Fixed target physics at CERN SPS

Ewa Rondio, SINS, Warsaw, Poland

Warsaw. 22.04.2008

Why fixed targets
 Compass and spin structure of the nucleon
 SHINE - cross sections and energy scan with heavy ions
 Rare K decays - search for New Physics
 Future: GPD and DVCS measurements

Symposium on *Physics of Elementary Interactions in the LHC Era*

Why fixed target ?

Study of the structure of composed object by scattering on it elementary projectiles:

- Rutherford like experiment
- charged leptons and neutrinos as projectiles
- **V** Requirements on target
 - polarization
 - matherial
- Study of decays (particle production)

Present and near future experiments on SPS

What is the CERN - SPS fixed target program?

Non-LHC Experimental Programme SPS NA58 (COMPASS) P326 (NA48/3)/NA62 P327 (EM processes in strong crystalline fields) NA49-future/NA61 Neutrino / CNGS New initiatives

from CERN Council 142'th session in 21'st June 2007

Experiments with strong polish participation

Experiment without polish participation

Resolution of the "DIS microscope"

This is what we know: quarks pairs quark-antiquark gluons

Deeper we look inside \rightarrow more guark-antiguark pairs we see ... Mechanism: quarks emit gluons, gluons produce pairs ...

Scale μ

emision probability depends on Q^2 , splitting functions, Pij, describe how the momentum is divided

 $\mu \frac{d}{d\mu} \begin{pmatrix} \Delta q(x,\mu) \\ \Delta g(x,\mu) \end{pmatrix} = \int_{x}^{1} \frac{dz}{z} \begin{pmatrix} \Delta \mathcal{P}_{qq} & \Delta \mathcal{P}_{qg} \\ \Delta \mathcal{P}_{gq} & \Delta \mathcal{P}_{gg} \end{pmatrix}_{(z,\alpha_{s}(\mu))} \cdot \begin{pmatrix} \Delta q \\ \Delta g \end{pmatrix} \begin{pmatrix} x \\ z \end{pmatrix} \text{ Replaced by } \mathbf{Q}^{2}$

Determination of quark polarization inside nucleon

Photon spin = 1 Quark spin = 1/2

photon can be absorbed only by quark

of opposite polarization

$$\Delta\Sigma(\overline{\rm MS}) = 0.33 \pm 0.03(\text{stat}) \pm 0.05(\text{syst})$$

From naive expectation it should be +1, after relativistic correction about 0.66 **So half is missing !!!**

Spin goals

How is the proton built from its known quark and gluon constituents?

As with atomic and nuclear structure, this is an evolving understanding

Recall: simple quark model

In QCD: proton is not just 3 quarks !

Rich structure of quarks anti-quarks, gluons

"spin crisis"

Orbital angular momentum: - contribution from quarks - and from gluons Presently unknown, goal for next generation experiments

Quark contribution is not enough Missing contribution can be carried by gluons

 \rightarrow Goal for present experiments

To undestand spin structure we have to measure ΔG and ΔL

\checkmark First look at ΔG

- in lepton nucleon scattering gluon does not couple to virtual photon (or intermediate boson)
- selection of Photon Gluon Fusion needed
- gluon polarization related to measured asymmetry

V Competition -

- →polarized proton-proton collider RHIC
- here measured asymmetries compared with expected asymmetries for specific model for the gluon polarization

$\Delta G/G$ at COMPASS

Photon Gluon Fusion

Selection of events where underlying process involved gluon →sensitivity to gluon parameters including spin orientation

cross section difference $\mathbf{q} = \mathbf{c}$ in charmed meson production \rightarrow simple theoretical description in LO \rightarrow experiment challenging **q**=**u**,**d**,**s** cross section difference in 2+1 jet production in COMPASS: events with 2 hadrons with high p_T \rightarrow experimentally easier \rightarrow theoretical description more complicated

Improved result for all data on deuteron (2002-2006)

Analysis in two channels: tagged for D* production untagged – only D⁰ observed

stat. error: 0.44 → 0.27

 $\Delta G/G = -0.49 \pm 0.27 \text{ (stat)} \pm 0.11 \text{ (syst)}$ < $x_a > = 0.11$, scale: $\mu^2 = 13 \text{ GeV}^2$

$\Delta G/G$: pairs of high p_{T} hadrons

results

Best present knowledge from "direct measurements"

Compass →most precise

<mark>∆G/G</mark> small

Long run with hadron beam this year

II. Very rare decays possible signal of new physics

NA62 – P326

"New physics" decays (SM = 0): $LFV: K_L^0 \rightarrow \mu e, K_L^0, K^{\pm} \rightarrow \pi \mu e$ Precision measurements (SM/NP window) Transverse μ polar. $K^+ \rightarrow \pi \mu v, K^+ \rightarrow \mu v \gamma$ Short-distance modes (SM = precise) $K_L \rightarrow \pi^0 l^+ l^-, K_L \rightarrow \pi^0 v \overline{v}, K^{\pm} \rightarrow \pi^{\pm} v \overline{v}$

A measurement of the 4 decay modes $K^{+} \rightarrow \pi^{+} \nu \nu \qquad K^{\circ}{}_{L} \rightarrow \pi^{0} \nu \nu$ $K^{\circ}{}_{L} \rightarrow \pi^{0} e^{+} e^{-} \qquad K^{\circ}{}_{L} \rightarrow \pi^{0} \mu^{+} \mu^{-}$ is a crucial element in the exploration of

is a crucial element in the exploration of the new physics discovered at the LHC.

Physics motivation

Acurate determination of the universality triangle

Probes short distance behaviour of the Standard Model

Extremely sensitive to possible new degrees of freedom beyond the Standard Model

III. Hadron-hadron, hadron-ion, ion-ior

(SHINE – SPS Heavy Ion and Neutrino Experiment)

Experiment running, (after first year of data taking)

Three subjects combined around detector with high acceptance and good particle identification: NA49 detector

Phase transition study in ion-ion scattering

Precise measuremen of hadron production in pC scattering →input for neutrino beam simulations (T2K)

Why production of π and K have to be knows better?

To define quantitatively the region of interest the particle yield has been increased by 30% in dependently in each momentum and angle bin.

Region of interest: 0.5 < p <5 GeV/c ; 0 < θ < 250 mrad

Needed statistics to improve knowledge about beam

~200k π^+ reconstructed tracks

or equivalently (temperature)-

(baryo-chemical potential)

In particular the critical point should lead to an increase of multiplicity and transverse momentum fluctuations

Longer scale future (>2011)

General Parton Distributions

Next step – study 3D structure of the nucleon
→ additional transverse information
→ present structure functions – limit of 3D case

NEW : 3-dimensional picture of the partonic nucleon structure

GPDs and relations to the physical observables

Summary

- ✓ Still many fields for fixed target experiments
- ✓ Study of nucleon structure concentrated on spin puzzle, important role of µN data
- ✓ In future GPD is a very likely goal
- Rare decays of kaon can bring important information for flavour structure understanding
- \checkmark Here there is also space for longer term plans
- Precise data with particle identification can contribute to other fields (neutrino physics, cosmic ray physics)
- Measurements with heavy ion beams can give input to critical point searches and deconfinement understanding