t +
∑

k

∫ t

0
i dt ′q̇k

(
t ′
)
fk(q̃)

−
∫ t

0
dt ′q̇k

(
t ′
) ∂

∂q̃k

+
∑

kl

∫ t

0
dt ′ dt ′′q̇k

(
t ′
)
q̇l

(
t ′′

)

×
(

∂2

2∂q̃k∂q̃l

− i∂fk(q̃)
∂

∂q̃l

− fk(q̃)fl(q̃)/2

)

−
∑

kl

∫ t

0
i dt ′q̇k

(
t ′
)

×
∫ t ′

0
dt ′′q̇l

(
t ′′

)∂fk(q̃)

∂q̃l

)
Ψ (q̃,0). (A.15)

The ignored terms are of the order ∼ t2. We now use the fact
that
∫

Dq e
∫

i dt ′
∑

k mkq̇
2
k (t ′)/2q̇k

(
t ′
) = 0,

∫
Dq e

∫
i dt ′

∑
k mkq̇

2
k (t ′)/2q̇k

(
t ′
)
q̇l

(
t ′′

) = i

mk

δklδ
(
t ′ − t ′′

)
,

(A.16)

which gives
(
Ψ (q̃, t) − Ψ (q̃,0)

)
/it

=
(

−g(q̃) +
∑

k

1

mk

×
(

∂2

2∂q̃2
k

− fk(q̃)
i∂

∂q̃k

− f 2
k (q̃)/2 − i∂fk(q̃)

2∂q̃k

))
Ψ (q̃,0). (A.17)

Let us briefly comment the last term in bracket. It has been
obtained by assuming θ(t)δ(t) → δ(t)/2 or symmetrizing
the last integral in (A.15) [58]. However, in the fundamental
theories, like quantum electrodynamics, weak, strong inter-
actions and generally Standard Model this term is absent. It
follows from the fact that the even the most dangerous terms,
due to non-Abelian gauge fields, have ∂fk/∂qk = 0. Nev-
ertheless, this indicates potential problems for completely
general Lagrangians, especially for gravity.

Finally, we get

i∂tΨ = ĤΨ,

Ĥ =
∑

k

(
p̂k − fk(q)

)2
/2mk + g(q),

p̂k = ∂

i∂qk

,

(A.18)

which proves the equivalence between bosonic path inte-
grals and Hamiltonian picture, with the commutation rule
[q̂k, p̂l] = iδkl .

A.4 Hamiltonian–Lagrangian equivalence for fermionic
fields

Fermionic path integrals are more complicated due to an-
ticommutation rules. We have to define abstract anticom-
muting Grassmann numbers, φk , with the property φkφl =
−φlφk and the integrals [10],
∫

dφk = 0,

∫
dφk φk = 1,

∫
dφ1 · · ·dφn φn · · ·φ1 = 1.

(A.19)

One can check that
∫

Dφ∗Dφe−∑
kl φ

∗
k Fklφl = detF,

∫
Dφ∗Dφe−∑

kl φ
∗
k Fklφl φjφ

∗
m = (

F−1)
jm

detF.

(A.20)

Here φ = φr + iφi and φ∗ = φr − iφi are independent fields
and dφ∗dφ = i dφi dφr/2.
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Let us now take an abstract Lagrangian

L0(ψ, ψ̇, t) =
∑

k

ψ∗
k (iψ̇k − Ekψk). (A.21)

According to the classical rule we can construct an abstract
Hamiltonian

H0 =
∑

k

pkψ̇k − L0 =
∑

k

Ekπkψk (A.22)

for

πk = ∂L0

∂ψk

= iψ∗
k . (A.23)

In the continuous case for CTP,

∫
Dψ∗Dψe

∑
n

∫
C i dtψ∗

n (i∂t−En)ψnψk(t̃)ψ
∗
l (t ′)

∫
Dψ∗Dψe

∑
n

∫
C i dtψ∗

n (i∂t−En)ψn

= δkle
i(t ′−t̃ )Ek

[
θ(t̃ − t ′)

1 + e−Ek/kBT
− θ(t ′ − t̃ )

eEk/kBT + 1

]
(A.24)

which is the equivalent to (A.8). The equivalence between
bosonic–fermionic path integrals and Hamiltonian operator
can be now easily extended to general family of Lagrangians
of the type

L =
∑

k

(
mkq̇

2
k /2+ q̇kfk(q,ψ)+ iψ∗

k ψ̇k

)−g(q,ψ), (A.25)

where fk(q,ψ) and g(q,ψ) are real-valued and even in ψ ,
and Hamiltonian

Ĥ =
∑

k

(
p̂k − fk(q̂, ψ̂)

)2
/2mk + g(q̂, ψ̂) (A.26)

with commutation relations [p̂k, q̂l] = i and {ψ̂k, ψ̂
∗
l } =

δkl . We emphasize, however, that the equivalence does not
generalize to completely arbitrary Lagrangians, containing
higher powers of time derivatives, e.g. q̇4 or ψ̇2.

Appendix B: Technical aspects of path integrals

B.1 Wick theorem for path integrals

The Wick theorem is now a straightforward consequence of
Gaussian integrals
∫

DqDφe−∑
kl (qkgklql−φkbklφl)/2+∑

k(χkqk+ηkφk)

∝ e
∑

kl (χkg
−1
kl χl−ηkb

−1
kl ηl )/2, (B.1)

where g and b are real symmetric and antisymmetric matri-
ces, respectively, while g−1 and b−1 are their inverses.

B.2 Conservation laws

As noticed already by Kadanoff and Baym [15], the CTP
technique maintains classical conservation laws. Suppose
that the fermionic terms in Lagrangian (A.25) appear in sep-
arate sets,

L =
∑

n∈N

ψ∗
n i∂tψn + LI , (B.2)

where LI is built from bosonic field and fermionic quadratic
forms

∑

N

∑

n,n′∈N

ψ∗
nψn′ . (B.3)

Sets N form a family of disjoint sets and LI may contains
arbitrary products and sums of (B.3) for different Ns to-
gether with bosonic fields. It is, however, forbidden to in-
clude terms like ψ∗

k ψk′ where k and k′ belong to different
sets N and N ′, respectively. Each set N defines one con-
served quantity, QN(t) = ∑

n∈N ψ∗
n (t)ψn(t). The conserva-

tion law states that

〈
∂tQN(t) · · · 〉 = 0, (B.4)

when averaging with the path integral (4). To prove (B.4) we
make the transformation ψn(t) = eiα(t)ψ ′

n(t), for real α with
boundary condition α(ti) = α(tf ). As the transformation is
linear, Dψ∗Dψ = Dψ ′∗Dψ ′ and

DADψ∗Dψ e
∫
C i dt L

= DADψ∗Dψ e
∫
C i dt (L(t)−QN∂tα)

= DADψ∗Dψ e
∫
C i dt (L(t)+α∂tQN) (B.5)

where we performed integration by parts with respect to
time in the last line. Taking the above equation integrated
with arbitrary QN -conserving field function and preforming
the functional derivative

δ/δα(t)|α=0 (B.6)

we obtain (B.4). The QN -conserving functions must be built
of Hermitian forms of type (B.3) so that they are invariant
under ψ → ψ ′. We could certainly repeat the proof pertur-
batively, as we did to prove shape independence in Sect. 3
(some issues are resolved by renormalization [10]).

B.3 Hubbard–Stratonovich transformation and
renormalization

Here we discuss the two techniques often used in context
of path integrals. The Hubbard–Stratonovich transformation
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[59, 60] allows to reduce order of terms in path integral by
an auxiliary bosonic field X(t),

e
∫

i dtY 2(t)/4a ∝
∫

DXe
∫

i dt (
√

aX(t)Y (t)−X2(t)). (B.7)

Note that
√

a is imaginary if a < 0 and in this case X does
not correspond to any physical field although path integrals
can be still performed. The renormalization is used to kill
divergences appearing in quantum field theory [7, 8]. It re-
quires introducing unphysical fields, too. The most common
form of renormalizing terms in Lagrangian is

LR = f (Xk, iX̃m) (B.8)

where X̃m is the unphysical field as it appears with i. Both
techniques are fully consistent with CTP formalism. For
the purpose of this paper—the proof of Lorentz invariance,
it is more convenient to use Pauli–Villars renormalization
scheme, with up to several renormalizing fields with large
masses (e.g. two bosonic and two fermions in the case of
vacuum polarization) [61], because dimensional regulariza-
tion makes Lorentz transformations undefined. For details of
these techniques we refer readers to textbooks [7, 8, 10, 40].

Appendix C: Lorentz transformations

For general multi-indexed relativistic structures we adopt
Einstein convention A ·B = AμBμ = ∑

μ=0,1,2,3 AμBμ and

A2 = A · A. We denote Minkowski metric tensor gμν =
gμν equal +1 for μ = ν = 0, −1 for μ = ν = 1,2,3
and 0 otherwise. Next, g is used to lower/raise an in-
dex, Aμ = gμνA

ν , Aμ = gμνAν . In this notation g
μ
ν =

δ
μ
ν is equal +1 if μ = ν and 0 otherwise and A0 = A0

while A1,2,3 = −A1,2,3. The four-vector measure is denoted
d4x = dx0 dx1 dx2 dx3. We extract the usual three-vectors
x = (x1, x2, x3), its square x2 = (x1)2 + (x2)2 + (x3)3 and
measure d3x = dx1 dx2 dx3. The natural Lorentz transfor-
mation is defined on four-vectors,

A′μ = Λ′μ
νA

ν. (C.1)

The transformation must satisfy conservation of metric ten-
sor

gμν = Λ′μ
αΛ′ν

βgαβ. (C.2)

In general, the continuous Lorentz transformation can be
written in the form

Λ = exp
(−iωμνJ

μν/2
)

(C.3)

where J is the generator of the Lorentz group, satisfying

[
Jμν, J αβ

] = i
(
gναJμβ − gμαJ νβ − gνβJμα + gμβJ να

)

(C.4)

which yields Jμν = −J νμ. The generator for (C.1) reads

(
J ′μν

)α

β
= i

(
gμαgν

β − gναgμ
α

)
. (C.5)

For the scalar field

Λ0A(x) = A
(
Λ′−1x

)
(C.6)

with the corresponding generator

J
μν
0 = i

(
xμ∂ν − xν∂μ

)
. (C.7)

If the field has vector structure, e.g. Aμ(x) then the genera-
tor reads J ′ +J0, acting both on argument x and four-vector
(indices μ). The scalar fields are examples of the general
family of Lorentz scalars, combinations of fields that trans-
form according to Λ0. Other examples are Aμ(x)Bμ(x),
A(x)∂μBμ(x) and ∂μA∂μB and their combinations (prod-
ucts, sums, multi-indexed forms). In general, if all spacetime
indices (μ) appear in pairs, then we have a Lorentz scalar.

Apart from continuous transformations there exist two
special discrete transformations, time reversal x0 → −x0

and parity (mirror) inversion xk → −xk , k = 1,2,3. One
can also make charge conjugation e → −e (the interaction
strength). The proof of Lorentz invariance of zero temper-
ature vacuum will be valid only for continuous transforma-
tions. If Lagrangian is invariant with respect to parity inver-
sion or charge conjugation then we can include it, too (which
is e.g. not the case for weak interactions).

Fermionic fields are represented by four-component
spinors ψa , a = 1,2,3,4, which have nothing to do with
four-vectors. To define corresponding Lorentz transforma-
tions, we first denote Dirac 4 × 4 matrices, γ μ, with the
property

{
γ μ, γ ν

} = 2gμν (C.8)

and γ 0 = γ 0†, γ k = −γ k†, k = 1,2,3. The Lorentz genera-
tor reads

Jμν
s = i

[
γ μ, γ ν

]
/4. (C.9)

The Dirac matrices transform as four-vectors,

Λ−1
s γ μΛs = Λ′μ

ν γ ν. (C.10)

The conjugate spinor, ψ† transforms as ψ†Λ
†
s . Unfortu-

nately, Js is not Hermitian and Λ
†
sΛs �= 1 but Λ

†
s γ

0Λs = γ0

or J
μν†
s γ 0 = γ 0J

μν
s . Therefore we denote ψ̄ = ψ†γ 0 and

ψ̄φ is again a Lorentz scalar as well as Aμψ̄γ μψ , ψ̄γ μ∂μφ

and so on. General rules to construct a Lorentz scalar are:

– a product/sum of Lorentz scalars is a Lorentz scalar,
– ψ̄φ and A are Lorentz scalars,
– ψ̄γ νφ and Aν and ∂νA are Lorentz vectors,
– ψ̄γ νγ μφ and ∂μAν are Lorentz tensors, etc.,
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– A product of Lorentz vectors (tensors) is a Lorentz scalar
if the Greek indices always come in raised/lowered pairs
μ
μ and Einstein summation is performed.

Instead of the Lagrangian, in relativistic spacetime we
will rather use its density L with the property

L =
∫

d3xL, (C.11)

where d3x = dx1 dx2 dx3 is the three dimensional volume
measure. It allows to write action in the spacetime
∫

dt L =
∫

d4xL. (C.12)

Every Lorentz transformation Λ conserves measure Λ(d4x) =
d4x.

In the Lagrangian density (and other functionals) one can
find every kind of combination of fields, A(x), Bμ(x), ψ ,
etc. The Lagrangian will be Lorentz-invariant if its density
transforms as Lorentz scalar

L(ΛA,ΛB,Λψ) = Λ0L(A,B,ψ) (C.13)

the generic form of such Lagrangian reads

∑

kl

(
a0
klψ̄kiγ

μ∂μψl + a1
kl(∂μAk)

(
∂μAl

)

+ a2
kl

(
∂μB

μ
k

)(
∂νB

ν
l

) + a3
kl

(
∂μBν

k

)(
∂μBνl

)

+ a4
klAkAl + a5

klB
μ
k Bμl + a6

klψ̄kψl + a7
klB

μ
k ∂μAl

)

+
∑

klm

(
a8
klmAmψ̄lψm + a9

klmBμkψ̄lγ
μψm

+ a10
klmB

μ
k Bν

l ∂μBνm + a11
klm∂μAkψ̄lγ

μψm

)

+
∑

klmn

(
a12
klmnψ̄kψlψ̄mψn + a13

klmnB
μ
k BμlB

ν
k Blν

)
(C.14)

and the list may be incomplete.
When considering weak interactions, one should include

also pseudoscalars ψ̄kγ
5ψl , Aμψ̄kγ

5γ μψl where γ 5 =
iγ 0γ 1γ 2γ 3, which transforms as scalar under continuous
transformations but changes sign under parity inversion.
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