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Why heavy 1ons’:

* You could think there are enough problems
with elementary collisions...

* Yetif you collide many nucleons together

you can perhaps learn more about their
constituents and their interactions.

From dynamics to thermodynamics of strong
interactions?
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QCD: dynamics of strong
Interactions
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Usetful numbers:

Energy density:
SPS ~ 3 GeV/fm?

Temperature:

(measured 1n degrees Kelvin
RHIC ~ 5-8 GeV/fm’ - or in eV, via Boltzmann k)

Proton: ~ Surface of the Sun: 6000 K

Nuclear fireball: 150 MeV
> 2% 102K
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From Big Bang to Little Bang

Little Bang

WMAP data \
[Sxmb years) \




How does an interaction
progress:

This 1s where the ‘hot stuff’ forms

But we observe
1t here...
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Big questions:

e What have we learned so far?

e What do we want to know?
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Existing data come from two sources:

* The RHIC accelerator
e 100+100 GeV/N The SPS accelerator
* Au+ Au 158 GeV/N

Pb on stationary Pb

Event display:
~1200 charged particles
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Basic info on ‘soft’ interactions:

Multiplicities
Particle spectra

Particle composition

Particle correlations
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Important for heavy 1on
collisions: centrality

Spectators ¢ 0
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‘Centrality’ — how
many nucleons
participate in the
collision

No way to measure
directly, but can
evaluate

Often expressed in
terms of ‘number of
participant pairs’




Back to basic facts: multiplicities

(from central collisions)

Far away from
many a prediction
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Basics ctn d:

spectra
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Nuclear geometry determines basic characteristics!
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What can we expect for LHC?

One (of many) models

200 GeV
[30GeY
624 GelV
19.6 GeV
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Basics ctn d: hadrochemistry

How many particles of different species?
Baryons — antibaryons?
Non-strange, strange, charmed?

Here come thermodynamical models
Nb of particles determined by two parameters
baryon density L, temperature T

Temperature — from transverse spectra

Baryon density (net baryons!) — can count them
(and determine the radius of a fireball

from quantum interference effects)
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Counting — and predicting
net baryons:

AGS

SPS

RHIC 62
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Thermal models work at RHIC:

T 1 1
=200 GeV

VSn

b

STAR
FHENLX
o BRAHMS
—  T=160.5, p =20 MeV
T=155, n =26 MeV
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Baryon density and temperature
predictions for LHC:
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Heavy tlavor story: strangeness,
charm

Strange particles more abundantly produced in nuclear collisions

But real news come from charm:

J/w is charm-anticharm pair
J/y nuclear modification factor R, , ad P

It 1s suppressed (compared

to production in pp)
(main SPS discovery)

Why?
Presumably —
nuclear matter (is 1t plasma?)

. PHENIX preliminary ‘melts’ the charmonium
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Will J/¥Y ‘melt” more (be more
suppressed) at LHC?

Not necessarily so...

LHC madsal
- — — — RHIC madsal
@ RHIC data
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Now for the hard stuff: jets
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Jets from pp and AA:

Direct probe

f jets: study of large
StudYO Jeis. study & of partonic phase T ~ 1/Pt
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How to study jets:
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Compare large pt spectra for pp
and AA (scaled by number of
collisions):
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What 1s ‘jet quenching’?

Radiation energy loss
by high energy partons
moving in a

dense partonic medium

High gluon density requires deconfined matter
- ‘indirect’” QGP signature
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LHC will extend considerably the p, range:

® BRAHMS h 0-10% central |
B pPHENIX 7 0-10% central
High-p; behavior at the LHC?

p, (GeV/e)
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Even charmed particles

suppressed
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First time hydrodynamics without any viscosity

describes heavy ion reactions.

Transverse spectra

‘Flow’ — azimuthal correlation
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‘Plasma’ — an 1deal liquid?
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One dedicated experiment, ALICE, but CMS and ATLAS also

e The first 15 minutes; L. . = 1ub-!

* Event multiplicity, low pt hadromc spectra, particle
ratios

e The first month; L. =0.1 - 1nb"!

* Rare high p, processes: jets, D and B particles,
quarkonia, photons, electrons

* The following years:
* pA, A scan, E scan
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Progress/summary:

!99

e from “oh wow

* we have found a surprising new form of matter

(certainly partonic, but not ‘soup of free quarks & gluons’
rather — ‘perfect liquid’
* to “ahal”

* here 1s how 1t works

* how QGP relates to and helps progress 1n other
fields
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(quotation from Barbara Jacak, one of the leaders in QGP search)




